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BILINEAR EXPANSIONS OF THE KERNELS OF SOME
NONSELFADJOINT INTEGRAL OPERATORS

Milutin Dostanié

Abstract. Let H and S be integral operators on L2(0,1) with continuous kernels. Suppose
that H > 0 and let A = H(I 4+ S). It is shown that if the (nonselfadjoint) operator S is small in
a certain sense with respect to H, then the corressponding Fourier series of functions from R(A)
(or R(A*)) converges uniformly on [0, 1].

1. Introduction

Let H and S be integral operators on L?(0,1) (with inner product {f,g) =
fol f(x)g(x) dz) with continuous kernels H(z,y) and S(z,y) on [0,1] x [0,1]. Sup-
pose that H > 0 and let

A=H(I+Y9). (1)

Classical theorems (case S = 0, see [5]) state that the kernel H can be expanded
into a uniformly convergent (on [0,1] x [0, 1]) bilinear series.

A consequence of this is that every function f € R(H) has the uniformly
convergent Fourier series with respect to the system of eigenfunctions of H. (R(H)
denotes the image of H in L?(0,1)).

Similar results hold in some cases when S # 0. Namely, if S = S, it was
proved in [1] and [2] that the corresponding variant of Mercer’s theorem holds.
The proof was based on the spectral theorem for an operator on L?(0,1) with the
definite or indefinite inner product generated by the formula

[f:9] = (I +9)f.9).
In [4], a series of nice results was obtained which were related to bilinear expansions
of smooth Carleman’s kernels of Mercer type.

A natural question is about bilinear expansions when S # S*. We shall show
that if the operator S is small in a certain sense with respect to H, then the
corresponding Fourier series of functions from R(A) (or R(A*)) converges uniformly
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on [0,1]. (Note that, because of the continuity of the kernel of A, we have R(A) C
Clo,1]).
In the sequel, A(-,-) will denote the kernel of the operator A (defined by (1)).

2. The results

THEOREM. Let, for the operators H and S from (1), there exists w > 0
such that S*S < wH?. If s, are singular values of A and f;, the normalized
eigenvectors of A*A (i.e., A*Afy = sifi) and gr = (sg) " Afy, then the series
Zk>1 sk fr(y)gr(z) is absolutely convergent on [0,1]? and uniformly convergent on
[0, 1] with respect to arbitrary variable and its sum is equal to A(z,y). Also, for
every f € R(A) (resp. g € R(A")) the series 3y (f, gr)gr (resp. 325149, fu) fr)
converges uniformly on [0,1] to f (resp. g).

In the proof of this assertions we need the following two Lemmas.

LEMMA 1. [5] If T: L?(0,1) — L?*(0,1) is the linear operator defined by
Tf(x) = [} M(z,y)f(y)dy and if M € C([0,1]?) and (Tf,f) > 0 for all
f € L?*0,1), then M(x,z) >0 for all x € [0,1].

LEMMA 2. If A=H(I+S), H>0, S*S < wH?, then there exists a constant

¢ > 0 such that
VA*A < cH, VAA* < cH.

Proof. Since
A*A =H?+ S*H? + H?S + S*H?S (2)
we have to estimate (S*H>f, f) and (H2Sf, f).
The operator H? is positive and thus, by the Cauchy inequality, we have

(S Hf, ) = (H?f, Sf)I* < (H?f, [I{H?Sf, S f)
= |HFIPIHSFI? < IHFIPIHIPS fI?
= |HfIPIHIX(S"SF, f) < |HFIPIHIPw(H?f, f)

= wl|H|*|Hf|*
Therefore
(S*H*f, /)l < Vw |H|[(H? [, f) (3)
and hence we get
(HSf, /)| < VOl HI|(H*f, f). (4)

Since
(S*HSf, ) = |HSFII? < |HIPISFI? = 1HI*(S*Sf, f) < wl|HIP(H?f, f),

from (2), (3), (4) it follows that (A*Af, f) < (1 + V@ ||[H|)2(H2f, f), i.e. A*A <
(1+ /e | H|)2H2.
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Having in mind that the function \ — /X is operator monotone, we get
VA*AL (14 Vw|H|)H. (5)
From the equality A* = (I +S*)H we get ||A*f|| < I+ S*||-||Hf|| (f € L*(0,1)),
ie.
VAA* L ||T+ 57| - H. (6)
From (5) and (6) we obtain the assertion of the Lemma, with

c=max{l+ Vw|H|,|II+ 5} =

Proof of the Theorem. From A*Afy = s2 fi, and Afy = sggy it follows that fy,
gr € C[0,1] (because A has the continuous kernel) and A has the following singular
(see [3]) expansion

A= 37 sk(s fr)gn-

k=1
Also, there holds
VA*Af = 37 si(f, fe)an

E>1

VAA* f = E sk(fy 9r) s

E>1

f e L*0,1). (7)

The series on the right-hand side of the previous equalities converge in the norm of
L?(0,1).

Consider the operators (on L2(0,1)) S/, S” defined in the following way:
S’II’L = cH — ZZ:1<'7fk>fkv S’Z = cH — ZZ:l('vgk>gk~ SinCev by (7) and Lem-
ma 2, (SLf, f) >0, (S!f, f) >0, f € L?(0,1) and since the operators S/, S/ have
continuous kernels, we get from Lemma 1

n

cH(z,x) > i selfe(@)?, cH(z,2) = Y sklge(x)|?, n € N.

k=1 k=1
Since H € C([0,1]?), there exists My < +o0 such that
> selfu(@)? < Mo, 3 sklgr(z)]* < Mo. (8)
k=1 k=1

From (8) it follows that the series
> sefr(y)gn(z)
k1

is absolutely convergent for all z,y € [0,1]. Let S(x,y) denote its sum. Observe
that form (8) it follows that the partial sums of the previous series are bounded
by M().

Fix z € [0,1]. Then we have

> s @@ < 5 selfc@)P D selon(@)?

k=p k=p k=p

q
< My Y silgr(@)]? =0 (p.g — )
k=p
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and the series ), -, sk fu(y)gr(x) converges uniformly with respect to y on [0, 1],
for every fixed z and hence its sum is a continuous function with respect to y.

Let f € C[0,1] be a fixed function. Then (because of the uniform convergence
with respect to y)

/Sxy y)dy =Y skge(z /f Ve() dy = 3 segr(@){f. fr). (9)
k>1 E>1

(The series on the right-hand side of (9) converges not only for every = but also
uniformly with respect to x because

] < T sl £ sl AP
< Mos,IfIP =0 (pyg = o))

On the other hand, from the singular expansion of A we get

/ A ) @) dy = Y sean(@)f, fi) (10)

k>1

(the series converges in the norm of L?(0,1)).
Thus, from (9), (10) it follows that for every f € C[0,1] we have

/0 (Al ) — S(x.9) f(y) dy = 0.

Putting f(y) = S(z,9) — A(z,) ( € C[0,1]) we get

/0 Az, y) - S(a.y)P dy = 0

and hence A(z,y) = S(z,y) for every y € [0,1]. Since z € [0,1] was arbitrary, we
have A(z,y) = S(z,y), z,y € [0,1]. So

Az, y) = 3 skfe(y)ge()

k>1
for every z,y € [0, 1].
Let now f € R(A). Then

/ Az, y)e(y) dy, @ € L*(0,1)

and thus, by the Lebesgue dominated convergence theorem, we have (A, (x,y) =

> one1 Sk fr(¥)gr())

f(z) = / lim A, (2, 0)e(y)dy = lm | Au(e,9)e(y) dy

n—oo n—oo 0

= lim Zskgk( W, fu) = Eskgk( e, fr)-

TL—)OO
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Since the preceeding series converges uniformly with the respect to = € [0, 1] and
since {gx} is an othonormal system in L?(0, 1) (see [3]), we have s (¢, fr) = (f, gx)
and, finally, we get

f@) = 3 {f: gr)gn()

E>1
(the series converges uniformly on [0, 1]).
The asssertion for the function g € R(A*) can be proved in a similar way. m

REMARK. The second part of the Theorem was proved in [5] in a different way.
The proof presented here is a consequence of the previously established bilinear
expansion of the function A(x,y).
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