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ON A NONLOCAL SINGULAR MIXED EVOLUTION PROBLEM
Said Mesloub and Nadia Lekrine

Abstract. In the present paper, the existence and uniqueness of the strong solution of a
mixed problem for a second order plurihyperbolic equation with an integral condition is proved.
The proof is essentially based on an a priori bound and on the density of the range of the operator
generated by the considered problem. In spite of the apparant simplicity of the problem, the
solution requires a delicate set of techniques. It seems very difficult to extend these technics to
the considered equation in more than one dimension without imposing complementary conditions.

1. Statement of the problem

In the region Q = (0,a) x (0,T1) x (0,T%), with a < oo, T1 < 00 and Ts < o0,
we consider the one dimensional hyperbolic equation

1
Lv=vy, — = (zv,), = F(z,t1,t2), (1)

The equation (1) is supplemented by boundary and initial conditions

bv=v(z,0,t2) = ¢1 (2, t2), (z,t2) € Q2 = (0,a) x (0,T>), (2)
lyv = v(2,11,0) = ga(x, t1), (z,t1) € @1 = (0,a) x (0,T1), (3)
v (a,t1,t2) = ®(t1, ta), (t1,t2) € (0,T1) x (0,T3), (4)
zv(z, b1, ty) de = U(ty, t3), (t1,t2) € (0,T1) x (0,T3). (5)

0

where ¢1(x,t2), ¢a(w,t1), P(t1,t2), U(t1,t2) and F(x,t1,t2) are given functions.
The data functions have to satisfy the following compatibility conditions:

% = ®(0,t3), /0 xdy (z,t2) de = U(0, t3),
% = ®(t1,0), /0 xoo(x,t1) de = U(ty1,0),

and ¢1(z,0) = ¢o(z,0).
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In the early sixties Cannon [6] has proved by means of an integral equation
(Potential method), the existence and uniqueness of the solution for a mixed prob-
lem combining a classical condition (Dirichlet condition) and an integral one for
the homogeneous equation. One year later Kamynin [10] has generalized the re-
sults of Cannon by using a system of integral equations (Potential method). The
importance of mixed problems with integral conditions has been also pointed out
by Samarskii [14]. Problem (1)—(5), can be viewed as a non-local problem for a
plurihyperbolic equation (with the Bessel operator). A similar problem for which
a homogeneous Dirichlet condition and the linear constraint foa v(z,t)dx = 0 are
combined, has been investigated by Benouar and Yurchuk [1]. In their papers [2],
[3], [4] and [5], the authors considered hyperbolic and parabolic equations having
the operator (a(z,t)v, ), instead of the Bessel operator considered in equation (1).
For some mixed problems for second order parabolic equations which combine clas-
sical and integral conditions the reader should refer to Cannon-van der Hoek [7],
[8], Cannon-Esteva-van der Hoek [9], Kartynik [11], Shi [15], Yurchuk [16] and
Mesloub-Bouziani [13]. In this paper, the existence and uniqueness of a strong
solution of problem (1)—(5) is proved by means of an energy estimate and a density
argument.

In point of view of the used method, it is preferable to transform the nonho-
mogeneous conditions to homogeneous ones. If we set:

U(l‘,tl,t2) = ’U(xvtlvt2) - w(xvt17t2)v

where
Ad(x —a)? 12(x — a)?
w(w,ty,tz) = (v — %) < ®(ty,t2) + % ~U(ty,t2),

then problem (1)—(5), becomes
E’U,:F(l’,tl,tz)—Ew:f(l',tl,tQ), (6)
bu=u(x,0,tz) = ¢1(x,t2) — lLlw = @1 (z, t2), (7)
lou =u(x,t1,0) = go(x,t1) — low = a(x,t1), (8)
ux(a’vtlvt2) = 07 (9)
/ zu(z,ty,t2)dr =0 (10)

0

We now introduce the appropriate function spaces needed for the investigation
of the posed problem. Let L2(Q) be the weighted L*-space with finite norm

2LQ :/ zu? dz dt,
’ Q

t = (t1,t2), dt = dtydt>. The scalar product in L3(Q) is defined by (u,v)rz =
(zu,v)r2. Let VI0(Qs), V)''(Q1), and V,'1(Q), i = 1,2 be the Hilbert spaces

[[ul
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with scalar products respectively

(uvv)vpl‘O(Qi) = (uvv)L%(Qi) + (uzvvz)L%(Qi)v i=1,2,

and with associated norms
2 2 2 .
||“||v,}~0(Qi) = “u“L%(Qi) + “U’I”L%(Qi) , 1=1,2,

2 2 2 2
lullyrrq,) = ||u||Lg(Q1) + ||“x||L§(Q1) + ||“t1||L,2)(Q1) )

2
L2(Q2)

The given problem (6)—(10) can be considered as the resolution of the operator
equation

2 2 2
lullyrr g, = ||u||Lg(Q2) + ||“x||L§(Q2) + [,

Lu = (Lu, byu, lou) = (f, p1,02) = F,

where L is an operator defined on E into F', and E is the Banach space of functions
u € L2(Q), satisfying conditions (9) and (10), with the finite norm

lully = sup (Il )00 gy + 180 (€ (s 22Dl 0, )

0<m2<Ty

+sup (Mg + I8 (s Dl ) -

0<r<Ty

where S, (Eu) = [ €u(, t1,t2) d€, and F is the Hilbert space L2(Q)x V.,"'(Q2) X
V1 (Q1), which consists of elements F = (f, 1, ) with finite norm

2 2 2 2
1712 = leall o, + el + 1£FIs )
Let D(L) be the set of all functions v € L?(Q) for which w¢,, we,, Wity, Uz, Ugs,
Uzt Uz, € L2(Q) and satisfying conditions (9) and (10).
2. A priori bound and its consequences

THEOREM 2.1. For any function uw € D(L), there exists a positive constant ¢
independent of the solution w such that

lullg < cllLullp - (11)

Proof. Taking the scalar product in L?(Q7) of equation (6) and the integro-
differential operator

Mu = x(uh + utz) - xgi(guh + ‘gutz)v
where Q7 = (0,a) x (0,71) x (0,75) and S2h = [ [£ h(C, t1,t2) dC €, we obtain
(tyta ey +us) 2(Qr) = (Wertas S7(Eusy + Eury))r2(0r)

— (e, + Uy, (TUg), ) r2(y + (82 (Eue, + Eug,), (vus),)2(gr)
= (Lu, Mu) 2. (12)
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The successive integration by parts of integrals on the left-hand side of (12) are
straightforward but somewhat tedious. We only give their results

(Wertss Uy + Uey)12(Qr) =

1 9 1 02 o
_ 2/62? (e, (2,11, 7)) d ds 2/ oG dudts

+1/ x(ug, (2,71, t2))? dxdtl—l/ x(&pl) dx dty, (13)
2 T2 h 2 Ots

- (Ut1t27 %i (€Ut1 + £Ut2))L%(QT) =

:%/Il(%z(ﬁun(azthrz))? dz dt, — %/ (Jz(gaaff)) d dt,

T1
@

+%/QQZ(%a:(gutz(I,Thb)Pdxdt2_%/Q (S (g%))2dxdt2, (14)

— (wty + uty, (TUs),)12(Q7) =
1 ) 5
= 5 /C’?"'Z x(ux(xaTlth))Q dl‘ dt2 — 5/’ 1.( agoxl) d dt

1 1

9
+§/? x(ux(x,tl,Tz))2dxdt1—§/Q x( a‘if) drdty, (15)

(gi(futl + €Ut2)7 (qu)x)LZ(QT) =
= —/ 2y (S (Eue, ) + Sz (§ue,)) de dty dta. (16)
First observe that

2
2 a 2
192ull72(gr) < 5 Iel2qry (17)

then by making use of (13)—(17), the Cauchy e-inequality af < ca?/2+ 6% /2¢, and
the identity (12), we obtain

1 9 1 2 1 2
3 ||Ut1('7t1772)||L,2)(Q;1) T3 ||Ut2('7717t2)||L,2)(Q;2) T3 “Uz('vthTQ)”L,Z)(QIl)

]_ 2 ]. 2 ]- 2
+5 ||Uz('7717t2)||L2 2ytg I8 (€un, (5t ) 2oy +35 ||3z(€utz('7T17t2))||L2(Q£2)

bl el
8t2 LZ QZ 4 atl LQ(Ql 850 Lz Ql )
o1
2 HE 12(Qo ) HU“HLZ(Q ) T35 5 el L3 + 2 1Cullzyor)
1 a® 1 ad
+ (5 + Z) ||Sz(§ut1)||iz(Qr) + (5 + Z) ||Sz(§utz)||iZ(Qf) - (18)
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Consider the elementary inequalities:

2 2 2 2
a7 82) 172 72y < Mullzz(gry + e llz2(ory + et llz2(,) - (19)
2 2 2 2
lus b, )72 orry < Mullzz(gry + lueallzz (o) + 92017201 - (20)
Adding side to side inequalities (18)—(20), we obtain
2 2 2
l[we, (- t1,72) Lz T “utz('levt?)“L%(Q;Z) + sy t1, 72| L2(Q7Y)

2 2
F e (s )2 gpey + 18w (Gues (5t 7))l 2@y + 192 (Eura (71, 22))|
+ [Ju(, 71, t2)]

2
L2(Q3%)

2 2
rzQp) T llu(-,t1,72)] L2(QY)

2 2 2 2 2
<k {||991||vp1~1(Q2) F ezl gy + 1€l ory + 1ellzz(gry + llua 2 (or
2 2 2 2
Fllues 2 (gry + 1uellzz (@ry + 182 (€ue )72 (o) + ||%x(§utz)||L2(Qr)} ;(21)

where

3 4
k:maX{Za, 4, 1+%, 1+%}.

Now, to eliminate the last six terms on the right-hand side of (21), we use the fol-
lowing lemma which can be proved in the same fashion as in lemma 7.1 from [12]. m

LEMMA 2.2. If fi(11,72), fo(71,72) and f3(71,T2) are nonnegative functions on

the rectangle (0,T1) X (0,T3), f1(m1,72) and fa(7m1,72) are integrable, and f3(71,72)
is mondecreasing in each of its variables separately, then it follows from

T1 T2
/ / fi(m, ) dty dts + fo(m, )
o Jo

T1 T2
SC/ fz(t177'2)dt1+0/ fa(m1,t2) dty + f3(m1,72)
0 0

that

/071/072 fi(m, ) dty dta + fa(m1, 72) < exp(2¢(m1 + 12)) - f3(71, T2).
Then (21) takes the form
st 7)1 groy + 1 (G, (5 b1, ) T2
e 7 )l ey + 19 (€ (7 82 o
< ke T Lo T g, + el ) + I€ullEsgn) } -

Since the right-hand side of the above inequality is independent of (11,72), we can
take the least upper bound of the left side with respect to (11,72) from [0,T1) and
[0, T5) respectively, we get the desired estimate (11) with ¢ = /keFT1+72)/2,



84 S. Mesloub, N. Lekrine

We shall now prove that the operator L admits a closure. For this we must
either show that it follows from a well known theorem in the theory of unbouded
operators that the operator L* adjoint to L is defined in a dense set, or else verify
directly the following assertion: If w,, € D(L) is a sequence such that

Up — 0 in the norm of E, (22)
and
Lu, — F = (f,01,92) in the norm of F, (23)

then f =0, o1 =0, po =0.
Since (22) holds, then

Uy — 0 in D'(Q), (24)

n— oo

where D'(Q) is the space of distributions on Q. By virtue of the continuity of
derivation of D'(Q) in D'(Q), (24) implies that

L, — 0 in D'(Q). (25)
But since

Lun = f  in L2(Q), (26)
then

Lu, — f  inD'(Q). (27)

From the uniqueness of the limit in the space D'(Q), we conclude that f = 0.
According to (23), we have
i, — o1 in V1'(Q2), (28)

and by the fact that the canonical injection from Vpl’l(Q2) into D'(Q2) is continu-

ous, (28) implies
Zlun — Q1 in D,(Q2) (29)

n—oo

Moreover, since (22) holds and

lrtnllyri iy < lunllz  ¥n, (30)
we have

élqin_); 0 in V)Y Q2). (31)
Hence

lu, — 0 in D'(Q2). (32)

By virtue of the uniqueness of the limit in D'(Q3), we conclude from (29) and (32),
that 3 = 0. In the same fashion, we can show that o = 0.
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Let L be the closure of the operator L with domain of definition D(L).
DEFINITION 2.1. A solution of the operator equation
Lu=F,
is called the strong solution of the problem (6)—(10).

By passing to the limit, the estimate (11) can be extended to strong solutions,
that is we have the inequality

lul|z <ec ||fu||F Yu € D(f). (33)
Hence

COROLLARY 2.3. If a strong solution of (6)—(10) ewists, it is unique and
depends continuously on elements F = (f, p1,92) € F.

COROLLARY 2.4. The range R(L) of the operator L is closed in F and R(L) =
R(L).

Hence, to prove that a strong solution of problem (6)—(10) exists for any ele-

ment (f,¢1,p2) € F, it remains to prove that R(L) = F..

3. Solvability of the posed problem

THEOREM 3.1. If, for some function w € L?(Q) and for all w € D(L) verifying
liu = lou = 0, we have

/ zLlu - wdzdt =0, (34)
Q

dt = dty dt2, then w vanishes almost everywhere in the domain Q.

Proof. Relation (34) holds for any function u in D(L) such that ¢;u = lou = 0,
so it can be expressed in a particular form. Consider the function g;; defined by

T;
gij(tl,tQ,CC) = / wij dTi7 ’L7] = 172.
t

i

Let 9%u/0t;0t; be the solution of the equation

z €
&u/ot;0t; — / / CO%u/0t;0t; dC d€ = gij(t1,t2,x) (35)
0 Jo
and let
07 0 S ti S 5i7 ) 1 2 36
u = fstllfst; Uy dT1 d7'27 Si S tz S 717:7 v =1,2. ( )

From the above relations, we have

2 2 2 2
=Y SN wi=-3 % (82u/8ti8t]— — [ [ coru)otot; dC d§) . (37)
=1 7=1 =1 7=1

3 t
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LEMMA 3.2. The function w defined by (37) is in L?(Q).
Proof. The proof can be derived as in [2]. m

To continue the proof of Theorem 3.1, replacing w in (34) by its representation
(37), we have
2 2

— (Uty s, 21 Utitrt;)02(Q) T (Ueytss 21 3% (Eutyene; ) r2(Q)
J= J=

1 32 (Eunynne;)) (@)

2
=

2

+ ((SCUZ)Z, 2:1 utltltj)Lz(Q) - ((SCUZ)Z,
J:
2

2

= (utyt) 21 Utytat; ) 12(Q) + (st 21 32 (Eutatar;)) 12(Q)
7= J=

2

2
+ ((TU2)zy 22 Utytat; ) 12(Q) = (TUz)as 3o S%(EWiyene;))12(Q) = 0. (38)
i=1 iz

Using conditions (9), (10), the particular form of u given by the relations (35), (36)
and then integrating by parts each term of (38), we get

2 1
_(uhtzv]gl ut1t1tj)L,2,(Q) = 5 ||ut1t1 (xvtlvTZ)”%,Z)(Qil) ) (39)
where Q;, = (0,a) x (s1,T1),
2 1
(utyts) | 1 S(&unnerz@) = 5 ||$z(§ut1t1(ﬂ?7t17T2))||2Lz(Q§1)7 (40)
J:
2 1 9
((xuz)m]; Utitat;)12(Q) = 5 ety (2,81, T2) 72 01 (41)
2
_((xux)xv 2:1 gx(gutltltj))Lz(Q) = _(uxtu%x(gutlh))L?)(QR)_
j=
_(uxtzv%$(€Ut1t1))L%(QR) + (xum (l’, t1, Tv), Sy (€Ut1t1 (l’, 1, T2)))L,2,(Q§1)7
(12)
where QS = (O,G) X (817T1) X (827T2),
2 1
—(Utlth; Utatat;)12(Q) = 5 [weeo (2, T1, t2)] ZL%(QEZ) ) (43)
where Q2, = (0,a) x (s2,T),
2 1
(uhtzv]; %i (gutztztj))L/Q,(Q) = 5 “gx(gutztz (valv t2))| iQ(QEZ) ) (44)
2 1 5
((xuw)m]; utztztj)Lz(Q) = 5 “uxtz (valv t2)||L,2)(Q§2) ) (45)
2
_((xuz)zv El gz(ﬁutztzl‘z]‘))Lz(Q) = _(uztzvSz(gutztz))L%(Qs)_
J:

—(taty; Sz (8uty1,)) 12 (Q.) + (e (2, T1, t2), o (Suttar (v, 11, £2))) 12(02)-
(46)
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Combining equalities (38)-(46), we get

1 2
5 llweye, (2,81, T2)]

1
L/Z;(Qll) + 5 ”gx(gutlh (1',t1,T2))|

2
12(Q1,)
1 2 1 2
+ 5 lueey (2,81, To)ll72g1 ) + 5 [utaea (2, T1 827202

45 ey (71, 10) 3 g2 + 5 19 (€ (r T, 1)) g
= (Uatys Se(§uee,))r2(Q.) + (Yatss Se (e ) r2(Q.) + (Uatss Se(€utat,))2(q.)
+ (ot Sa(€testy)) 12(Q0) — (T (@, T, t2), Sa(§urye, (2,11 12))) 1202,
—(xuz(x,tl,TQLSz(futltl(x,tth)))L%(Q%l). (47)
We now estimate the terms on the right-hand side of (47). We have

2
L2(Q.) > (48)

a 2 1
(U’Zt17 %Z(gutltl))L%(Qs) < 5 “uztl ”L%(QS) + 5 ||gz(€ut1t1)|

a 2 1 2
(Uzt27 gz(gutztz))L%(Qs) < 2 “utzan%(QS) + D) ”gz(gutztzﬂ L2(Q.) > (49)

a 2 1 2
(ats s %Z(gutltl))L/z,(Qs) < 2 “utzan%(QS) + ) ||gz(€ut1t1)||L2(Q5) ) (50)

a 1
(st gz(ﬁ“tztz))L%(Qs) < 2 ||ut1$||i%(Q5) + ) ”gz(gutztz)HQLZ(QS) ) (51)
- (x’u%(xv 1, T2)7 gx(guhh (1‘, tlvTZ)))L%(Qil)

2 1 2
S a ||Uz(l‘7 tlvTQ)”L%(Q%l) + Z “Sﬂv(gutltl (1‘7 tlvTQ))“Lz(Qil) - (52)
Consider the elementary inequality
2 2 2
allue(@,t1, T2) 121 ) < @ lluellizq.) + alluenllzz o) - (53)

Applying the Poincare-Friedriks inequality to the first term on the right-hand side
of (53), then (52) becomes

= (zue(z, 1, T2), Sa (Suyr, (. 1, T2))) 12(q1)

< (cra+a) [[ugy |

1
i/%(Qs) + 7 82 (ue,e, (2,11, o)) iZ(le) - (54)
We also have

- (x’u%(xv T ) t2)7 gx(gutztz (1‘, Tlv t2)))L/2,(QEZ)

2 1 2
S (CQG’ + a) ||U’Zt2 ||L,2)(Qq) + Z “Sﬂv(gutztz (1‘7 T17 t2))“L2(Q§2) - (55)
Combining the equality (47), the estimates (48)—(51), (54) and (55), we obtain
||ut1t1 (1‘, t1, T2)|

2 2
12001, T IS (e (2,11, T2)) 7201 )
2 2
+ ||th1($at17T2)||Lg(le) + luat, (valth)”L%(ng)
2 2
+ ||thz(x,T1,t2)||Lg(ng) + 1182 (§ueyt, (1, Tlth))||L2(Q§2)

2 2 2 2
< c{lluen I2(g,) + 192 € 3 qu) + lutse 230, + ||%z<fut2t2>||m(@5()5} ,
6)
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where
¢ = max {8a + 4cy1a, 8a + 4caa, 4}.

It results from (56) that

2 2
||ut1t1 (xvtlvTZ)”L/%(Qil) + ”gw(‘guhh (l’, tlvTZ))“Lz(Qh)
2 2
+ ||th1($at17T2)||Lg(le) + lvat, (valth)”L%(ng)

2 2
e (@, Trst2)ll72 (02 ) + 18w (€utats (r T1, 82)) 7202 ) <0, (57)

thanks to Gronwall’s lemma 2.2. Hence (57) implies that w = 0 almost everywhere
on (). This achieves the proof of Theorem 3.1. m

THEOREM 3.3. The range R(L) of the operator L coincides with F.
Proof. Suppose that, for some W = (w,w;,w;) € R(L)™,

(ﬁu,w)L%(Q) + (ﬁlu,wl)vﬂm(QZ) + (€2u7w2)vp1.o(Q1) =0. (58)

We must prove that W = 0.

Let
D()(L) = {U S D(L) : gl’ll, = gz’ll, = 0}

Putting u € Do(L) in (58), we get (Lu,w)r2(q) = 0, u € Do(L). Hence, by virtue
of Theorem 3.1 it follows that w = 0. Thus (58) becomes

(Elu,wl)vpl‘l(Qz) + (£2U,’IU2)VP1‘1(Q1) =0. (59)

l1u, and lou are independent, and the ranges of the operators ¢; and ¢y are every-
where dense in the spaces V,)'' (Q2), and V.1 (Q1), respectively. Hence the equality
(59) implies that w; = ws = 0. Consequently W = 0. This ends the proof of
Theorem 3.3. m
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