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EXTREMAL PROPERTIES OF THE CHROMATIC POLYNOMIALS
OF CONNECTED 3-CHROMATIC GRAPHS

Joan Tomescu

Abstract. In this paper the greatest [n/2] values of P(G;3) in the class of connected
3-chromatic graphs G of order n are found, where P(G;\) denotes the chromatic polynomial
of G.

1. Preliminary definitions and results

Let G be a graph of order n and let P(G; A) be its chromatic polynomial [1]. A
k-color partition of G is a partition of the vertex set V(G) into k classes where each
class is an independent set of vertices. The number of k-color partitions of G and
the chromatic number of G will be denoted by Col(G) and by x(G), respectively.
It is well known that P(G;\) can be expressed in terms of the number of k-color
partitions as follows

P(G;\) = > (V)i Coli(G),
k=1
where (A\)y = A(A=1)---(A =k +1).

It follows that if x(G) = k, then Col,(G) = P(G;\)/k!. Let xy be an edge
of G. By G — zy we mean the graph obtained from G by deleting edge zy. Also
G /zxy denotes the graph obtained from G by identifying vertices z and y, i.e., (i) by
deleting both x and y and all the edges incident to them, and (ii) by introducing
a new vertex z and joining z to both all the neighbors of = different from y and all
the neighbors of y different from z in G.

The following lemma describes some properties of P(G; A), which we will use
later [2].

LeMMA 1.1. The following properties hold:

(i) Reduction Formula. Let a and b be two adjacent vertices of G. Then
P(G;\) = P(G — ab; \) — P(G/ab; \).
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(1) Let G and H be two graphs that overlap in a complete graph K, on r
vertices. Then the chromatic polynomial of this overlap graph is

P(G; \)P(H; \)/P(K,; \).

Let G be a graph and H an induced subgraph of G. The graph obtained
from G by the contraction of H is the graph G derived from G by the following
operations: suppress all vertices of H and the edges incident with them, and replace
them with a new vertex w ¢ V(G) and edges wzx such that wz € E(G) if and only
if there exists y € V(G) such that zy € E(G) and © € V(G) — V(H).

The cycle with n vertices will be denoted by C,, and C! will denote the graph
consisting of C, and one more vertex adjacent to only one vertex of C,. The
following theorem was proved in [4].

THEOREM 1.2. The mazimum number of 3-color partitions of a connected
graph G having n vertices and chromatic number x(G) = 3 is (271 —1)/3 for odd
n, and (2"~ —2)/3 for even n. Moreover, if n is odd, the unique connected graph
that achieves the mazimum number of 3-color partitions is C,, while if n is even,
the unique graph is C:_,.

By H(n,2r+1) we denote the class of connected graphs G of order n containing
n edges and a unique cycle Cy, 41, where 3 < 2r 4+ 1 < n. It is clear that the graph
deduced from G € H(n,2r + 1) by contracting Cs,11 is a tree on n — 2r vertices.
By Rényi’s formula [3], the number of labeled graphs in H(n,2r + 1) is equal to
(n —1)gm™2771/2,

Let D,, (n > 5) be the graph consisting of a 4-cycle in which two nonadjacent
vertices are connected by a newly added path of length n —3. Note that x(D,,) =3
for even n and x(D,) = 2 for odd n. If “nonadjacent” is replaced by “adjacent”,
the resulting graph is denoted by F,,. Hence, F}, consists of two cycles Cy and C,, _»
having a common edge. Also, x(F,) = 3 for odd n and x(F,) = 2 for even n.

The following two properties were deduced in [5].

LEMMA 1.3. For every n > 5, the following equalities hold: P(D,;3) =
27 — 2772 4 (=1)"716 and P(F,;3) = 2" —2"=2 4+ (=1)"6.

THEOREM 1.4. (a) If G is a 2-connected graph of order n, n > 5, such that
P(G;3) is mazimum in the class F, \{Cn, K2 n—2, Dy}, where F,, denotes the class
of all 2-connected graphs of order n, then G 2 F,, for odd n.

(b) If G is a 2-connected graph of order 6 such that P(G;3) is mazimum in
the class Fo \ {Cs, K24, F6, K33 — e}, then G = K33 or Dg.

(¢) If G is a 2-connected graph of ordern, n > 8, such that P(G;3) is mazimum
in the class Fp, \ {Chn, K2 n—2,F,}, then G = D,, for even n; for n = 8 there exists
another extremal graph, Es 3.

Note that the graph Ejg 3, described in [5], has x(Es 3) = 2; also x(K2 n—2) =
X(K33 —e) = x(K33) =2
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LEMMA 1.5. Let G be a graph of order n > 5 consisting of two cycles Cary1
and Cy,_2, having exactly one verter in common. Then P(G;3) < 2™ —2""2 —6.
Proof. By Lemma 1.1(ii) we get
P(GA) = (A=D1 = (A =1))(A = 1)" 7"+ (=1)" 77" (A = 2))/A
since P(Cp;A) = (A= 1)" + (=1)"(A = 1). It follows that
P(G;3) = (277 = 2)(2 2 4 (1) 4 (—1)"2)/3
< (22— 2)(277% 42)/3 = 2(2" 4+ 2271 _ 9 _9) /3,
Since n — 2r > 3, we shall consider two subcases: Case I. 2r < n — 4, and Case II.
2r =n—3.

Case I. If 2r < n — 4 we deduce 2(2" + 227+L — 2n=2r _9)/3 L 2(2" + 2" 3 —
20 —2)/3=2"—-2""2 —12<2" - 2""% — 6.

Case II. In this case n — 2r = 3 and P(G;3) = (2772 —2)(23 - 2)/3 < 2" —
22 _ 6. m

We define the skeleton S(G) of a connected graph G as follows:
(a) If G has no vertex of degree one, then S(G) = G.

(B) Otherwise, let x be a vertex of degree one of G; then G is replaced by
G — z. Repeat ().

For example, S(T') consists of a unique vertex if T is a tree, and S(G) = Ca,y1
for any graph G € H(n,2r 4+ 1).

LEMMA 1.6. Let G be a graph of order n such that its skeleton S(G) has
order r. Then P(G;\) = P(S(G); \)(A =1)" .

Proof. One applies Lemma 1.1(ii) since P(K;A) =A(A—1). =
COROLLARY 1.7. For every G € H(n,2r + 1), where 3 < 2r+ 1 < n, we have
PG A)=(A=1)" = (A =1)n2,
LEMMA 1.8. Let G be a connected graph of order n consisting of two vertex
disjoint cycles C,. and Cs, joined by a path of length t (r+s+t=mn+1). Then
P(G;\) = P(H; M) (A = 1),

where H is the graph of order r + s — 1 consisting of cycles C, and Cs having a
unique common vertet.

Proof. This equality is a consequence of Lemma 1.1(ii). m

LEMMA 1.9. Let G be a graph of order 2r 4+ s+ p consisting of two cycles—one
cycle with s > 3 vertices and another odd cycle with 2r + 1 > 3 vertices, having in
common a path of length p > 1. Then

P(G;3) < P(H;3) = 227ts7p _ g¥rfs—p=2 (1)
where H € H(2r + s —p, 3).
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Proof. Suppose that the common path with p+ 1 vertices of the two cycles of
G has extremities @ and b. It follows that 1 < p<2r—land p<s—2. If p>2
then vertices a and b are not adjacent and by Lemma 1.1 we deduce

P(G;A) = P(G1;A) + P(G23A) =
= (A= + (=)A= 1))((A =P+ (=1)"(A = 1))
X (A =127 PH (=1 7P (A = 1))/ A%+
+(A=1)7P + (=)PHA=D)(A =D)PF + (=) (A - 1))x
X (A =12 7PF2 4 (=1)P(A = 1))/ (A*(A = 1)?),

where 1 consists of three cycles with p, s — p and 2r — p + 1 vertices having a

common vertex and G5 of three cycles with p+ 1, s —p+ 1 and 2r — p + 2 vertices
having a common edge. Hence (1) is equivalent to

22r+s—p > (_1)522r—p+4 _ 23—p+3 + (_1)s+12p+3 + (_1)s—p+18. (2)

For s = 3 we deduce p = 1 which contradicts our hypothesis. If s > 4 we can

write 22r+sfp + (_1)s+122r7p+4 2 22r+sfp _ 22r7p+4 — 22r7p+4(2sf4 _ 1)

25(257% — 1) = 2571 — 25 since p < 2r — 1. Since p < s — 2, 257PF3 4 (—1)s27+3

257pF3 _op+3 =25 _ 25+l for p =5 —2and 257PF3 — 2013 > 206 _ 925 for p < s —3
and (2) is verified.

If p = 1 then cycles Cs and Cs,.4; have an edge in common and P(G;\)

P(Cyrg5—1;A\)— P(G3; \), where G5 consists of two cycles with s —1 and 2r vertices
having a common vertex. It follows that

P(G;3) =22t L (—1)s7ta — (2oL 4 (—1)"712) (22" 4+ 2)/3

and (1) is equivalent to 227+¢=3 > (—1)%227+1 — 25 4 (—1)*=12. But this inequality
can be deduced from (2) for p = 1 and it is also true for s = 3. m

Z
Z

b

2. Main result

We shall denote by C, 3 the class of connected 3-chromatic graphs of order n.
The following theorem is an extension of Theorem 1.2.

THEOREM 2.1. Letn > 5. Then:

(a) For every r = [n/2] =1, r = [n/2] =2, ..., 1, if G is a connected
3-chromatic graph of order n, such that P(G;3) is mazimum in the class of graphs
Cos\ |J H(n,2s+1),

s>r+1
then G € H(n,2r + 1) and P(G;3) = 2" —2n~2",
(b) If P(G;3) is mazimum in the class of graphs
Cos\ | J H(n, 25+ 1),
s>1

then G 2 F, for odd n, G = D,, for even n and in this case P(G;3)—2" —2""2 6.
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Proof. (a) Let G € C,3. It follows that G contains an odd cycle Cs,41.
If for every edge e € E(G) \ E(Car41) the graph G — e is not connected then
G € H(n,2r + 1). Otherwise, by Lemma 1.1(ii) we have

P(G — e;3) = P(G;3) + P(G/e; 3). (3)

But x(G/e) = 3 since G/e contains an odd cycle even if e is a chord of Ca,41.
It follows that P(G/e;3) > 0 and (3) implies that P(G — e;3) > P(G;3). By
applying several times this operation of deleting edges not belonging to Co.11
without disconnecting the resulting graph, one obtains a graph H € H(n,2r 4+ 1)
such that P(H;3) > P(G;3). By Corollary 1.7 if 3 < 2j+ 1 < 2i + 1 < n then
G1 € H(n,2i+1) and G» € H(n,2j + 1) imply

P(Gy1;3) =27 — 2" 2 > 2" — 2" % = P(Gy;3)

and (a) is proved for r = [n/2] —1 (this is the property expressed by Theorem 1.2).

Let G € U 55 H(n,2s+1) and a, b be two nonadjacent vertices of G. We shall
prove that if e = ab then

P(G +¢;3) < 2" —2""% = P(H;3), (4)

where H € H(n,3).

It is clear that the skeleton S(G + e) consists of: I. Two vertex disjoint cycles
joined by a path of length ¢t > 1; II. Two cycles having exactly one common vertex;
ITI. Two cycles having in common a path of length p > 1. In all cases at least one
cycle is odd. Suppose that |[S(G + e)| = m.

Case I. In this case by Lemmas 1.6 and 1.8 one deduces
P(G+6;A) = P(S(G +€) (A = 1)"~™ = P(H; \)(A = )"+,

where H has order m — t and consists of two cycles (one is odd) having one vertex
in common. By Lemma 1.5 we get

P(G + e; 3) — P(H; 3)2n—m+t < (2m—t _ 2m—t—2 _ 6)2n—m+t < on _ 271—2.

Cases II, ITI. We have P(G +e¢;3) < (2™ —2m~2)27~™ = 27— 2"~ 2 by Lemmas
1.5, 1.6 and 1.9. Let now 7 be such that 1 < r < [n/2] — 2 and G be such that
P(G;3) is maximum in the class C, 3\U, 5, H(n,2s+1). G € U;_, H(n,2s5+1)
it follows that G € H(n,2r+1) and the property is proved. Otherwise, there exists
an edge e € E(G) such that G — e € Cp 3. Since P(G;3) is maximum in the class
Cn3 \ Ussry1 H(n, 25 + 1), it follows that G —e € U5y, H(n,2s + 1), ie., there
exists a graph H in {J,5,,, H(n,2s+ 1) such that G = H +e. By (4) this leads to
a contradiction.

(b) Let G € Cn3\U,>, H(n,25+1) be such that P(g; 3) is maximum. We have
seen that the greatest values of P(G;3) in the class C, 3 are obtained for graphs in
US>1 H(n,2s+ 1), and for graphs not belonging to this class the greatest values of
P(G,; 3) are obtained for graphs of the form H+e, where H € US>1 H(n,2s+1) and
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e ¢ E(H). It follows that G = H +e, where H € {J 5, H(n,2s+1) and e ¢ E(H).
Suppose that |S(H + e)| = m. As for the case (a) we may distinguish cases I-III
concerning the structure of S(H + ¢). Using the same notation, in the case I one
obtains P(H +e;3) < (2m~t—2m~t=2_g)2n-m+t < 27272 _Gsincen—m+t > 1.
In the case IT by Lemma 1.5, P(H +¢;3) < (2™ —2m 2 —6)27 ™ L 2" — 272 — 6,

In the case III the skeleton S(H + e) is 2-connected and by Lemmas 1.3, 1.6
and Theorem 1.4 one deduces

P(H4e¢;3) < (2™ —2m72 —6)2" ™ 2" —2""2 6

and equality holds if and only if m = n and G £ F,, for odd n and G =2 D,, for
even n. m

Note that Cols(F,,) for odd n, resp. Colz(D,,) for even n is equal to Colz(H) —
1=2""3—1for any H € H(n,3).

REFERENCES

[1] G.D. Birkhoff, A determinantal formula for the number of ways of coloring a map, Ann.
Math. (2) 14 (1912), 42-46.

[2] R.C. Read, An introduction to chromatic polynomials, J. Combinatorial Theory 4 (1968),
52-71.

[8] A. Rényi, On connected graphs, Magyar Tud. Akad. Mat. Kutaté Int. Kozl 4 (1959), 385-388.

[4] 1. Tomescu, Le nombre mazimal de 3-coloration d’un graphe conneze, Discrete Math. 1 (1972),
351-356.

[5] I. Tomescu, Mazimum chromatic polynomial of 3-chromatic blocks, Discrete Math. 172 (1997),
131-139.

(received 25.01.2001)

University of Bucharest, Faculty of Mathematics, Str. Academiei 14, 70109 Bucuresti, Romania

E-mail: ioan@math.math.unibuc.ro



