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BILINEAR EXPANSIONS OF THE KERNELS OF SOME

NONSELFADJOINT INTEGRAL OPERATORS

Milutin Dostani�c

Abstract. Let H and S be integral operators on L2(0; 1) with continuous kernels. Suppose
that H > 0 and let A = H(I + S). It is shown that if the (nonselfadjoint) operator S is small in
a certain sense with respect to H, then the corressponding Fourier series of functions from R(A)
(or R(A�)) converges uniformly on [0; 1].

1. Introduction

Let H and S be integral operators on L2(0; 1) (with inner product hf; gi =R
1

0
f(x)g(x) dx) with continuous kernels H(x; y) and S(x; y) on [0; 1]� [0; 1]. Sup-

pose that H > 0 and let
A = H(I + S): (1)

Classical theorems (case S = 0, see [5]) state that the kernel H can be expanded
into a uniformly convergent (on [0; 1]� [0; 1]) bilinear series.

A consequence of this is that every function f 2 R(H) has the uniformly
convergent Fourier series with respect to the system of eigenfunctions of H . (R(H)
denotes the image of H in L2(0; 1)).

Similar results hold in some cases when S 6= 0. Namely, if S = S�, it was
proved in [1] and [2] that the corresponding variant of Mercer's theorem holds.
The proof was based on the spectral theorem for an operator on L2(0; 1) with the
de�nite or inde�nite inner product generated by the formula

[f; g] = h(I + S)f; gi:
In [4], a series of nice results was obtained which were related to bilinear expansions
of smooth Carleman's kernels of Mercer type.

A natural question is about bilinear expansions when S 6= S�. We shall show
that if the operator S is small in a certain sense with respect to H , then the
corresponding Fourier series of functions from R(A) (or R(A�)) converges uniformly
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on [0; 1]. (Note that, because of the continuity of the kernel of A, we have R(A) �
C[0; 1]).

In the sequel, A(�; �) will denote the kernel of the operator A (de�ned by (1)).

2. The results

Theorem. Let, for the operators H and S from (1), there exists ! > 0
such that S�S 6 !H2. If sk are singular values of A and fk the normalized
eigenvectors of A�A (i.e., A�Afk = s2kfk) and gk = (sk)

�1Afk, then the seriesP
k>1 skfk(y)gk(x) is absolutely convergent on [0; 1]2 and uniformly convergent on

[0; 1] with respect to arbitrary variable and its sum is equal to A(x; y). Also, for
every f 2 R(A) (resp. g 2 R(A�)) the series

P
k>1hf; gkigk (resp.

P
k>1hg; fkifk)

converges uniformly on [0; 1] to f (resp. g).

In the proof of this assertions we need the following two Lemmas.

Lemma 1. [5] If T : L2(0; 1) ! L2(0; 1) is the linear operator de�ned by

Tf(x) =
R
1

0
M(x; y)f(y) dy and if M 2 C([0; 1]2) and hTf; fi > 0 for all

f 2 L2(0; 1), then M(x; x) > 0 for all x 2 [0; 1].

Lemma 2. If A = H(I + S), H > 0, S�S 6 !H2, then there exists a constant
c > 0 such that p

A�A 6 cH;
p
AA� 6 cH:

Proof. Since
A�A = H2 + S�H2 +H2S + S�H2S (2)

we have to estimate hS�H2f; fi and hH2Sf; fi.
The operator H2 is positive and thus, by the Cauchy inequality, we have

jhS�H2f; fij2 = jhH2f; Sfij2 6 hH2f; fihH2Sf; Sfi
= kHfk2kHSfk2 6 kHfk2kHk2kSfk2
= kHfk2kHk2hS�Sf; fi 6 kHfk2kHk2!hH2f; fi
= !kHk2kHfk4:

Therefore
jhS�H2f; fij 6 p

! kHkhH2f; fi (3)

and hence we get
jhH2Sf; fij 6 p

! kHkhH2f; fi: (4)

Since

hS�H2Sf; fi = kHSfk2 6 kHk2kSfk2 = kHk2hS�Sf; fi 6 !kHk2hH2f; fi;
from (2), (3), (4) it follows that hA�Af; fi 6 (1 +

p
! kHk)2hH2f; fi, i.e. A�A 6

(1 +
p
! kHk)2H2.
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Having in mind that the function � 7! p
� is operator monotone, we getp

A�A 6 (1 +
p
! kHk)H: (5)

From the equality A� = (I +S�)H we get kA�fk 6 kI +S�k � kHfk (f 2 L2(0; 1)),
i.e. p

AA� 6 kI + S�k �H: (6)

From (5) and (6) we obtain the assertion of the Lemma, with

c = maxf1 +p
! kHk; kI + S�kg:

Proof of the Theorem. From A�Afk = s2kfk and Afk = skgk it follows that fk,
gk 2 C[0; 1] (because A has the continuous kernel) and A has the following singular
(see [3]) expansion

A =
P
k>1

skh�; fkigk:

Also, there holds p
A�Af =

P
k>1

skhf; fkigk
p
AA� f =

P
k>1

skhf; gkigk;
f 2 L2(0; 1): (7)

The series on the right-hand side of the previous equalities converge in the norm of
L2(0; 1).

Consider the operators (on L2(0; 1)) S0n, S
00

n de�ned in the following way:
S0n = cH � Pn

k=1h�; fkifk, S00n = cH �Pn

k=1h�; gkigk. Since, by (7) and Lem-
ma 2, hS0nf; fi > 0, hS00nf; fi > 0, f 2 L2(0; 1) and since the operators S0n, S

00

n have
continuous kernels, we get from Lemma 1

cH(x; x) >
nP

k=1

skjfk(x)j2; cH(x; x) >
nP

k=1

skjgk(x)j2; n 2 N:

Since H 2 C([0; 1]2), there exists M0 < +1 such that
nP

k=1

skjfk(x)j2 6M0;
nP

k=1

skjgk(x)j2 6M0: (8)

From (8) it follows that the seriesP
k>1

skfk(y)gk(x)

is absolutely convergent for all x; y 2 [0; 1]. Let S(x; y) denote its sum. Observe
that form (8) it follows that the partial sums of the previous series are bounded
by M0.

Fix x 2 [0; 1]. Then we have��� qP
k=p

skfk(y)gk(x)
���2 6 qP

k=p

skjfk(y)j2
qP

k=p

skjgk(x)j2

6M0

qP
k=p

skjgk(x)j2 ! 0 (p; q !1)
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and the series
P

k>1 skfk(y)gk(x) converges uniformly with respect to y on [0; 1],
for every �xed x and hence its sum is a continuous function with respect to y.

Let f 2 C[0; 1] be a �xed function. Then (because of the uniform convergence
with respect to y)

Z
1

0

S(x; y)f(y) dy =
P
k>1

skgk(x)

Z
1

0

f(y)fk(y) dy =
P
k>1

skgk(x)hf; fki: (9)

(The series on the right-hand side of (9) converges not only for every x but also
uniformly with respect to x because

��� qP
k=p

skgk(x)hf; fki
���2 6 qP

k=p

skjgk(x)j2
qP

k=p

skjhf; fkij2

6M0spkfk2 ! 0 (p; q !1) )

On the other hand, from the singular expansion of A we get
Z

1

0

A(x; y)f(y) dy =
P
k>1

skgk(x)hf; fki (10)

(the series converges in the norm of L2(0; 1)).

Thus, from (9), (10) it follows that for every f 2 C[0; 1] we have
Z

1

0

(A(x; y)� S(x; y))f(y) dy = 0:

Putting f(y) = S(x; y) �A(x; y) ( 2 C[0; 1]) we get
Z

1

0

jA(x; y) � S(x; y)j2 dy = 0

and hence A(x; y) = S(x; y) for every y 2 [0; 1]. Since x 2 [0; 1] was arbitrary, we
have A(x; y) = S(x; y), x; y 2 [0; 1]. So

A(x; y) = P
k>1

skfk(y)gk(x)

for every x; y 2 [0; 1].

Let now f 2 R(A). Then

f(x) =

Z
1

0

A(x; y)'(y) dy; ' 2 L2(0; 1)

and thus, by the Lebesgue dominated convergence theorem, we have (An(x; y) =Pn

k=1 skfk(y)gk(x))

f(x) =

Z
1

0

lim
n!1

An(x; y)'(y) dy = lim
n!1

Z
1

0

An(x; y)'(y) dy

= lim
n!1

nP
k=1

skgk(x)h'; fki =
P
k>1

skgk(x)h'; fki:
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Since the preceeding series converges uniformly with the respect to x 2 [0; 1] and
since fgkg is an othonormal system in L2(0; 1) (see [3]), we have skh'; fki = hf; gki
and, �nally, we get

f(x) =
P
k>1

hf; gkigk(x)

(the series converges uniformly on [0; 1]).

The asssertion for the function g 2 R(A�) can be proved in a similar way.

Remark. The second part of the Theorem was proved in [5] in a di�erent way.
The proof presented here is a consequence of the previously established bilinear
expansion of the function A(x; y).
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