MEASURES OF NON-STRICT-SINGULARITY AND NON-STRICT-COSINGULARITY

Snežana Živković

Abstract. In this paper we investigate a new measure of non-strict-singularity and a new measure of non-strict-cosingularity. Measures of non-strict-singularity and of non-strict-cosingularity have been investigated in [11], [8], [12], [7], [9], [15].

1. Introduction and preliminaries

In this paper X, Y and Z are complex Banach spaces, B(X, Y) (K(X, Y)) the set of all bounded (compact) linear operators from X into Y. We shall write B(X) (K(X)) instead of B(X, X) (K(X, X)).

An operator $T \in B(X,Y)$ is in $\Phi_+(X,Y)$ ($\Phi_-(X,Y)$) if the range R(T) is closed in Y and the dimension $\alpha(T)$ of the null space N(T) of T is finite (the codimension $\beta(T)$ of R(T) in Y is finite). Operators in $\Phi_+(X,Y) \cup \Phi_-(X,Y)$ are called semi-Fredholm operators. We set $\Phi(X,Y) = \Phi_+(X,Y) \cap \Phi_-(X,Y)$. The operators in $\Phi(X,Y)$ are called Fredholm operators. We shall write $\Phi_+(X)$ (resp. $\Phi_-(X)$, $\Phi(X)$) instead of $\Phi_+(X,X)$ (resp. $\Phi_-(X,X)$, $\Phi(X)$).

Let B_X denote the closed unit ball of X. Let $T \in B(X,Y)$ and

$$m(T) = \inf\{ \|Tx\| : \|x\| = 1 \}$$

be the $minimum \ modulus$ of T, and let

$$q(T) = \sup\{ \varepsilon \geqslant 0 : \varepsilon B_Y \subset TB_X \}$$

be the surjection modulus of T.

If M is a subspace of X, then J_M will denote the embedding map of M into X, and if V is a subspace of Y, then Q_V will denote the canonical map of Y onto the quotient space Y/V.

An operator $T \in B(X,Y)$ is strictly singular $(T \in S(X,Y))$ if, for every infinite dimensional (closed) subspace M of X, the restriction of T to M, $T|_{M}$, is not a

AMS Subject Classification: 47 A 10, 47 A 53

Keywords and phrases: Strictly (co)singular operators, measures of non-strict-(co)singularity, semi-Fredholm operators.

2 S. Živković

homeomorphism, i.e., $m(T|_M) = 0$. An operator $T \in B(X,Y)$ is strictly cosingular $(T \in SC(X,Y))$ if, for every infinite codimensional closed subspace V of Y the composition Q_VT is not surjective. It is well known that

$$K(X,Y) \subset S(X,Y)$$
 and $K(X,Y) \subset SC(X,Y)$. (1.1)

If Ω is a non-empty bounded subset of X, then the Hausdorff measure of noncompactness of Ω is denoted by $\chi(\Omega)$, and defined as follows

$$\chi(\Omega) = \inf\{ \varepsilon > 0 : \Omega \text{ has a finite } \varepsilon\text{-net in } X \}.$$

For $A \in B(X,Y)$ the Hausdorff measure of noncompactness of A, denoted by $||A||_{\chi}$, is defined by

$$||A||_Y = \inf\{k \geq 0 : \chi_Y(A\Omega) \leq k_{\chi_X}(\Omega), \ \Omega \subset X \text{ is bounded }\}.$$

Recall that ([2])

$$||A||_{\chi} = \inf\{||Q_V A|| : V \text{ is a subspace of } Y, \dim V < \infty\}.$$

For $A \in B(X, Y)$, set (see [6])

$$||A||_{\mu} = \inf\{||AJ_L|| : L \text{ closed subspace of } X, \text{ codim } L < \infty\}.$$

Recall that

$$||A||_{\mathcal{X}} = 0 \iff ||A||_{\mu} = 0 \iff A \in K(X, Y). \tag{1.2}$$

For $A \in B(X, Y)$, set

$$G_M(A) = \inf_{N \subset M} ||AJ_N||, \quad G(A) = G_X(A),$$

$$\Delta_M(A) = \sup_{N \subset M} G_N(A), \quad \Delta(A) = \Delta_X(A),$$

where M, N denote closed infinite dimensional subspaces of X (see [11]). Δ is a measure of non-strict-singularity of operators, i.e.,

$$\Delta(A) = 0 \iff A \in S(X, Y). \tag{1.3}$$

Weis [8] introduced for $A \in B(X,Y)$ the following functions

$$K_V(A) = \inf_{W \supset V} \|Q_W A\|, \quad K(A) = K_{\{0\}}(A),$$

$$\nabla_V(A) = \sup_{W \supset V} K_W(A), \quad \nabla(A) = \nabla_{\{0\}}(A),$$

where V, W denote closed infinite codimensional subspaces of Y.

 ∇ is a measure of non-strict-cosingularity, i.e.,

$$\nabla(A) = 0 \iff A \in SC(X, Y). \tag{1.4}$$

Recall that

$$\nabla(A+T) = \nabla(A) \quad \text{for all } T \in SC(X,Y), \tag{1.5}$$

and

$$K_V(A) = \inf_{W \supset V} \|Q_W A\|_{\chi},$$
 (1.6)

where V, W denote closed infinite codimensional subspaces of Y (see [12, Summary and discussion, Remark 2] or [7, Example 5.3] or [15, Lemma 2.21).

Recall that ([11], [13])

$$G(A) > 0 \iff A \in \Phi_{+}(X, Y),$$

 $K(A) > 0 \iff A \in \Phi_{-}(X, Y).$ (1.7)

2. Results

Schechter [11] proved the next theorem.

Theorem 2.1. $A \in \Phi_+(X,Y)$ if and only if for each Banach space Z there is a constant c, $0 < c < \infty$, such that

$$\Delta(T) \leqslant c\Delta(AT), \quad T \in B(Z, X).$$

We can prove the dual theorem.

Theorem 2.2. $A \in \Phi_{-}(X,Y)$ if and only if for each Banach space Z there is a constant c, $0 < c < \infty$, such that

$$\nabla(T) \leqslant c\nabla(TA), \quad T \in B(Y, Z).$$
 (2.2.1)

Proof. Let $A \in \Phi_{-}(X,Y)$. By [6, Theorem 5.5 and Theorem 3.1] it follows that there is a constant c, $0 < c < \infty$, such that for each Banach space Z

$$||T||_{Y} \le c||TA||_{Y}, \quad T \in B(Y, Z).$$
 (2.2.2)

Let V be a closed subspace of Z with $\operatorname{codim} V = \infty$ and $\varepsilon > 0$. From (1.6) it follows that there is a closed subspace W of Z such that $W \supset V$, $\operatorname{codim} W = \infty$ and

$$||Q_W T A||_{\gamma} < K_V(T A) + \varepsilon. \tag{2.2.3}$$

From (1.6), (2.2.2) and (2.2.3) it follows that

$$K_V(T) \leqslant \|Q_W T\|_{\chi} \leqslant c \|Q_W T A\|_{\chi} \leqslant c (K_V(TA) + \varepsilon)$$

 $\leqslant c (\nabla (TA) + \varepsilon).$

Hence $\nabla(T) \leqslant c(\nabla(TA) + \varepsilon)$.

Assume $A \notin \Phi_{-}(X,Y)$. By [1, Theorem 4.4.10] it follows that there is an operator $C \in K(X,Y)$ such that codim $\overline{R(A-C)} = \infty$. Let $V = \overline{R(A-C)}$. Since $Q_V(A-C) = 0$, from (1.1) and (1.5) we get $\nabla(Q_VA) = \nabla(Q_V(A-C)) = 0$. Let M

4 S. Živković

and N be closed subspaces of Y/V with codim $M=\infty,\ N\supset M$ and codim $N=\infty.$ Since $\|Q_NQ_V\|=1$ we get

$$\nabla(Q_V) = \sup_{\substack{M \subset Y/V \\ \operatorname{codim} M = \infty}} \inf_{\substack{N \supset M \\ \operatorname{codim} N = \infty}} \|Q_N Q_V\| = 1.$$

Thus, there is no constant c, $0 < c < \infty$, such that (2.2.1) holds.

Let S be a subset of a Banach space A. The perturbation class associated with S is denoted by P(S) and

$$P(S) = \{ a \in A : a + s \in S \text{ for all } s \in S \}.$$

The perturbation class associated with $\Phi_+(X,Y)$ $(\Phi_-(X,Y))$ is denoted by $P(\Phi_+(X,Y))$ $(P(\Phi_-(X,Y)))$.

For $T \in B(X, Y)$, set (see [10], [14])

$$n_{P\Phi_{+}} = ||T||_{P\Phi_{+}} = \inf\{ ||T - P|| : P \in P(\Phi_{+}(X, Y)) \},$$

$$n_{P\Phi_{-}} = ||T||_{P\Phi_{-}} = \inf\{ ||T - P|| : P \in P(\Phi_{-}(X, Y)) \},$$

The next theorem is inspired by [3, Example 1].

THEOREM 2.3. Let $T \in B(X, Y)$. Then

$$m(T) \leqslant ||T||_{P\Phi_+} \leqslant ||T||,$$
 (2.3.1)

$$q(T) \leqslant ||T||_{P\Phi_{-}} \leqslant ||T||.$$
 (2.3.2)

Proof. (2.3.1) Assume $P \in P(\Phi_+(X,Y))$. It implies $P \notin \Phi_+(X,Y)$. By [1, Theorem 4.4.7] it follows that there is $K \in K(X,Y)$ such that dim $N(P-K) = \infty$. Set M = N(P-K) and $\varepsilon > 0$. By (1.2) we get $\|PJ_M\|_{\mu} = \|KJ_M\|_{\mu} = 0$. Hence there is a closed subspace $V \subset M$ such that dim $M/V < \infty$ and $\|PJ_V\| < \varepsilon$. For $x \in V$ we have

$$||Tx - Px|| \ge ||Tx|| - ||Px|| \ge m(T)||x|| - \varepsilon ||x||.$$

It implies $||T - P|| \ge ||(T - P)J_V|| \ge m(T) - \varepsilon$. Hence $||T - P|| \ge m(T)$. Thus $||T||_{P\Phi_+} \ge m(T)$.

(2.3.2) Let $P \in P(\Phi_{-}(X,Y))$. Then $P \notin \Phi_{-}(X,Y)$. From [1, Theorem 4.4.10] it follows that there is $K \in K(X,Y)$ such that $\operatorname{codim} \overline{R(P-K)} = \infty$. Set $U = \overline{R(P-K)}$. From $Q_U(P-K) = 0$ and (1.2) it follows $\|Q_UP\|_{\chi} = \|Q_UK\|_{\chi} = 0$. Hence for $\varepsilon > 0$ there is a finite dimensional subspace $W \subset Y/U$ such that $\|Q_WQ_UP\| < \varepsilon$. There is a closed subspace $V \subset Y$ such that $V \supset U$ and W = V/U. It is not difficult to see that the operator $A: (Y/U)/(V/U) \to Y/V$ defined by

$$A((y+U) + V/U) = y + V, \quad y \in Y,$$

is an isometric isomorphism and $AQ_{V/U}Q_U = Q_V$. Hence $||Q_VP|| = ||Q_{V/U}Q_UP||$. It follows that $||Q_VP|| < \varepsilon$. Hence

$$\|T-P\|\geqslant \|Q_V(T-P)\|\geqslant \|Q_VT\|-\|Q_VP\|\geqslant q(Q_VT)-\varepsilon\geqslant q(T)-\varepsilon.$$

Thus
$$||T - P|| \ge q(T)$$
, and $||T||_{P\Phi} \ge q(T)$.

Now we use the notation of [7]: let, for $T \in B(X, Y)$,

$$\operatorname{sn}_{P\Phi_+}(T) = \sup_{M} n_{P\Phi_+}(TJ_M),$$

$$\operatorname{isn}_{P\Phi_+}(T) = \inf_{M} \operatorname{sn}_{P\Phi_+}(TJ_M),$$

where M denotes a closed infinite dimensional subspace of X and

$$\operatorname{sn}'_{P\Phi_{-}}(T) = \sup_{U} n_{P\Phi_{-}}(Q_{U}T),$$

$$\operatorname{isn}'_{P\Phi_{-}}(T) = \inf_{U} \operatorname{sn}'_{P\Phi_{-}}(Q_{U}T),$$

where U denotes a closed infinite codimensional subspace of Y.

Zemánek [13] considered the following functions

$$u(A) = \sup\{ m(AJ_W) : W \text{ is a closed subspace of } X \text{ with } \dim W = \infty \},$$

 $v(A) = \sup\{ q(Q_V A) : V \text{ is a closed subspace of } Y \text{ with } \operatorname{codim} V = \infty \}.$

From the definition of the strictly singular and strictly cosingular operators it is obvious that

$$u(A) = 0 \iff A \in S(X, Y),$$

$$v(A) = 0 \iff A \in SC(X, Y).$$
(2.4)

For $A \in B(X, Y)$ set (see [4], [5])

$$G_u(A) = \inf\{u(AJ_M) : M \text{ is a closed subspace of } X, \dim M = \infty\},\ K_v(A) = \inf\{v(Q_UA) : U \text{ is a closed subspace of } Y, \operatorname{codim} U = \infty\}.$$

Recall that

$$G_u(A) > 0 \iff A \in \Phi_+(X, Y),$$

 $K_v(A) > 0 \iff A \in \Phi_-(X, Y).$ (2.5)

From (2.3.1) and (2.3.2) it follows

$$G_u(T) \leqslant \operatorname{isn}_{P\Phi_+}(T) \leqslant G(T),$$

 $K_v(T) \leqslant \operatorname{isn}'_{P\Phi_-}(T) \leqslant K(T).$ (2.6)

By (2.6), (1.7) and (2.5) we get

$$isn_{P\Phi_{+}}(T) > 0 \iff T \in \Phi_{+}(X,Y),
isn'_{P\Phi_{-}}(T) > 0 \iff T \in \Phi_{-}(X,Y).$$
(2.7)

(2.7) follows also from [7, Theorem 2.3(2) and Theorem <math>3.3(2)].

For $T \in B(X,Y)$, set

$$\Delta_{P\Phi_{+}}(T) = \sup_{M} \inf_{N \subset M} \|TJ_{N}\|_{P\Phi_{+}},$$

$$\nabla_{P\Phi_{-}}(T) = \sup_{V} \inf_{W \supset V} \|Q_{W}T\|_{P\Phi_{-}},$$

6 S. Živković

where M, N denote closed infinite dimensional subspaces of X and V, W denote closed infinite codimensional subspaces of Y.

Analogously as in [11] it can be proved that $\Delta_{P\Phi_+}$ ($\nabla_{P\Phi_-}$) is a seminorm.

From (2.3.1) and (2.3.2) it follows

$$u \leqslant \Delta_{P\Phi_{+}} \leqslant \Delta,$$

$$v \leqslant \nabla_{P\Phi_{-}} \leqslant \nabla.$$
(2.8)

By (2.8), (1.3), (1.4) and (2.4) we get that $\Delta_{P\Phi_+}$ is a measure of non-strict-singularity and $\nabla_{P\Phi_-}$ is a measure of non-strict-cosingularity, i.e.,

$$\Delta_{P\Phi_+}(T) = 0 \iff T \in S(X, Y), \tag{2.9}$$

$$\nabla_{P\Phi_{-}}(T) = 0 \iff T \in SC(X, Y). \tag{2.10}$$

(2.9) and (2.10) follow also from [7, Theorem 2.4(2) and Theorem <math>3.3(2)].

It is well known that

$$S(X,Y) \subset P(\Phi_{+}(X,Y))$$
 and $SC(X,Y) \subset P(\Phi_{-}(X,Y))$.

Theorem 2.4. Let X and Y be Banach spaces. Then:

- (2.11.1) $S(X,Y) = P(\Phi_{+}(X,Y))$ if and only if from $P \in P(\Phi_{+}(X,Y))$ it follows $PJ_M \in P(\Phi_{+}(M,Y))$ for each closed infinite dimensional subspace M of X:
- (2.11.2) $SC(X,Y) = P(\Phi_{-}(X,Y))$ if and only if from $P \in P(\Phi_{-}(X,Y))$ it follows $Q_V P \in P(\Phi_{-}(X,Y/V))$ for each closed infinite codimensional subspace V of Y.

Proof. (2.11.1). Let $S(X,Y) = P(\Phi_+(X,Y))$. Suppose M is a closed infinite dimensional subspace of X and $P \in P(\Phi_+(X,Y))$. Then $P \in S(X,Y)$. It implies $PJ_M \in S(M,Y) \subset P(\Phi_+(M,Y))$.

Assume that for each closed infinite dimensional subspace M of X from $P \in P(\Phi_+(X,Y))$ it follows $PJ_M \in P(\Phi_+(M,Y))$. Hence for $T \in B(X,Y)$ we get

$$||TJ_M||_{P\Phi_+} = \inf\{||TJ_M - P_1|| : P_1 \in P(\Phi_+(M, Y))\}$$

$$\leq \inf\{||TJ_M - PJ_M|| : P \in P(\Phi_+(X, Y))\}$$

$$\leq \inf\{||T - P|| : P \in P(\Phi_+(X, Y))\} \leq ||T||_{P\Phi_+}.$$

Therefore

$$\Delta_{P\Phi_{+}}(T) \leqslant ||T||_{P\Phi_{+}}.$$
 (2.11.3)

If $T \in P(\Phi_{+}(X,Y))$, then $||T||_{P\Phi_{+}} = 0$. By (2.11.3) it follows that $\Delta_{P\Phi_{+}}(T) = 0$. From (2.9) we get $T \in S(X,Y)$. Thus $S(X,Y) = P(\Phi_{+}(X,Y))$.

(2.11.2). Analogously to (2.11.1).

 $\label{eq:Acknowledgement.} Acknowledgement. \ I \ am \ grateful \ to \ Dragan \ Dorđević for \ helpful \ conversations.$

REFERENCES

- S.R. Caradus, W.E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, 1974.
- [2] A.S. Fainstein, On measures of noncompactness of linear operators and an analog of the minimum modulus for semi-Fredholm operators, Spektral'naya Teoriya i Prilozh., Baku 6 (1985), 182-195 (in Russian).
- [3] F. Galaz-Fontes, Measures of noncompactness and upper semi-Fredholm perturbation theorems, Proc. Amer. Math. Soc. 118 (1993), 891-897.
- [4] M. Gonzáles and A. Martinón, Fredholm theory and space ideals, Boll. U. M. I. 7B (1993), 473-488.
- [5] M. Gonzáles and A. Martinón, Operational quantities characterizing semi-Fredholm operators, Studia Math. 114 (1995), 13-27.
- [6] A. Lebow and M. Schechter, Semigroups of operators and measures of noncompactness, J. Funct. Anal. 7 (1971), 1-26.
- [7] A. Martinón, Operational quantities, Comment. Math. Univ. Carolinae 38, 3 (1997), 471-484.
- [8] L. Weis, Über strikt singuläre und strikt cosinguläre Operatoren in Banachräumen, Dissertation, Bonn, 1974.
- [9] V. Rakočević, Measures of non-strict-singularity of operators, Mat. Vesnik 35 (1983), 79-82.
- [10] V. Rakočević, Semi-Browder operators and perturbations, Studia Math. 122 (1997), 131-137.
- [11] M. Schechter, Quantities related to strictly singular operators, Indiana Univ. Math. J. 21 (1972), 1061-1071.
- [12] H.-O. Tylli, On semi-Fredholm operators, Calkin algebras and some related quantities, Dissertation, Helsinki, 1986.
- [13] J. Zemánek, Geometric characteristics of semi-Fredholm operators and their asymptotic behaviour, Studia Math. 80 (1984), 219-234.
- [14] S. Živković, Semi-Fredholm operators and perturbations, Publ. Inst. Math. Beograd 61 (1997), 73-89.
- [15] S. Živković, Semi-Fredholm operators and perturbation functions, Filomat 11 (1997), 77-88.

(received 03.09.1998, in revised form 15.09.2000)

University of Niš, Faculty of Sciences, Department of Mathematics, Višegradska 33, 18000 Niš, Yugoslavia

E-mail: zana@pmf.pmf.ni.ac.yu