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EXTREMAL PROPERTIES OF THE CHROMATIC POLYNOMIALS

OF CONNECTED 3-CHROMATIC GRAPHS

Ioan Tomescu

Abstract. In this paper the greatest dn=2e values of P (G; 3) in the class of connected
3-chromatic graphs G of order n are found, where P (G;�) denotes the chromatic polynomial
of G.

1. Preliminary de�nitions and results

Let G be a graph of order n and let P (G;�) be its chromatic polynomial [1]. A
k-color partition of G is a partition of the vertex set V (G) into k classes where each
class is an independent set of vertices. The number of k-color partitions of G and
the chromatic number of G will be denoted by Colk(G) and by �(G), respectively.
It is well known that P (G;�) can be expressed in terms of the number of k-color
partitions as follows

P (G;�) =
nP

k=1

(�)k Colk(G);

where (�)k = �(�� 1) � � � (� � k + 1).

It follows that if �(G) = k, then Colk(G) = P (G;�)=k!. Let xy be an edge
of G. By G � xy we mean the graph obtained from G by deleting edge xy. Also
G=xy denotes the graph obtained from G by identifying vertices x and y, i.e., (i) by
deleting both x and y and all the edges incident to them, and (ii) by introducing
a new vertex z and joining z to both all the neighbors of x di�erent from y and all
the neighbors of y di�erent from x in G.

The following lemma describes some properties of P (G;�), which we will use
later [2].

Lemma 1.1. The following properties hold:

(i) Reduction Formula. Let a and b be two adjacent vertices of G. Then
P (G;�) = P (G� ab;�)� P (G=ab;�).
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(ii) Let G and H be two graphs that overlap in a complete graph Kr on r
vertices. Then the chromatic polynomial of this overlap graph is

P (G;�)P (H ;�)=P (Kr;�):

Let G be a graph and H an induced subgraph of G. The graph obtained
from G by the contraction of H is the graph G1 derived from G by the following
operations: suppress all vertices of H and the edges incident with them, and replace
them with a new vertex w =2 V (G) and edges wx such that wx 2 E(G1) if and only
if there exists y 2 V (G) such that xy 2 E(G) and x 2 V (G)� V (H).

The cycle with n vertices will be denoted by Cn and C1
n will denote the graph

consisting of Cn and one more vertex adjacent to only one vertex of Cn. The
following theorem was proved in [4].

Theorem 1.2. The maximum number of 3-color partitions of a connected
graph G having n vertices and chromatic number �(G) = 3 is (2n�1� 1)=3 for odd
n, and (2n�1 � 2)=3 for even n. Moreover, if n is odd, the unique connected graph
that achieves the maximum number of 3-color partitions is Cn, while if n is even,
the unique graph is C1

n�1.

ByH(n; 2r+1) we denote the class of connected graphsG of order n containing
n edges and a unique cycle C2r+1, where 3 6 2r+1 6 n. It is clear that the graph
deduced from G 2 H(n; 2r + 1) by contracting C2r+1 is a tree on n � 2r vertices.
By R�enyi's formula [3], the number of labeled graphs in H(n; 2r + 1) is equal to
(n� 1)2rn

n�2r�1=2.

Let Dn (n > 5) be the graph consisting of a 4-cycle in which two nonadjacent
vertices are connected by a newly added path of length n�3. Note that �(Dn) = 3
for even n and �(Dn) = 2 for odd n. If \nonadjacent" is replaced by \adjacent",
the resulting graph is denoted by Fn. Hence, Fn consists of two cycles C4 and Cn�2

having a common edge. Also, �(Fn) = 3 for odd n and �(Fn) = 2 for even n.

The following two properties were deduced in [5].

Lemma 1.3. For every n > 5, the following equalities hold: P (Dn; 3) =
2n � 2n�2 + (�1)n�16 and P (Fn; 3) = 2n � 2n�2 + (�1)n6.

Theorem 1.4. (a) If G is a 2-connected graph of order n, n > 5, such that
P (G; 3) is maximum in the class FnnfCn;K2;n�2; Dng, where Fn denotes the class
of all 2-connected graphs of order n, then G �= Fn for odd n.

(b) If G is a 2-connected graph of order 6 such that P (G; 3) is maximum in
the class F6 n fC6;K2;4; F6;K3;3 � eg, then G �= K3;3 or D6.

(c) If G is a 2-connected graph of order n, n > 8, such that P (G; 3) is maximum
in the class Fn n fCn;K2;n�2; Fng, then G �= Dn for even n; for n = 8 there exists
another extremal graph, E8;3.

Note that the graph E8;3, described in [5], has �(E8;3) = 2; also �(K2;n�2) =
�(K3;3 � e) = �(K3;3) = 2.
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Lemma 1.5. Let G be a graph of order n > 5 consisting of two cycles C2r+1

and Cn�2r having exactly one vertex in common. Then P (G; 3) < 2n � 2n�2 � 6.

Proof. By Lemma 1.1(ii) we get

P (G;�) = ((�� 1)2r+1 � (�� 1))((� � 1)n�2r + (�1)n�2r(�� 2))=�

since P (Cn;�) = (�� 1)n + (�1)n(�� 1). It follows that

P (G; 3) = (22r+1 � 2)(2n�2r + (�1)n�2r + (�1)n�2r2)=3

6 (22r+1 � 2)(2n�2r + 2)=3 = 2(2n + 22r+1 � 2n�2r � 2)=3:

Since n� 2r > 3, we shall consider two subcases: Case I. 2r 6 n� 4, and Case II.
2r = n� 3.

Case I. If 2r 6 n� 4 we deduce 2(2n + 22r+1 � 2n�2r � 2)=3 6 2(2n + 2n�3 �
24 � 2)=3 = 2n � 2n�2 � 12 < 2n � 2n�2 � 6.

Case II. In this case n � 2r = 3 and P (G; 3) = (2n�2 � 2)(23 � 2)=3 < 2n �
2n�2 � 6.

We de�ne the skeleton S(G) of a connected graph G as follows:

(�) If G has no vertex of degree one, then S(G) = G.

(�) Otherwise, let x be a vertex of degree one of G; then G is replaced by
G� x. Repeat (�).

For example, S(T ) consists of a unique vertex if T is a tree, and S(G) = C2r+1

for any graph G 2 H(n; 2r + 1).

Lemma 1.6. Let G be a graph of order n such that its skeleton S(G) has
order r. Then P (G;�) = P (S(G);�)(� � 1)n�r.

Proof. One applies Lemma 1.1(ii) since P (K2;�) = �(� � 1).

Corollary 1.7. For every G 2 H(n; 2r + 1), where 3 6 2r + 1 6 n, we have
P (G;�) = (�� 1)n � (�� 1)n�2r.

Lemma 1.8. Let G be a connected graph of order n consisting of two vertex
disjoint cycles Cr and Cs, joined by a path of length t (r + s+ t = n+ 1). Then

P (G;�) = P (H ;�)(� � 1)t;

where H is the graph of order r + s � 1 consisting of cycles Cr and Cs having a
unique common vertex.

Proof. This equality is a consequence of Lemma 1.1(ii).

Lemma 1.9. Let G be a graph of order 2r+s+p consisting of two cycles|one
cycle with s > 3 vertices and another odd cycle with 2r + 1 > 3 vertices, having in
common a path of length p > 1. Then

P (G; 3) < P (H ; 3) = 22r+s�p � 22r+s�p�2; (1)

where H 2 H(2r + s� p; 3).
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Proof. Suppose that the common path with p+1 vertices of the two cycles of
G has extremities a and b. It follows that 1 6 p 6 2r � 1 and p 6 s � 2. If p > 2
then vertices a and b are not adjacent and by Lemma 1.1 we deduce

P (G;�) = P (G1;�) + P (G2;�) =

= ((�� 1)s�p + (�1)s�p(�� 1))((�� 1)p + (�1)p(�� 1))�

� ((�� 1)2r�p+1 + (�1)2r�p+1(�� 1))=�2+

+ ((�� 1)s�p+1 + (�1)s�p+1(�� 1))((�� 1)p+1 + (�1)p+1(�� 1))�

� ((�� 1)2r�p+2 + (�1)2r�p(� � 1))=(�2(�� 1)2);

where G1 consists of three cycles with p, s � p and 2r � p + 1 vertices having a
common vertex and G2 of three cycles with p+1, s� p+1 and 2r� p+2 vertices
having a common edge. Hence (1) is equivalent to

22r+s�p > (�1)s22r�p+4 � 2s�p+3 + (�1)s+12p+3 + (�1)s�p+18: (2)

For s = 3 we deduce p = 1 which contradicts our hypothesis. If s > 4 we can
write 22r+s�p + (�1)s+122r�p+4 > 22r+s�p � 22r�p+4 = 22r�p+4(2s�4 � 1) >
25(2s�4 � 1) = 2s+1 � 25 since p 6 2r � 1. Since p 6 s� 2, 2s�p+3 + (�1)s2p+3 >
2s�p+3� 2p+3 = 25� 2s+1 for p = s� 2 and 2s�p+3� 2p+3 > 26� 2s for p 6 s� 3,
and (2) is veri�ed.

If p = 1 then cycles Cs and C2r+1 have an edge in common and P (G;�) =
P (C2r+s�1;�)�P (G3;�), where G3 consists of two cycles with s�1 and 2r vertices
having a common vertex. It follows that

P (G; 3) = 22r+s�1 + (�1)s�12� (2s�1 + (�1)s�12)(22r + 2)=3

and (1) is equivalent to 22r+s�3 > (�1)s22r+1� 2s+(�1)s�12. But this inequality
can be deduced from (2) for p = 1 and it is also true for s = 3.

2. Main result

We shall denote by Cn;3 the class of connected 3-chromatic graphs of order n.
The following theorem is an extension of Theorem 1.2.

Theorem 2.1. Let n > 5. Then:

(a) For every r = dn=2e � 1, r = dn=2e � 2, . . . , 1, if G is a connected
3-chromatic graph of order n, such that P (G; 3) is maximum in the class of graphs

Cn;3 n
[

s>r+1

H(n; 2s+ 1);

then G 2 H(n; 2r + 1) and P (G; 3) = 2n � 2n�2r.

(b) If P (G; 3) is maximum in the class of graphs

Cn;3 n
[

s>1

H(n; 2s+ 1);

then G �= Fn for odd n, G �= Dn for even n and in this case P (G; 3)�2n�2n�2�6.
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Proof. (a) Let G 2 Cn;3. It follows that G contains an odd cycle C2r+1.
If for every edge e 2 E(G) n E(C2r+1) the graph G � e is not connected then
G 2 H(n; 2r + 1). Otherwise, by Lemma 1.1(ii) we have

P (G� e; 3) = P (G; 3) + P (G=e; 3): (3)

But �(G=e) = 3 since G=e contains an odd cycle even if e is a chord of C2r+1.
It follows that P (G=e; 3) > 0 and (3) implies that P (G � e; 3) > P (G; 3). By
applying several times this operation of deleting edges not belonging to C2r+1

without disconnecting the resulting graph, one obtains a graph H 2 H(n; 2r + 1)
such that P (H ; 3) > P (G; 3). By Corollary 1.7 if 3 6 2j + 1 < 2i + 1 6 n then
G1 2 H(n; 2i+ 1) and G2 2 H(n; 2j + 1) imply

P (G1; 3) = 2n � 2n�2i > 2n � 2n�2j = P (G2; 3)

and (a) is proved for r = dn=2e�1 (this is the property expressed by Theorem 1.2).

Let G 2
S

s>2H(n; 2s+1) and a, b be two nonadjacent vertices of G. We shall
prove that if e = ab then

P (G+ e; 3) < 2n � 2n�2 = P (H ; 3); (4)

where H 2 H(n; 3).

It is clear that the skeleton S(G+ e) consists of: I. Two vertex disjoint cycles
joined by a path of length t > 1; II. Two cycles having exactly one common vertex;
III. Two cycles having in common a path of length p > 1. In all cases at least one
cycle is odd. Suppose that jS(G+ e)j = m.

Case I. In this case by Lemmas 1.6 and 1.8 one deduces

P (G+ e;�) = P (S(G+ e);�)(� � 1)n�m = P (H ;�)(� � 1)n�m+t;

where H has order m� t and consists of two cycles (one is odd) having one vertex
in common. By Lemma 1.5 we get

P (G+ e; 3) = P (H ; 3)2n�m+t < (2m�t � 2m�t�2 � 6)2n�m+t < 2n � 2n�2:

Cases II, III. We have P (G+e; 3) < (2m�2m�2)2n�m = 2n�2n�2 by Lemmas
1.5, 1.6 and 1.9. Let now r be such that 1 6 r 6 dn=2e � 2 and G be such that
P (G; 3) is maximum in the class Cn;3n

S
s>r+1H(n; 2s+1). If G 2

Sr

s=1H(n; 2s+1)

it follows that G 2 H(n; 2r+1) and the property is proved. Otherwise, there exists
an edge e 2 E(G) such that G � e 2 Cn;3. Since P (G; 3) is maximum in the class
Cn;3 n

S
s>r+1H(n; 2s+ 1), it follows that G� e 2

S
s>r+1H(n; 2s+ 1), i.e., there

exists a graph H in
S

s>r+1H(n; 2s+1) such that G �= H + e. By (4) this leads to
a contradiction.

(b) Let G 2 Cn;3n
S

s>1H(n; 2s+1) be such that P (g; 3) is maximum. We have

seen that the greatest values of P (G; 3) in the class Cn;3 are obtained for graphs inS
s>1H(n; 2s+1), and for graphs not belonging to this class the greatest values of

P (G; 3) are obtained for graphs of the form H+e, whereH 2
S

s>1H(n; 2s+1) and



116 I. Tomescu

e =2 E(H). It follows that G �= H + e, where H 2
S

s>1H(n; 2s+1) and e =2 E(H).

Suppose that jS(H + e)j = m. As for the case (a) we may distinguish cases I{III
concerning the structure of S(H + e). Using the same notation, in the case I one
obtains P (H+e; 3) < (2m�t�2m�t�2�6)2n�m+t < 2n�2n�2�6 since n�m+t > 1.
In the case II by Lemma 1.5, P (H + e; 3) < (2m� 2m�2� 6)2n�m 6 2n� 2n�2� 6.

In the case III the skeleton S(H + e) is 2-connected and by Lemmas 1.3, 1.6
and Theorem 1.4 one deduces

P (H + e; 3) 6 (2m � 2m�2 � 6)2n�m 6 2n � 2n�2 � 6

and equality holds if and only if m = n and G �= Fn for odd n and G �= Dn for
even n.

Note that Col3(Fn) for odd n, resp. Col3(Dn) for even n is equal to Col3(H)�
1 = 2n�3 � 1 for any H 2 H(n; 3).
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