BILINEAR EXPANSIONS OF THE KERNELS OF SOME NONSELFADJOINT INTEGRAL OPERATORS

Milutin Dostanić

Abstract. Let H and S be integral operators on $L^2(0, 1)$ with continuous kernels. Suppose that H > 0 and let A = H(I + S). It is shown that if the (nonselfadjoint) operator S is small in a certain sense with respect to H, then the corresponding Fourier series of functions from R(A) (or $R(A^*)$) converges uniformly on [0, 1].

1. Introduction

Let H and S be integral operators on $L^2(0,1)$ (with inner product $\langle f,g \rangle = \int_0^1 f(x)\overline{g(x)} \, dx$) with continuous kernels $\mathcal{H}(x,y)$ and $\mathcal{S}(x,y)$ on $[0,1] \times [0,1]$. Suppose that H > 0 and let

$$A = H(I+S). \tag{1}$$

Classical theorems (case S = 0, see [5]) state that the kernel \mathcal{H} can be expanded into a uniformly convergent (on $[0,1] \times [0,1]$) bilinear series.

A consequence of this is that every function $f \in R(H)$ has the uniformly convergent Fourier series with respect to the system of eigenfunctions of H. (R(H)denotes the image of H in $L^2(0,1)$.

Similar results hold in some cases when $S \neq 0$. Namely, if $S = S^*$, it was proved in [1] and [2] that the corresponding variant of Mercer's theorem holds. The proof was based on the spectral theorem for an operator on $L^2(0,1)$ with the definite or indefinite inner product generated by the formula

$$[f,g] = \langle (I+S)f,g \rangle.$$

In [4], a series of nice results was obtained which were related to bilinear expansions of smooth Carleman's kernels of Mercer type.

A natural question is about bilinear expansions when $S \neq S^*$. We shall show that if the operator S is small in a certain sense with respect to H, then the corresponding Fourier series of functions from R(A) (or $R(A^*)$) converges uniformly

AMS Subject Classification: 47 G 10, 45 P 05

Keywords and phrases: Nonselfadjoint integral operators, bilinear expansion.

on [0, 1]. (Note that, because of the continuity of the kernel of A, we have $R(A) \subset C[0, 1]$).

In the sequel, $\mathcal{A}(\cdot, \cdot)$ will denote the kernel of the operator A (defined by (1)).

2. The results

THEOREM. Let, for the operators H and S from (1), there exists $\omega > 0$ such that $S^*S \leq \omega H^2$. If s_k are singular values of A and f_k the normalized eigenvectors of A^*A (i.e., $A^*Af_k = s_k^2f_k$) and $g_k = (s_k)^{-1}Af_k$, then the series $\sum_{k \geq 1} s_k \overline{f_k(y)}g_k(x)$ is absolutely convergent on $[0,1]^2$ and uniformly convergent on [0,1] with respect to arbitrary variable and its sum is equal to $\mathcal{A}(x,y)$. Also, for every $f \in R(A)$ (resp. $g \in R(A^*)$) the series $\sum_{k \geq 1} \langle f, g_k \rangle g_k$ (resp. $\sum_{k \geq 1} \langle g, f_k \rangle f_k$) converges uniformly on [0,1] to f (resp. g).

In the proof of this assertions we need the following two Lemmas.

LEMMA 1. [5] If $T: L^2(0,1) \to L^2(0,1)$ is the linear operator defined by $Tf(x) = \int_0^1 M(x,y)f(y) \, dy$ and if $M \in C([0,1]^2)$ and $\langle Tf,f \rangle \ge 0$ for all $f \in L^2(0,1)$, then $M(x,x) \ge 0$ for all $x \in [0,1]$.

LEMMA 2. If A = H(I+S), H > 0, $S^*S \leq \omega H^2$, then there exists a constant c > 0 such that

$$\sqrt{A^*A} \leqslant cH, \qquad \sqrt{AA^*} \leqslant cH.$$

Proof. Since

$$A^*A = H^2 + S^*H^2 + H^2S + S^*H^2S$$
(2)

we have to estimate $\langle S^*H^2f, f \rangle$ and $\langle H^2Sf, f \rangle$.

The operator H^2 is positive and thus, by the Cauchy inequality, we have

$$\begin{split} |\langle S^* H^2 f, f \rangle|^2 &= |\langle H^2 f, Sf \rangle|^2 \leqslant \langle H^2 f, f \rangle \langle H^2 Sf, Sf \rangle \\ &= \|Hf\|^2 \|HSf\|^2 \leqslant \|Hf\|^2 \|H\|^2 \|Sf\|^2 \\ &= \|Hf\|^2 \|H\|^2 \langle S^* Sf, f \rangle \leqslant \|Hf\|^2 \|H\|^2 \omega \langle H^2 f, f \rangle \\ &= \omega \|H\|^2 \|Hf\|^4. \end{split}$$

Therefore

$$\langle S^* H^2 f, f \rangle | \leqslant \sqrt{\omega} \, \|H\| \langle H^2 f, f \rangle \tag{3}$$

and hence we get

$$|\langle H^2 Sf, f \rangle| \leqslant \sqrt{\omega} \, \|H\| \langle H^2 f, f \rangle. \tag{4}$$

Since

$$\langle S^* H^2 S f, f \rangle = \|HSf\|^2 \leqslant \|H\|^2 \|Sf\|^2 = \|H\|^2 \langle S^* S f, f \rangle \leqslant \omega \|H\|^2 \langle H^2 f, f \rangle,$$

from (2), (3), (4) it follows that $\langle A^*Af, f \rangle \leq (1 + \sqrt{\omega} ||H||)^2 \langle H^2f, f \rangle$, i.e. $A^*A \leq (1 + \sqrt{\omega} ||H||)^2 H^2$.

118

Having in mind that the function $\lambda \mapsto \sqrt{\lambda}$ is operator monotone, we get

$$\sqrt{A^*A} \leqslant (1 + \sqrt{\omega} \|H\|) H. \tag{5}$$

From the equality $A^* = (I + S^*)H$ we get $||A^*f|| \leq ||I + S^*|| \cdot ||Hf||$ $(f \in L^2(0, 1))$, i.e.

$$\sqrt{AA^*} \leqslant \|I + S^*\| \cdot H. \tag{6}$$

From (5) and (6) we obtain the assertion of the Lemma, with

$$c = \max\{1 + \sqrt{\omega} \|H\|, \|I + S^*\|\}.$$

Proof of the Theorem. From $A^*Af_k = s_k^2 f_k$ and $Af_k = s_k g_k$ it follows that f_k , $g_k \in C[0, 1]$ (because A has the continuous kernel) and A has the following singular (see [3]) expansion

$$A = \sum_{k \ge 1} s_k \langle \cdot, f_k \rangle g_k$$

Also, there holds

$$\sqrt{A^*A} f = \sum_{k \ge 1} s_k \langle f, f_k \rangle g_k$$

$$\sqrt{AA^*} f = \sum_{k \ge 1} s_k \langle f, g_k \rangle g_k, \qquad f \in L^2(0, 1).$$
(7)

The series on the right-hand side of the previous equalities converge in the norm of $L^2(0,1)$.

Consider the operators (on $L^2(0,1)$) S'_n , S''_n defined in the following way: $S'_n = cH - \sum_{k=1}^n \langle \cdot, f_k \rangle f_k$, $S''_n = cH - \sum_{k=1}^n \langle \cdot, g_k \rangle g_k$. Since, by (7) and Lemma 2, $\langle S'_n f, f \rangle \ge 0$, $\langle S''_n f, f \rangle \ge 0$, $f \in L^2(0,1)$ and since the operators S'_n , S''_n have continuous kernels, we get from Lemma 1

$$c\mathcal{H}(x,x) \ge \sum_{k=1}^{n} s_k |f_k(x)|^2, \quad c\mathcal{H}(x,x) \ge \sum_{k=1}^{n} s_k |g_k(x)|^2, \qquad n \in \mathbf{N}.$$

Since $\mathcal{H} \in C([0,1]^2)$, there exists $M_0 < +\infty$ such that

$$\sum_{k=1}^{n} s_k |f_k(x)|^2 \leqslant M_0, \qquad \sum_{k=1}^{n} s_k |g_k(x)|^2 \leqslant M_0.$$
(8)

From (8) it follows that the series

$$\sum_{k \ge 1} s_k \overline{f_k(y)} g_k(x)$$

is absolutely convergent for all $x, y \in [0, 1]$. Let S(x, y) denote its sum. Observe that form (8) it follows that the partial sums of the previous series are bounded by M_0 .

Fix $x \in [0, 1]$. Then we have

$$\left|\sum_{k=p}^{q} s_k \overline{f_k(y)} g_k(x)\right|^2 \leqslant \sum_{k=p}^{q} s_k |f_k(y)|^2 \sum_{k=p}^{q} s_k |g_k(x)|^2$$
$$\leqslant M_0 \sum_{k=p}^{q} s_k |g_k(x)|^2 \to 0 \quad (p,q \to \infty)$$

and the series $\sum_{k \ge 1} s_k \overline{f_k(y)} g_k(x)$ converges uniformly with respect to y on [0, 1], for every fixed x and hence its sum is a continuous function with respect to y.

Let $f \in C[0,1]$ be a fixed function. Then (because of the uniform convergence with respect to y)

$$\int_0^1 S(x,y)f(y)\,dy = \sum_{k\ge 1} s_k g_k(x) \int_0^1 f(y)\overline{f_k(y)}\,dy = \sum_{k\ge 1} s_k g_k(x)\langle f, f_k\rangle.$$
 (9)

(The series on the right-hand side of (9) converges not only for every x but also uniformly with respect to x because

$$\begin{split} \left|\sum_{k=p}^{q} s_k g_k(x) \langle f, f_k \rangle \right|^2 &\leqslant \sum_{k=p}^{q} s_k |g_k(x)|^2 \sum_{k=p}^{q} s_k |\langle f, f_k \rangle|^2 \\ &\leqslant M_0 s_p \|f\|^2 \to 0 \quad (p, q \to \infty) \,) \end{split}$$

On the other hand, from the singular expansion of A we get

$$\int_0^1 \mathcal{A}(x,y) f(y) \, dy = \sum_{k \ge 1} s_k g_k(x) \langle f, f_k \rangle \tag{10}$$

(the series converges in the norm of $L^2(0,1)$).

Thus, from (9), (10) it follows that for every $f \in C[0,1]$ we have

$$\int_0^1 (\mathcal{A}(x,y) - \mathcal{S}(x,y))f(y)\,dy = 0.$$

Putting $f(y) = \overline{\mathcal{S}(x, y)} - \overline{\mathcal{A}(x, y)} \ (\in C[0, 1])$ we get $\int_0^1 |\mathcal{A}(x, y) - \mathcal{S}(x, y)|^2 \, dy = 0$

and hence $\mathcal{A}(x,y) = \mathcal{S}(x,y)$ for every $y \in [0,1]$. Since $x \in [0,1]$ was arbitrary, we have $\mathcal{A}(x,y) = \mathcal{S}(x,y), x, y \in [0,1]$. So

$$\mathcal{A}(x,y) = \sum_{k \ge 1} s_k \overline{f_k(y)} g_k(x)$$

for every $x, y \in [0, 1]$.

Let now $f \in R(A)$. Then

$$f(x) = \int_0^1 \mathcal{A}(x, y)\varphi(y) \, dy, \qquad \varphi \in L^2(0, 1)$$

and thus, by the Lebesgue dominated convergence theorem, we have $(\mathcal{A}_n(x, y) = \sum_{k=1}^n s_k \overline{f_k(y)} g_k(x))$

$$\begin{split} f(x) &= \int_0^1 \lim_{n \to \infty} \mathcal{A}_n(x, y) \varphi(y) \, dy = \lim_{n \to \infty} \int_0^1 \mathcal{A}_n(x, y) \varphi(y) \, dy \\ &= \lim_{n \to \infty} \sum_{k=1}^n s_k g_k(x) \langle \varphi, f_k \rangle = \sum_{k \ge 1} s_k g_k(x) \langle \varphi, f_k \rangle. \end{split}$$

120

Since the preceeding series converges uniformly with the respect to $x \in [0,1]$ and since $\{g_k\}$ is an othonormal system in $L^2(0,1)$ (see [3]), we have $s_k \langle \varphi, f_k \rangle = \langle f, g_k \rangle$ and, finally, we get

$$f(x) = \sum_{k \ge 1} \langle f, g_k \rangle g_k(x)$$

(the series converges uniformly on [0, 1]).

The assertion for the function $g \in R(A^*)$ can be proved in a similar way.

REMARK. The second part of the Theorem was proved in [5] in a different way. The proof presented here is a consequence of the previously established bilinear expansion of the function $\mathcal{A}(x, y)$.

REFERENCES

- M. R. Dostanić, Generalizations of Mercer's theorem for a class of nonselfadjoint operators, Mat. Vesnik 41 (1989), 22-29.
- M. R. Dostanić, Generalizations of the Mercer theorem, Publ. de l'Inst. Math., Nouv. serie, 54(68) (1993), 63-70.
- [3] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Translation of the Math. Monographs, 18, Amer. Math. Soc., Providence, R.I., 1969.
- [4] I. M. Novitskii, Integral representations of linear operators by smooth Carleman kernels of Mercer type, Proc. London Math. Soc. (3) 68 (1994), 161–177.

[5] F. Riesz, B. Sz.-Nagy, Leçons d'analyse fonctionelle, Akademiai Kiado, Budapest, 1972.

(received 05.05.2001, in revised form 10.04.2002)

Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Beograd, Yugoslavia *E-mail*: domi@matf.bg.ac.yu