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MULTI POINT BOUNDARY VALUE PROBLEMS FOR

SECOND ORDER DIFFERENTIAL INCLUSIONS

M. Benchora and S. K. Ntouyas

Abstract. In this paper we investigate the existence of solutions on a compact interval to
a multi-point boundary value problem for a class of second order di�erential inclusions. We shall
rely on a �xed point theorem for condensing maps due to Martelli.

1. Introduction

Let ai; bj 2 R, with all of the a
;
is, (respectively, b

;
js), having the same sign,

�i; �j 2 (0; 1), i = 1; 2; . . . ;m�2, j = 1; 2; . . . ; n�2, 0 < �1 < �2 < � � � < �m�2 < 1,
0 < �1 < �2 < � � � < �n�2 < 1. The main purpose of this paper is to get results
on the solvability of the following boundary value problems (BVPs for short) for
second order di�erential inclusions of the forms8><

>:
y00(t) 2 F (t; y(t)); t 2 (0; 1)

y(0) =
m�2P
i=1

aiy
0(�i); y(1) =

n�2P
j=1

bjy(�j)
(A)

8><
>:

y00(t) 2 F (t; y(t)); t 2 (0; 1)

y(0) =
m�2P
i=1

aiy
0(�i); y0(1) =

n�2P
j=1

bjy
0(�j)

(B)

8><
>:

y00(t) 2 F (t; y(t)); t 2 (0; 1)

y(0) =
m�2P
i=1

aiy(�i); y(1) =
n�2P
j=1

bjy(�j)
(C)

and 8><
>:

y00(t) 2 F (t; y(t)); t 2 (0; 1)

y(0) =
m�2P
i=1

aiy(�i); y0(1) =
n�2P
j=1

biy
0(�j)

(D)

where F : J �R �! 2R is a multivalued map with compact convex values.
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The study of multi-point boundary value problems for second order ordinary
di�erential equations was initiated by Il'in and Moiseev in [12, 13] motivated by
the work of Bitsadze and Samarskii on nonlocal elliptic boundary value problems,
[2, 3, 4].

Existence of solutions on compact intervals for multi-point boundary value
problems for second order di�erential equations was given by Gupta in [6], Gupta
et al in [7{10]. However, to our knowledge, this type of problems has not been
studied for the multivalued case.

It is well known (c.f. [12]) that if a function y 2 C1 satis�es one of the boundary
conditions stated above and ai; bj , i = 1; 2; . . . ;m � 2, j = 1; 2; . . . ; n � 2 are as
above, then there exist � 2 [�1; �m�2], � 2 [�1; �n�2] such that

y(0) = �y0(�); y(1) = �y(�)

y(0) = �y0(�); y0(1) = �y0(�)

y(0) = �y(�); y(1) = �y(�)

y(0) = �y(�); y0(1) = �y0(�)

respectively with � =
Pm�2

i=1 ai, � =
Pn�2

j=1 bj . Hence the multi-point BVPs (A){

(D) can be reduced to a corresponding four-point BVP. The method of proof for
the existence of a solution for a four-point BVP and for a multi-point BVP (A){(D)
is the same.

In order not to hide the main ideas behind general and technicaly complicated
statements, we restrict our discussion to the following four-point BVP

y00 2 F (t; y); t 2 J = [0; 1] (1.1)

y(0) = y0(�); y(1) = y(�) (1.2)

where F : J � R �! 2R is a multivalued map with compact convex values and
�; � 2 (0; 1). This is a special case of the BVP (A) when � = � = 1. All the other
four-point BVP and the general multi-point BVP are examined in a similar way,
with obvious modi�cations.

The method we are going to use is to reduce the existence of solutions to
problem (1.1){(1.2) to the search for �xed points of a suitable multivalued map on
the Banach space C(J;R). In order to prove the existence of �xed points, we shall
rely on a �xed point theorem for condensing maps due to Martelli [15].

2. Preliminaries

In this section, we introduce notations, de�nitions, and preliminary facts from
multivalued analysis which are used throughout this paper.

Let (X; k � k) be a Banach space. A multivalued map G : X �! 2X is convex
(closed) valued if G(x) is convex (closed) for all x 2 X . G is bounded on bounded
sets if G(B) =

S
x2B G(x) is bounded in X for any bounded set B of X (i.e.

supx2Bfsupfkyk : y 2 G(x)gg <1):
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G is called upper semicontinuous (u.s.c.) on X if for each x� 2 X the set G(x�)
is a nonempty, closed subset of X , and if for each open set B of X containing G(x�),
there exists an open neighbourhood V of x� such that G(V ) � B:

G is said to be completely continuous if G(B) is relatively compact for every
bounded subset B � X .

If the multivalued map G is completely continuous with nonempty compact
values, then G is u.s.c. if and only if G has a closed graph (i.e. xn �! x�, yn �! y�,
yn 2 G(xn) imply y� 2 G(x�)).

G has a �xed point if there is x 2 X such that x 2 G(x):

In the following CC(X) denotes the set of all nonempty compact and convex
subsets of X .

A multivalued map G : J �! CC(E) is said to be measurable if for each x 2 E

the function Y : J �! R de�ned by

Y (t) = d(x;G(t)) = inffjx� zj : z 2 G(t)g

is measurable.

Definition 2.1. A multivalued map F : J �R �! 2R is said to be an L1-
Carath�eodory map if

(i) t 7�! F (t; y) is measurable for each y 2 R;

(ii) y 7�! F (t; y) is upper semicontinuous for almost all t 2 J ;

(iii) for each k > 0, there exists hk 2 L1(J;R+) such that

kF (t; y)k = supfjvj : v 2 F (t; y)g � hk(t)

for all jyj � k and for almost all t 2 J:

An upper semi-continuous map G : X �! 2X is said to be condensing if for
any subset B � X with �(B) 6= 0, we have �(G(B)) < �(B), where � denotes
the Kuratowski measure of noncompacteness. For properties of the Kuratowski
measure, we refer to Banas and Goebel [1].

We remark that a completely continuous multivalued map is the easiest exam-
ple of a condensing map. For more details on multivalued maps see the books of
Deimling [5] and Hu and Papageorgiou [11].

We will need the following hypotheses:

(H1) F : J �R �! CC(R) is an L1-Carath�eodory multivalued map.

(H2) There exists a function H 2 L1(J;R+) such that

kF (t; y)k := supfjvj : v 2 F (t; y)g � H(t) for almost all t 2 J and all y 2 R:

Definition 2.2. A function y : J �! R is called a solution for the BVP
(1.1){(1.2) if y and its �rst derivative are absolutely continuous and y00 (which
exists almost everywhere) satis�es the di�erential inclusion (1.1) a.e. on J and the
condition (1.2).
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Our considerations are based on the following lemmas.

Lemma 2.3. [14] Let I be a compact real interval and X be a Banach space. If
F is a multivalued map satisfying (H1) and � is a linear continuous mapping from
L1(I;X) to C(I;X), then the operator

� � SF : C(I;X) �! CC(C(I;X)); y 7�! (� � SF )(y) := �(SF;y)

is a closed graph operator in C(I;X)� C(I;X):

Lemma 2.4. [15] Let X be a Banach space and N : X �! CC(X) be a u.s.c.
condensing map. If the set


 := fy 2 X : �y 2 Ny for some � > 1g

is bounded, then N has a �xed point.

3. Main Result

Now, we are able to state and prove our main theorem.

Theorem 3.1. Assume that Hypotheses (H1){(H2) hold. Then the BVP
(1:1){(1:2) has at least one solution on J:

Proof. Let C(J;R) be the Banach space provided with the norm

kyk1 := supf jy(t)j : t 2 J g; for y 2 C(J;R):

Transform the problem (1.1){(1.2) into a �xed point problem. Consider the multi-
valued map, N : C(J;R) �! 2C(J;R) de�ned by:

Ny =
n
h 2 C(J;R) : h(t) =

Z t

0

(t� s)g(s) ds+

Z �

0

g(s) ds

+
1 + t

1� �

hZ �

0

(� � s)g(s) ds�

Z 1

0

(1� s)g(s) ds
i o

where

g 2 SF;y =
n
g 2 L1(J;R) : g(t) 2 F (t; y(t)) for a.e. in J

o
:

Remark 3.2. (i) It is clear that the �xed points of N are solutions to (1.1){
(1.2).

(ii) For each y 2 C(J;R) the set SF;y is nonempty (see Lasota and Opial [14]).

We shall show that N satis�es the assumptions of Lemma 2.4. The proof will
be given in several steps.

Step 1. Ny is convex for each y 2 C(J;R).

Indeed, if h1; h2 belong to Ny, then there exist g1; g2 2 SF;y such that for
each t 2 J we have

h(t) =

Z t

0

(t� s)gi(s) ds+

Z �

0

gi(s) ds

+
1 + t

1� �

hZ �

0

(� � s)gi(s) ds�

Z 1

0

(1� s)gi(s) ds
i
; i = 1; 2:
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Let 0 � � � 1. Then for each t 2 J we have

(�h1 + (1� �)h2)(t) =

Z t

0

(t� s)f�g1(s) + (1� �)g2(s)g ds

+

Z �

0

f�g1(s) + (1� �)g2(s)g ds

+
1 + t

1� �

hZ �

0

(� � s)f�g1(s) + (1� �)g2(s)g ds

�

Z 1

0

(1� s)f�g1(s) + (1� �)g2(s)gds
i
:

Since SF;y is convex (because F has convex values) then

�h1 + (1� �)h2 2 Ny:

Step 2. N is bounded on bounded sets of C(J;R):

Indeed, it is enough to show that there exists a positive constant c such that
for each h 2 Ny, y 2 Br = fy 2 C(J;R) : jyk1 � rg one has khk1 � c.

If h 2 Ny, then there exists g 2 SF;y such that for each t 2 J we have

h(t) =

Z t

0

(t� s)g(s) ds+

Z �

0

g(s) ds

+
1 + t

1� �

hZ �

0

(� � s)g(s) ds�

Z 1

0

(1� s)g(s) ds
i
; t 2 J:

By (H1) we have for each t 2 J that

jh(t)j �

Z t

0

hr(s) ds+

Z �

0

hr(s) ds+
2

1� �

hZ �

0

(� �s)hr(s) ds+

Z 1

0

(1�s)hr(s) ds
i
:

Then

khk1 �

Z 1

0

hr(s) ds+

Z �

0

hr(s) ds+
2

1� �

hZ �

0

(��s)hr(s) ds+

Z 1

0

(1�s)hr(s) ds
i
= c:

Step 3. N sends bounded sets of C(J;R) into equicontinuous sets.

Let t1; t2 2 J , t1 < t2 and Br be a bounded set of C(J;R). For each y 2 Br

and h 2 Ny, there exists g 2 SF;y such that

h(t) =

Z t

0

(t� s)g(s) ds+

Z �

0

g(s) ds

+
1 + t

1� �

hZ �

0

(� � s)g(s) ds�

Z 1

0

(1� s)g(s) ds
i
; t 2 J:
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Thus we obtain

jh(t2)� h(t1)j �

Z t2

0

(t2 � s)kg(s)k ds+

Z t2

t1

(t1 � s)kg(s)k ds

+
t2 � t1

1� �

hZ �

0

(� � s)kg(s)k ds+

Z 1

0

(1� s)kg(s)k ds
i

�

Z t2

0

(t2 � s)hr(s) ds+

Z t2

t1

(t1 � s)hr(s) ds

+
t2 � t1

1� �

hZ �

0

(� � s)hr(s) ds+

Z 1

0

(1� s)hr(s) ds
i
:

As t2 �! t1 the right-hand side of the above inequality tends to zero.

As a consequence of Step 2, Step 3 together with the Arzela-Ascoli theorem
we can conclude that N is completely continuous.

Step 4. N has a closed graph.

Let yn �! y�, hn 2 Nyn, and hn �! h�. We shall prove that h� 2 Ny�.

hn 2 Nyn means that there exists gn 2 SF;yn such that

hn(t) =

Z t

0

(t� s)gn(s) ds+

Z �

0

gn(s)ds

+
1 + t

1� �

hZ �

0

(� � s)gn(s) ds�

Z 1

0

(1� s)gn(s) ds
i
; t 2 J:

We must prove that there exists g� 2 SF;y� such that

h�(t) =

Z t

0

(t� s)g�(s) ds+

Z �

0

g�(s) ds

+
1 + t

1� �

hZ �

0

(� � s)g�(s) ds�

Z 1

0

(1� s)g�(s) ds
i
; t 2 J:

Now, we consider the linear continuous operator

�: L1(J;R) �! C(J;R)

g 7�! �(g)(t) =

Z t

0

(t� s)g(s) ds+

Z �

0

g(s) ds

+
1 + t

1� �

hZ �

0

(� � s)g(s) ds�

Z 1

0

(1� s)g(s) ds
i
; t 2 J:

From Lemma 2.3, it follows that � � SF is a closed graph operator.

Moreover from the de�nition of � we have

hn(t) 2 �(SF;yn):

Since yn �! y�; it follows from Lemma 2.3 that

h�(t) =

Z t

0

(t� s)g�(s) ds+

Z �

0

g�(s) ds

+
1 + t

1� �

hZ �

0

(� � s)g�(s) ds�

Z 1

0

(1� s)g�(s) ds
i
; t 2 J

for some g� 2 SF;y� .
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Step 5. The set


 := f y 2 C(J;R) : �y 2 Ny for some � > 1 g

is bounded.

Let y 2 
. Then �y 2 Ny for some � > 1. Thus there exists g 2 SF;y such
that

y(t) = ��1
Z t

0

(t� s)g(s) ds+ ��1
Z �

0

g(s) ds

+ ��1
1 + t

1� �

hZ �

0

(� � s)g(s) ds�

Z 1

0

(1� s)g(s) ds
i
; t 2 J:

This implies by (H2) that for each t 2 J we have

jy(t)j �

Z t

0

(t�s)H(s) ds+

Z �

0

H(s)ds+
2

1� �

hZ �

0

(��s)H(s) ds+

Z 1

0

(1�s)H(s) ds
i
:

Thus

kyk1 �

Z 1

0

(1� s)H(s) ds+

Z �

0

H(s) ds

+
2

1� �

hZ �

0

(� � s)H(s) ds+

Z 1

0

(1� s)H(s) ds
i
= K:

This shows that 
 is bounded.

Set X := C(J;R). As a consequence of Lemma 2.4 we deduce that N has a
�xed point which is a solution of (1.1){(1.2) on J .
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