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ON A NONLOCAL SINGULAR MIXED EVOLUTION PROBLEM

Said Mesloub and Nadia Lekrine

Abstract. In the present paper, the existence and uniqueness of the strong solution of a
mixed problem for a second order plurihyperbolic equation with an integral condition is proved.
The proof is essentially based on an a priori bound and on the density of the range of the operator
generated by the considered problem. In spite of the apparant simplicity of the problem, the
solution requires a delicate set of techniques. It seems very di�cult to extend these technics to
the considered equation in more than one dimension without imposing complementary conditions.

1. Statement of the problem

In the region Q = (0; a)� (0; T1)� (0; T2), with a <1, T1 <1 and T2 <1,
we consider the one dimensional hyperbolic equation

Lv = vt1t2 �
1

x
(xvx)x = F (x; t1; t2); (1)

The equation (1) is supplemented by boundary and initial conditions

`1v = v(x; 0; t2) = �1(x; t2); (x; t2) 2 Q2 = (0; a)� (0; T2); (2)

`2v = v(x; t1; 0) = �2(x; t1); (x; t1) 2 Q1 = (0; a)� (0; T1); (3)

vx(a; t1; t2) = �(t1; t2); (t1; t2) 2 (0; T1)� (0; T2); (4)Z a

0

xv(x; t1; t2) dx = 	(t1; t2); (t1; t2) 2 (0; T1)� (0; T2): (5)

where �1(x; t2), �2(x; t1), �(t1; t2), 	(t1; t2) and F (x; t1; t2) are given functions.
The data functions have to satisfy the following compatibility conditions:

@�1
@x

= �(0; t2);

Z a

0

x�1(x; t2) dx = 	(0; t2);

@�2
@x

= �(t1; 0);

Z a

0

x�2(x; t1) dx = 	(t1; 0);

and �1(x; 0) = �2(x; 0).
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In the early sixties Cannon [6] has proved by means of an integral equation
(Potential method), the existence and uniqueness of the solution for a mixed prob-
lem combining a classical condition (Dirichlet condition) and an integral one for
the homogeneous equation. One year later Kamynin [10] has generalized the re-
sults of Cannon by using a system of integral equations (Potential method). The
importance of mixed problems with integral conditions has been also pointed out
by Samarskii [14]. Problem (1){(5), can be viewed as a non-local problem for a
plurihyperbolic equation (with the Bessel operator). A similar problem for which
a homogeneous Dirichlet condition and the linear constraint

R a
0
v(x; t) dx = 0 are

combined, has been investigated by Benouar and Yurchuk [1]. In their papers [2],
[3], [4] and [5], the authors considered hyperbolic and parabolic equations having
the operator (�(x; t)vx)x instead of the Bessel operator considered in equation (1).
For some mixed problems for second order parabolic equations which combine clas-
sical and integral conditions the reader should refer to Cannon-van der Hoek [7],
[8], Cannon-Esteva-van der Hoek [9], Kartynik [11], Shi [15], Yurchuk [16] and
Mesloub-Bouziani [13]. In this paper, the existence and uniqueness of a strong
solution of problem (1){(5) is proved by means of an energy estimate and a density
argument.

In point of view of the used method, it is preferable to transform the nonho-
mogeneous conditions to homogeneous ones. If we set:

u(x; t1; t2) = v(x; t1; t2)� w(x; t1; t2);

where

w(x; t1; t2) = (x� 4(x� a)2

a
) ��(t1; t2) + 12(x� a)2

a4
�	(t1; t2);

then problem (1){(5), becomes

Lu = F (x; t1; t2)�Lw = f(x; t1; t2); (6)

`1u = u(x; 0; t2) = �1(x; t2)� `1w = '1(x; t2); (7)

`2u = u(x; t1; 0) = �2(x; t1)� `2w = '2(x; t1); (8)

ux(a; t1; t2) = 0; (9)Z a

0

xu(x; t1; t2) dx = 0 (10)

We now introduce the appropriate function spaces needed for the investigation
of the posed problem. Let L2

�(Q) be the weighted L2-space with �nite norm

kuk2L2
�
=

Z
Q

xu2 dx dt;

t = (t1; t2), dt = dt1 dt2. The scalar product in L2
�(Q) is de�ned by (u; v)L2

�
=

(xu; v)L2 . Let V 1;0
� (Qi), V

1;1
� (Q1), and V 1;1

� (Q2), i = 1; 2 be the Hilbert spaces
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with scalar products respectively

(u; v)V 1;0
� (Qi)

= (u; v)L2
�(Qi) + (ux; vx)L2

�(Qi); i = 1; 2;

(u; v)V 1;1
� (Q1)

= (u; v)L2
�(Q1) + (ux; vx)L2

�(Q1) + (ut1 ; vt1)L2
�(Q1);

(u; v)V 1;1
� (Q2)

= (u; v)L2
�(Q2) + (ux; vx)L2

�(Q2) + (ut2 ; vt2)L2
�(Q2);

and with associated norms

kuk2V 1;0
� (Qi)

= kuk2L2
�(Qi)

+ kuxk2L2
�(Qi)

; i = 1; 2;

kuk2V 1;1
� (Q1)

= kuk2L2
�(Q1)

+ kuxk2L2
�(Q1)

+ kut1k2L2
�(Q1)

;

kuk2V 1;1
� (Q2)

= kuk2L2
�(Q2)

+ kuxk2L2
�(Q2)

+ kut2k2L2
�(Q2)

:

The given problem (6){(10) can be considered as the resolution of the operator
equation

Lu = (Lu; `1u; `2u) = (f; '1; '2) = F ;
where L is an operator de�ned on E into F , and E is the Banach space of functions
u 2 L2

�(Q), satisfying conditions (9) and (10), with the �nite norm

kuk2E = sup
0��2�T2

�
ku(�; �; �2)k2V 1;1

� (Q1)
+ k=x(�ut1(�; �; �2))k2L2(Q1)

�
+ sup

0��1�T1

�
ku(�; �1; �)k2V 1;1

� (Q2)
+ k=x(�ut2(�; �1; �))k2L2(Q2)

�
;

where =x(�u) =
R a
0
�u(�; t1; t2) d�, and F is the Hilbert space L2

�(Q)� V 1;1
� (Q2)�

V 1;1
� (Q1), which consists of elements F = (f; '1; '2) with �nite norm

kFk2F = k'1k2V 1;1
� (Q2)

+ k'2k2V 1;1
� (Q1)

+ kLfk2L2
�(Q)

:

Let D(L) be the set of all functions u 2 L2(Q) for which ut1 , ut2 , ut1t2 , ux, uxx,
uxt1 , uxt2 2 L2(Q) and satisfying conditions (9) and (10).

2. A priori bound and its consequences

Theorem 2.1. For any function u 2 D(L), there exists a positive constant c
independent of the solution u such that

kukE � c kLukF : (11)

Proof. Taking the scalar product in L2(Q� ) of equation (6) and the integro-
di�erential operator

Mu = x(ut1 + ut2)� x=2
x(�ut1 + �ut2);

where Q� = (0; a)� (0; �1)� (0; �2) and =2
xh =

R x
0

R �
0 h(�; t1; t2) d� d�, we obtain

(ut1t2 ; ut1 + ut2)L2
�(Q

� ) � (ut1t2 ;=2
x(�ut1 + �ut2))L2

�(Q
� )

� (ut1 + ut2 ; (xux)x)L2(Q� ) + (=2
x(�ut1 + �ut2); (xux)x)L2(Q� )

= (Lu;Mu)L2(Q� ): (12)
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The successive integration by parts of integrals on the left-hand side of (12) are
straightforward but somewhat tedious. We only give their results

(ut1t2 ; ut1 + ut2)L2
�(Q

� ) =

=
1

2

Z
Q

�1
1

x(ut1(x; t1; �2))
2 dx dt1 � 1

2

Z
Q

�1
1

x(
@'2
@t1

)2 dx dt1

+
1

2

Z
Q

�2
2

x(ut2(x; �1; t2))
2 dx dt1 � 1

2

Z
Q

�2
2

x(
@'1
@t2

)2 dx dt2; (13)

� (ut1t2 ;=2
x(�ut1 + �ut2))L2

�(Q
� ) =

=
1

2

Z
Q

�1
1

(=x(�ut1(x; t1; �2))
2 dx dt1 � 1

2

Z
Q

�1
1

(=x(�
@'2
@t1

))2 dx dt1

+
1

2

Z
Q

�2
2

(=x(�ut2(x; �1; t2))
2 dx dt2 � 1

2

Z
Q

�2
2

(=x(�
@'1
@t2

))2 dx dt2; (14)

� (ut1 + ut2 ; (xux)x)L2(Q� ) =

=
1

2

Z
Q

�2
2

x(ux(x; �1; t2))
2 dx dt2 � 1

2

Z
Q

�2
2

x(
@'1
@x

)2 dx dt2

+
1

2

Z
Q

�1
1

x(ux(x; t1; �2))
2 dx dt1 � 1

2

Z
Q

�1
1

x(
@'2
@x

)2 dx dt1; (15)

(=2
x(�ut1 + �ut2); (xux)x)L2(Q� ) =

= �
Z
Q�

xux(=x(�ut1) + =x(�ut2)) dx dt1 dt2: (16)

First observe that

k=xuk2L2(Q� ) �
a2

2
kuk2L2(Q� ) ; (17)

then by making use of (13){(17), the Cauchy "-inequality �� � "�2=2+ �2=2", and
the identity (12), we obtain

1

2
kut1(�; t1; �2)k2L2

�(Q
�1
1
) +

1

2
kut2(�; �1; t2)k2L2

�(Q
�2
2
) +

1

2
kux(�; t1; �2)k2L2

�(Q
�1
1
)

+
1

2
kux(�; �1; t2)k2L2

�(Q
�2
2
)+

1

2
k=x(�ut1(�; t1; �2))k2L2(Q

�1
1
)+

1

2
k=x(�ut2(�; �1; t2))k2L2(Q

�2
2
)

� (
a4

4
+
1

2
)





@'1@t2






2

L2
�(Q2)

+(
a4

4
+
1

2
)





@'2@t1






2

L2
�(Q1)

+
1

2





@'2@x






2

L2
�(Q1)

+a kuxk2L2
�(Q

� )

+
1

2





@'1@x






2

L2
�(Q2)

+
1

2
kut1k2L2

�(Q
� ) +

1

2
kut2k2L2

�(Q
� ) + 2 kLuk2L2

�(Q
� )

+ (
1

2
+

a3

4
) k=x(�ut1)k2L2(Q� ) + (

1

2
+

a3

4
) k=x(�ut2)k2L2(Q� ) : (18)
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Consider the elementary inequalities:

ku(�; �1; t2)k2L2
�(Q

�2
2
) � kuk2L2

�(Q
� ) + kut1k2L2

�(Q
� ) + k'1k2L2

�(Q2)
; (19)

ku(�; t1; �2)k2L2
�(Q

�1
1
) � kuk2L2

�(Q
� ) + kut2k2L2

�(Q
� ) + k'2k2L2

�(Q1)
: (20)

Adding side to side inequalities (18){(20), we obtain

kut1(�; t1; �2)k2L2
�(Q

�1
1
) + kut2(�; �1; t2)k2L2

�(Q
�2
2
) + kux(�; t1; �2)k2L2

�(Q
�1
1
)

+ kux(�; �1; t2)k2L2
�(Q

�2
2
) + k=x(�ut1(�; t1; �2))k2L2(Q

�1
1
) + k=x(�ut2(�; �1; t2))k2L2(Q

�2
2
)

+ ku(�; �1; t2)k2L2
�(Q

�2
2
) + ku(�; t1; �2)k2L2

�(Q
�1
1
)

� k
n
k'1k2V 1;1

� (Q2)
+ k'2k2V 1;1

� (Q1)
+ kLuk2L2

�(Q
� ) + kuk2L2

�(Q
� ) + kut1k2L2

�(Q
� )

+ kut2k2L2
�(Q

� ) + kuxk2L2
�(Q

� ) + k=x(�ut1)k2L2(Q� ) + k=x(�ut2)k2L2(Q� )

o
; (21)

where

k = max

�
2a; 4; 1 +

a3

2
; 1 +

a4

2

�
:

Now, to eliminate the last six terms on the right-hand side of (21), we use the fol-
lowing lemma which can be proved in the same fashion as in lemma 7.1 from [12].

Lemma 2.2. If f1(�1; �2), f2(�1; �2) and f3(�1; �2) are nonnegative functions on

the rectangle (0; T1)� (0; T2), f1(�1; �2) and f2(�1; �2) are integrable, and f3(�1; �2)
is nondecreasing in each of its variables separately, then it follows fromZ �1

0

Z �2

0

f1(�1; �2) dt1 dt2 + f2(�1; �2)

� c

Z �1

0

f2(t1; �2) dt1 + c

Z �2

0

f2(�1; t2) dt2 + f3(�1; �2)

that Z �1

0

Z �2

0

f1(�1; �2) dt1 dt2 + f2(�1; �2) � exp(2c(�1 + �2)) � f3(�1; �2):

Then (21) takes the form

ku(�; t1; �2)k2V 1;1
� (Q

�1
1
) + k=x(�ut1(�; t1; �2))k2L2(Q

�1
1
)

+ ku(�; �1; t2)k2V 1;1
� (Q

�2
2
) + k=x(�ut2(�; �1; t2))k2L2(Q

�2
2
)

� kek(T1+T2)
n
k'1k2V 1;1

� (Q2)
+ k'2k2V 1;1

� (Q1)
+ kLuk2L2

�(Q
� )

o
:

Since the right-hand side of the above inequality is independent of (�1; �2), we can

take the least upper bound of the left side with respect to (�1; �2) from [0; T1) and

[0; T2) respectively, we get the desired estimate (11) with c =
p
kek(T1+T2)=2:
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We shall now prove that the operator L admits a closure. For this we must
either show that it follows from a well known theorem in the theory of unbouded
operators that the operator L� adjoint to L is de�ned in a dense set, or else verify
directly the following assertion: If un 2 D(L) is a sequence such that

un ! 0
n!1

in the norm of E; (22)

and
Lun ! F

n!1
= (f; '1; '2) in the norm of F; (23)

then f = 0, '1 = 0, '2 = 0.

Since (22) holds, then

un ! 0
n!1

in D0(Q); (24)

where D0(Q) is the space of distributions on Q. By virtue of the continuity of
derivation of D0(Q) in D0(Q), (24) implies that

Lun ! 0
n!1

in D0(Q): (25)

But since
Lun ! f

n!1
in L2

�(Q); (26)

then
Lun ! f

n!1
in D0(Q): (27)

From the uniqueness of the limit in the space D0(Q), we conclude that f = 0:

According to (23), we have

`1un ! '1
n!1

in V 1;1
� (Q2); (28)

and by the fact that the canonical injection from V 1;1
� (Q2) into D0(Q2) is continu-

ous, (28) implies
`1un ! '1

n!1
in D0(Q2): (29)

Moreover, since (22) holds and

k`1unkV 1;1
� (Q2)

� kunkE 8n; (30)

we have
`1un ! 0

n!1
in V 1;1

� (Q2): (31)

Hence
`1un ! 0

n!1
in D0(Q2): (32)

By virtue of the uniqueness of the limit in D0(Q2), we conclude from (29) and (32),
that '1 = 0. In the same fashion, we can show that '2 = 0.
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Let L be the closure of the operator L with domain of de�nition D(L):

Definition 2.1. A solution of the operator equation

Lu = F ;
is called the strong solution of the problem (6){(10):

By passing to the limit, the estimate (11) can be extended to strong solutions,
that is we have the inequality

kukE � c


Lu



F
8u 2 D(L): (33)

Hence

Corollary 2.3. If a strong solution of (6){(10) exists, it is unique and

depends continuously on elements F = (f; '1; '2) 2 F:

Corollary 2.4. The range R(L) of the operator L is closed in F and R(L) =

R(L):

Hence, to prove that a strong solution of problem (6){(10) exists for any ele-

ment (f; '1; '2) 2 F , it remains to prove that R(L) = F .

3. Solvability of the posed problem

Theorem 3.1. If, for some function ! 2 L2(Q) and for all u 2 D(L) verifying
`1u = `2u = 0, we have Z

Q

xLu � ! dx dt = 0; (34)

dt = dt1 dt2, then ! vanishes almost everywhere in the domain Q:

Proof. Relation (34) holds for any function u in D(L) such that `1u = `2u = 0,
so it can be expressed in a particular form. Consider the function gij de�ned by

gij(t1; t2; x) =

Z Ti

ti

!ij d�i; i; j = 1; 2:

Let @2u=@ti@tj be the solution of the equation

@2u=@ti@tj �
Z x

0

Z �

0

�@2u=@ti@tj d� d� = gij(t1; t2; x) (35)

and let

u =

(
0; 0 � ti � si;R t1
s1

R t2
s2

u�1�2 d�1 d�2; si � ti � Ti;
i = 1; 2: (36)

From the above relations, we have

! =
2P

i=1

2P
j=1

!ij = �
2P

i=1

2P
j=1

�
@2u=@ti@tj �

R x
0

R �
0
�@2u=@ti@tj d� d�

�
ti
: (37)
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Lemma 3.2. The function ! de�ned by (37) is in L2(Q):

Proof. The proof can be derived as in [2].

To continue the proof of Theorem 3:1, replacing ! in (34) by its representation
(37), we have

� (ut1t2 ;
2P

j=1
ut1t1tj )L2

�(Q)
+ (ut1t2 ;

2P
j=1

=2
x(�ut1t1tj ))L2

�(Q)

+ ((xux)x;
2P

j=1
ut1t1tj )L2(Q) � ((xux)x;

2P
j=1

=2
x(�ut1t1tj ))L2(Q)

� (ut1t2 ;
2P

j=1
ut2t2tj )L2

�(Q)
+ (ut1t2 ;

2P
j=1

=2
x(�ut2t2tj ))L2

�(Q)

+ ((xux)x;
2P

j=1
ut2t2tj )L2(Q) � ((xux)x;

2P
j=1

=2
x(�ut2t2tj ))L2(Q) = 0: (38)

Using conditions (9), (10), the particular form of u given by the relations (35), (36)
and then integrating by parts each term of (38), we get

�(ut1t2 ;
2P

j=1

ut1t1tj )L2
�(Q)

=
1

2
kut1t1(x; t1; T2)k2L2

�(Q
1
s1
) ; (39)

where Q1
s1 = (0; a)� (s1; T1),

(ut1t2 ;
2P

j=1
=2
x(�ut1t1tj ))L2

�(Q)
=

1

2
k=x(�ut1t1(x; t1; T2))k2L2(Q1

s1
) ; (40)

((xux)x;
2P

j=1

ut1t1tj )L2(Q) =
1

2
kuxt1(x; t1; T2)k2L2

�(Q
1
s1
) ; (41)

�((xux)x;
2P

j=1
=x(�ut1t1tj ))L2(Q) = �(uxt1 ;=x(�ut1t1))L2

�(Qs)�

�(uxt2 ;=x(�ut1t1))L2
�(Qs) + (xux(x; t1; T2);=x(�ut1t1(x; t1; T2)))L2

�(Q
1
s1
);
(42)

where Qs = (0; a)� (s1; T1)� (s2; T2),

�(ut1t2 ;
2P

j=1
ut2t2tj )L2

�(Q)
=

1

2
kut2t2(x; T1; t2)k2L2

�(Q
2
s2
) ; (43)

where Q2
s2 = (0; a)� (s2; T2);

(ut1t2 ;
2P

j=1
=2
x(�ut2t2tj ))L2

�(Q)
=

1

2
k=x(�ut2t2(x; T1; t2))k2L2(Q2

s2
) ; (44)

((xux)x;
2P

j=1
ut2t2tj )L2(Q) =

1

2
kuxt2(x; T1; t2)k2L2

�(Q
2
s2
) ; (45)

�((xux)x;
2P

j=1
=2
x(�ut2t2tj ))L2(Q) = �(uxt2 ;=x(�ut2t2))L2

�(Qs)�

�(uxt1 ;=x(�ut2t2))L2
�(Qs) + (xux(x; T1; t2);=x(�ut2t2(x; T1; t2)))L2

�(Q
2
s2
):
(46)
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Combining equalities (38){(46), we get
1

2
kut1t1(x; t1; T2)k2L2

�(Q
1
s1
) +

1

2
k=x(�ut1t1(x; t1; T2))k2L2(Q1

s1
)

+
1

2
kuxt1(x; t1; T2)k2L2

�(Q
1
s1
) +

1

2
kut2t2(x; T1; t2)k2L2

�(Q
2
s2
)

+
1

2
kuxt2(x; T1; t2)k2L2

�(Q
2
s2
) +

1

2
k=x(�ut2t2(r; T1; t2))k2L2(Q2

s2
)

= (uxt1 ;=x(�ut1t1))L2
�(Qs) + (uxt2 ;=x(�ut1t1))L2

�(Qs) + (uxt2 ;=x(�ut2t2))L2
�(Qs)

+ (uxt1 ;=x(�ut2t2))L2
�(Qs) � (xux(x; T1; t2);=x(�ut2t2(x; T1; t2)))L2

�(Q
2
s2
)

� (xux(x; t1; T2);=x(�ut1t1(x; t1; T2)))L2
�(Q

1
s1
): (47)

We now estimate the terms on the right-hand side of (47). We have

(uxt1 ;=x(�ut1t1))L2
�(Qs) �

a

2
kuxt1k2L2

�(Qs)
+

1

2
k=x(�ut1t1)k2L2(Qs)

; (48)

(uxt2 ;=x(�ut2t2))L2
�(Qs) �

a

2
kut2xk2L2

�(Qs)
+

1

2
k=x(�ut2t2)k2L2(Qs)

; (49)

(uxt2 ;=x(�ut1t1))L2
�(Qs) �

a

2
kut2xk2L2

�(Qs)
+

1

2
k=x(�ut1t1)k2L2(Qs)

; (50)

(uxt1 ;=x(�ut2t2))L2
�(Qs) �

a

2
kut1xk2L2

�(Qs)
+

1

2
k=x(�ut2t2)k2L2(Qs)

; (51)

� (xux(x; t1; T2);=x(�ut1t1(x; t1; T2)))L2
�(Q

1
s1
)

� a kux(x; t1; T2)k2L2
�(Q

1
s1
) +

1

4
k=x(�ut1t1(x; t1; T2))k2L2(Q1

s1
) : (52)

Consider the elementary inequality

a kux(x; t1; T2)k2L2
�(Q

1
s1
) � a kuxk2L2

�(Qs)
+ a kuxt1k2L2

�(Qs)
: (53)

Applying the Poincare-Friedriks inequality to the �rst term on the right-hand side
of (53), then (52) becomes

� (xux(x; t1; T2);=x(�ut1t1(x; t1; T2)))L2
�(Q

1
s1
)

� (c1a+ a) kuxt1k2L2
�(Qs)

+
1

4
k=x(�ut1t1(x; t1; T2))k2L2(Q1

s1
) : (54)

We also have

� (xux(x; T1; t2);=x(�ut2t2(x; T1; t2)))L2
�(Q

2
s2
)

� (c2a+ a) kuxt2k2L2
�(Qs)

+
1

4
k=x(�ut2t2(x; T1; t2))k2L2(Q2

s2
) : (55)

Combining the equality (47), the estimates (48){(51), (54) and (55), we obtain

kut1t1(x; t1; T2)k2L2
�(Q

1
s1
) + k=x(�ut1t1(x; t1; T2))k2L2(Q1

s1
)

+ kuxt1(x; t1; T2)k2L2
�(Q

1
s1
) + kut2t2(x; T1; t2)k2L2

�(Q
2
s2
)

+ kuxt2(x; T1; t2)k2L2
�(Q

2
s2
) + k=x(�ut2t2(r; T1; t2))k2L2(Q2

s2
)

� c
n
kuxt1k2L2

�(Qs)
+ k=x(�ut1t1)k2L2(Qs)

+ kut2xk2L2
�(Qs)

+ k=x(�ut2t2)k2L2(Qs)

o
;

(56)
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where
c = max f8a+ 4c1a; 8a+ 4c2a; 4g :

It results from (56) that

kut1t1(x; t1; T2)k2L2
�(Q

1
s1
) + k=x(�ut1t1(x; t1; T2))k2L2(Q1

s1
)

+ kuxt1(x; t1; T2)k2L2
�(Q

1
s1
) + kut2t2(x; T1; t2)k2L2

�(Q
2
s2
)

+ kuxt2(x; T1; t2)k2L2
�(Q

2
s2
) + k=x(�ut2t2(r; T1; t2))k2L2(Q2

s2
) � 0; (57)

thanks to Gronwall's lemma 2.2. Hence (57) implies that ! = 0 almost everywhere
on Q. This achieves the proof of Theorem 3.1.

Theorem 3.3. The range R(L) of the operator L coincides with F:

Proof. Suppose that, for some W = (!;w1; w2) 2 R(L)?;

(Lu; !)L2
�(Q)

+ (`1u;w1)V 1;0
� (Q2)

+ (`2u;w2)V 1;0
� (Q1)

= 0: (58)

We must prove that W = 0:

Let
D0(L) = fu 2 D(L) : `1u = `2u = 0 g

Putting u 2 D0(L) in (58), we get (Lu; !)L2
�(Q)

= 0, u 2 D0(L). Hence, by virtue

of Theorem 3.1 it follows that ! = 0. Thus (58) becomes

(`1u;w1)V 1;1
� (Q2)

+ (`2u;w2)V 1;1
� (Q1)

= 0: (59)

`1u, and `2u are independent, and the ranges of the operators `1 and `2 are every-
where dense in the spaces V 1;1

� (Q2), and V 1;1
� (Q1), respectively. Hence the equality

(59) implies that w1 = w2 = 0. Consequently W = 0. This ends the proof of
Theorem 3.3.
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