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SUFFICIENT CONDITIONS FOR ELLIPTIC PROBLEM OF

OPTIMAL CONTROL IN Rn IN ORLICZ SOBOLEV SPACES

S. Lahrech and A. Addou

Abstract. This paper is concerned with the local minimization problem for a variety of
non Frechet-di�erentiable Gâteaux functional J(f) �

R


v(x; u; f) dx in the Orlicz-Sobolev space

(W 1
0L

�

M (
); k:kM ), where u is the solution of the Dirichlet problem for a linear uniformly el-
liptic operator with nonhomogenous term f and k:kM is the Orlicz norm associated with an
N-function M .

We use a recent extension of Frechet-Di�erentiability (approach of Taylor mappings see [2]),
and we give various assumptions on v to guarantee a critical point is a strict local minimum.

Finally, we give an example of a control problem where classical Frechet di�erentiability
cannot be used and their approach of Taylor mappings works.

1. Preliminaries

1.1. Some de�nitions and well-know facts from Orlicz space. We
begin by listing brie
y some de�nitions and well-known facts from Orlicz space
theory (see [1]).

Let 
 be an open subset of Rn, with Lebesgue measure dx, and let M be an
N-function (i.e. a real-valued continuous, convex, even function of t 2 R satisfying

M(t) > 0 for t > 0, M(t)
t

! 0 as t! 0 and M(t)
t

! +1 as t! +1).

The Orlicz class LM (
) is de�ned as the set of (equivalence classes of) real-
valued measurable functions u on 
 such that

R


M(u(x)) dx < +1, and the Orlicz

space L�M (
) as the linear hull of LM (
).

L�M (
) is a Banach space with respect to the Luxembourg norm:

kuk(M) = inf

�
k > 0 :

Z



M
�u(x)

k

�
dx � 1

�
:

L�M (
) is a Banach space with respect to the Orlicz norm:

kukM = sup

�����Z



u(x)v(x) dx

���� : Z



M(v(x)) dx � 1

�
;

where M is the N-function conjugate to M .
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The Orlicz norm k:kM is equivalent to k:k(M): k:k(M) � k:kM � 2k:k(M).

Let WmL�M (
) be the Orlicz-Sobolev space of functions u such that u and its
distribution derivatives up to order m lie L�M (
).

WmL�M (
) is a Banach space with respect to the norm:

kukm;M =

� P
j�j�m

kD�uk2(M)

� 1
2
:

1.2. Orlicz-Sobolev Spaces. We de�ne a further Orlicz-Sobolev space
Wm

0 L�M (
) to be the closure of C10 (
) in
�
WmL�M (
); �(�LM ;�E �M )

�
.

1.3. Description of the optimization problem. Let A be an elliptic
operator of second order:

Au �
P

jlj�1;jsj�1

(�1)lDl(als(x)D
su);

where als(x) 2 D(
). Suppose that 
 is su�ciently smooth and bounded domain
in Rn.

Let us consider the problem :

Au = f; (1.1)

uj@
 = 0: (1.2)

For this problem, let us state Agmon-Douglis-Niremberg's theorem:

Theorem 1.1. (Agmon-Douglis-Niremberg) Let 1 < q < 1; then we have

that 8f 2 Lq(
), there exists a unique solution u 2 W 2;q(
) \W 1;q
0 (
) of prob-

lem (1.1), (1.2). Moreover, 8m � 0 if f 2 Wm;q(
), then u 2 Wm+2;q(
) and
kukWm+2;q(
) � ckfkWm;q(
).

Let M be an N-function such that jtjp � M(t) for t � t0, where p > n and
t0 > 0. Let f 2 F � W 1

0L
�
M (
) be a control and let u the solution of problem

(1.1), (1.2) in W 1;p
0 (
) \W 2;p(
) associated to f .

Let us consider Jk(f) =
R


vk(x; u; f) dx + ckkfk

2
W 1;2(
), (k = 0; 1; 2; . . . ; s1)

and Jk(f) =
R

 vk(x; u; f) dx, (k = s1 + 1; s1 + 2; . . . ; s1 + s2), where the sequence

of functions vk : 
 �R �R �! R is measurable on 
 �R �R and has second
derivative with respect to (u; f) on R�R for almost all x 2 
.

We consider three problems of minimizing the functional J0(f) :

i) J0(f)! min; (1.3)

ii) J0(f)! min; J(f) = 0; where J = (Js1+1; . . . ; Js1+s2); (1.4)

iii) J0(f)! min; J(f) = 0; Jk(f) � 0; (k = 1; 2; . . . ; s1): (1.5)

We must choose a control f0 in order that the solution u0 of the problem (1.1),
(1.2) with f = f0 satis�es the inequality of the type: Jk(f) � 0; (1 � k � s1) and
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the equality of the type: Jk(f) = 0; (s1+1 � k � s1+ s2) and the functional J0(f)
takes a minimum value. This control f0 will be called optimal.

1.4. Taylor mappings and lower semi-Taylor mappings. Let M be an
N-function, k:kW 1L�

M
(
) the usual norm in W 1

0L
�
M (
), F a subset of W 1

0L
�
M (
),

� a topology in F , Y a normed space, and k:kY a norm in Y . According to
[2], a mapping r : F �! Y (respectively, r : F �! R) is said to be in�nites-
imally (�; k:kW 1L�

M
(
))-small (respectively, in�nitesimally lower (�; k:kW 1L�

M
(
))-

semismall) of order p1 at f 2 F if: 8" > 0, 9 Of 2 � , 8h 2 W 1
0L

�
M (
) we

have
f + h 2 Of ) kr(f + h)kY � "khkp1

W 1L�
M
(
);

(respectively, 8 " > 0, 9 Of 2 � , 8 h 2W 1
0L

�
M (
) we have

f + h 2 Of ) kr(f + h)kY � �"khkp1
W 1L�

M
(
));

here and below, Of is a neighborhood of f in (F; �).

A mapping J : F ! Y (respectively, J : F ! R) is called a (�; k:kW 1L�
M
(
))-

Taylor (respectively, lower (�; k:kW 1L�
M
(
)){semi-Taylor) mappings of order p1

at f 2 F if there exist k linear symmetric (not necessarily continuous) map-
pings J (k)(f) : (W 1

0L
�
M (
))k ! Y (respectively, J (k)(f) : (W 1

0L
�
M (
))k ! R,

k = 1; . . . ; p1, such that

J(f + h)� J(f) =

= J (1)(f)h+ 2�1J (2)(f)(h; h) + � � �+ (p1)!
�1J (p1)(f)(h; . . . ; h) + r(f + h);

where r : F �! Y (respectively, r : F �! R) is an in�nitesimally (�; k:kW 1L�
M
(
)){

small (respectively, in�nitesimally lower (�; k:kW 1L�
M
(
))-semismall) mapping of or-

der p1 at f 2 F .

We note that J (1)(f); . . . ; J (p1)(f) are not in general single-valued. The set of
tuples (J (1)(f); . . . ; J (p1)(f)) is denoted by Sn(J; f).

Let us solve the problems (1.3), (1.4) and (1.5). For the problem (1.5) let us
introduce the Lagrange functions:

L(f; y�; �; �0) =
s1P
k=0

�kJk(f) + hy�; J(f)i; (1.6)

Lf (f; y
�; �; �0) =

s1P
k=0

�kJ
(1)
k (f) + hy�; J (1)(f)i; (1.7)

Lff (f; y
�; �; �0) =

s1P
k=0

�kJ
(2)
k (f) + hy�; J (2)(f)i; (1.8)

where �0 2 R, y� 2 (Rs2)
�
, � 2 (Rs1)

�
.

Also for the problem (1.4), let us introduce the Lagrange functions:

L(f; y�; �0) = �0J0(f) + hy�; J(f)i; (1.9)

Lf (f; y
�; �0) = �0J

(1)
0 (f) + hy�; J (1)(f)i; (1.10)

Lff (f; y
�; �0) = �0J

(2)
0 (f) + hy�; J (2)(f)i; (1.11)

where �0 2 R, y� 2 (Rs2)
�
.
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Let us give the following theorem where the proof can be traced back to [1].

Theorem 1.2. Let M be an N-function, 
 a bounded domain in Rn. Suppose
that u 2 L�M (
) and kukM < 1, then

R


M(u(x)) dx <1:

Let us give also the following lemma where the proof can be traced back to [2].

Lemma 1.1. Let (
;�; �) be a measure space with �-�nite measure, and let X
be a complete linear metric space continuously imbedded in the metric space M(
)
of equivalence classes of measurable almost everywhere �nite functions x : 
 �! R,
with the metrizable topology �(meas) of convergence in measure on each set of �
�nite measure.

Suppose that X contains with each element x(s) the function jx(s)j, the metric
in X is translation-invariant, and �(x; 0) = �(jxj; 0) for each x 2 X. Then for each
sequence xn ! 0 in X there exist a subsequence xnk and an element z 2 X such
that: jxnk (s)j � z(s), k=1,2, . . . in the sense of the natural order on classes of
functions.

Using the same argument as in Lemma 1.1 and the result of Theorem 1.2, we
obtain the following lemma.

Lemma 1.2. Let M be an N-function, 
 a bounded domain in Rn. Then
for each sequence un ! 0 in (L�M (
); k:kM ) there exist a subsequence unk and
an element z 2 L�M (
) such that junk(s)j � z(s), k = 1; 2; . . . , in the sense of the
natural order on classes of functions. Moreover, 2z 2 LM (
) i.e.

R


M(2z(x)) dx <

+1.

Proof. Suppose that un ! 0 in (L�M (
); k:kM ). Then, there exists a subse-
quence unk such that kunkkM � 1

2k
. Let us put Sn(x) =

Pn

k=0 junk(x)j. We show
that the sequence Sn(x) is Cauchy in (L�M (
); k:kM ). Let m > n. Then

kSn(x) � Sm(x)kM =





 mP
k=n+1

junk (x)j






M

� 2
mP

k=n+1

kunk(x)kM � 2
mP

k=n+1

1

2k
:

Since (L�M (
); k:kM ) is complete, S0(x) =
P+1

k=1 junk(x)j 2 L�M (
). Consequently,

there exists k0 2 N such that k
P+1

k=k0
junk(x)jkM < 1

2 .

It can be assumed that Sn(x) ! S0(x) almost everywhere in 
. Let us put

Z(x) =
P+1

k=k0
junk(x)j. Obviously, 8k � k0 junk(x)j � Z(x) almost everywhere in


. Further, kZ(x)kM < 1
2 . By theorem (1.2), it follows that

R


M(2z(x)) dx < +1.

Thus we achieve the proof.

Lemma 1.3. Suppose that 
 is su�ciently smooth and bounded domain in
Rn. Let M be an N-function such that jtjp � M(t) for t � t0, where p > n
and t0 > 0. Then, 9 c > 0 8f 2 W 1

0L
�
M (
) kR(f)kC(�
) � ckfkW 1L�

M
(
) and

kfkC(�
) � ckfkW 1L�
M
(
), where R(f) is the solution of problem (1.1), (1.2) in

W 2;p(
) \W 1;p
0 (
).
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Proof. Let f 2 W 1
0L

�
M (
). Since jtjp � M(t), then f 2 Lp(
). Thus, there

exists a unique solution u 2 W 2;p(
) \W 1;p
0 (
) of problem (1.1), (1.2). Moreover,

kukW 1;p(
) � ckfkLp(
), where c > 0.

On the other hand, W 1;p
0 (
) ,! C(�
). Therefore, u 2 C(�
). Let us put

R(f) = u. So, since W 1;p
0 (
) ,! C(�
), then

kR(f)kC(�
) � c1kR(f)kW 1;p(
) � c2kfkL
p(
) � c3kfkL�

M
(
) � c4kfkW 1L�

M
(
);

where c1; c2; c3; c4 > 0:

On the other hand, we have W 1
0L

�
M (
) ,! W 1;p

0 (
) ,! C(�
). Thus, there
exists c5 > 0 such that kfkC(�
) � c5kfkW 1L�

M
(
).

2. Su�cient conditions of local minimum for Gâteaux functional

of second order Dirichlet problem

Suppose that 
 is su�ciently smooth and bounded domain in Rn. Let F
be a subset of W 1

0L
�
M (
), M an N-function such that jtjp � M(t) for t � t0,

where p > n and t0 > 0. Let G be the functional de�ned on W 1
0L

�
M (
) by:

G(f) =
R

 v(x; u(x); f(x)) dx, where u(x) is the solution of problem (1.1), (1.2) in

W 1;p
0 (
)\W 2;p(
) and the function v : 
�R�R! R is measurable on 
�R�R

and has second derivative with respect to (u; f) on R � R for almost all x 2 
.
Let �M be the topology generated by the Orlicz norm k:kM . Henceforth in this
paragraph a = const.

Theorem 2.1. Suppose that the following condition is added to the conditions

of paragraph (1) and (2): v; v
(2)
uf ; v

(2)
fu are continuous in 
�R�R. Let us suppose

also that

jv(x; u; f)j+ jv(1)u (x; u; f)j+ jv
(1)
f (x; u; f)j � a

�
M(u) +M(f)

�
+ b5(x);

jv(2)uu (x; u; f)j+ 2jv
(2)
uf (x; u; f)j+ jv

(2)
ff (x; u; f)j � a

�
M(u) +M(f)

�
+ b6(x);

where b5 2 L1(
), b6 2 L1(
). Then, G is a (�M ; k:kW 1L�
M
(
))-Taylor map-

ping of �rst and second order at each point f 2 F . Moreover, G(2)(f) 2
B((W 1

0L
�
M (
); k:kW 1L�

M
(
));R), G(1)(f) 2 L((W 1

0L
�
M (
); k:kW 1L�

M
(
));R).

Proof. Let us prove �rst that the functional G is �nite. We have

jG(f)j =

����Z



v(x; u; f) dx

���� � Z



jv(x; u; f)j dx

� a

�Z



M(u(x)) dx+

Z



M(f(x)) dx

�
+

Z



b5(x) dx <1:

Indeed, we have f 2 F � W 1
0L

�
M (
) ,! C(�
). Consequently, f 2 C(�
). On

the other hand, u 2 W 1;p
0 (
) ,! C(�
). Therefore,

R


M(u(x)) dx < 1 andR


M(f(x)) dx <1. Thus, the functional G is �nite.
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Let R : W 1
0L

�
M (
) �! W 1

0L
�
M (
), h 7�! (R(h))(x), where (R(h))(x) is the

solution of problem

Au = h; (2.1)

uj@
 = 0: (2.2)

Such a solution exists 8h 2W 1
0L

�
M (
).

Let G(1)(f) be de�ned by:

G(1)(f)h = lim
�!0

��1
�
G(f + �h)�G(f)

�
= lim

�!0
��1

Z



�
v(x; u+ �R(h); f + �h)� v(x; u; f)

�
dx

= lim
�!0

��1
Z



�
v(x; u+ �R(h); f + �h)�

� v(x; u; f + �h) + v(x; u; f + �h)� v(x; u; f)
�
dx

= lim
�!0

Z



�Z 1

0

v(1)u (x; u+ ��R(h); f + �h)R(h) d�

+

Z 1

0

v
(1)
f (x; u; f + ��h)h d�

�
dx

= lim
�!0

Z



�Z 1

0

�
v(1)u (x; u+ ��R(h); f + �h)� v(1)u (x; u; f)

�
R(h) d�

+

Z 1

0

v(1)u (x; u; f)R(h) d� +

Z 1

0

�
v
(1)
f (x; u; f + ��h)� v

(1)
f (x; u; f)

�
h d�

+ h

Z 1

0

v
(1)
f (x; u; f)d�

�
dx

=

Z



v(1)u (x; u; f)R(h) dx+

Z



hv
(1)
f (x; u; f) dx:

Then

G(1)(f) =

Z



v(1)u (x; u; f)R(h) dx+

Z



v
(1)
f (x; u; f)h dx:

Let G(2)(f) be de�ned by:

G(2)(f)(h1; h2) = lim
�!0

��1
�
G(1)(f + �h2)�G(1)(f)

�
h1

= lim
�!0

��1
�Z




�
v(1)u (x; u+ �R(h2); f + �h2)� v(1)u (x; u; f)

�
R(h1) dx

+

Z



�
v
(1)
f (x; u+ �R(h2); f + �h2)� v

(1)
f (x; u; f)

�
h1 dx

�
= lim

�!0
��1

�Z



�
v(1)u (x; u+ �R(h2); f + �h2)� v(1)u (x; u; f + �h2)

+ v(1)u (x; u; f + �h2)� v(1)u (x; u; f)
�
R(h1) dx
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+

Z



�
v
(1)
f (x; u+ �R(h2); f + �h2)� v

(1)
f (x; u; f + �h2)

+ v
(1)
f (x; u; f + �h2)� v

(1)
f (x; u; f)

�
h1dx

�
= lim

�!0
��1

�Z



�Z 1

0

v(2)uu (x; u+ ��R(h2); f + �h2)�R(h2) d�

+

Z 1

0

v
(2)
fu (x; u; f + ��h2)�h2 d�

�
R(h1) dx

+

Z



�Z 1

0

v
(2)
uf (x; u+ ��R(h2); f + �h2)�R(h2) d�

+

Z 1

0

v
(2)
ff (x; u; f + ��h2)�h2 d�

�
h1 dx

�
=

Z



v(2)uu (x; u; f)R(h1)R(h2) dx +

Z



v
(2)
uf (x; u; f)R(h1)h2 dx

+

Z



v
(2)
fu (x; u; f)h1R(h2) dx+

Z



v
(2)
ff (x; u; f)h1h2 dx:

The linearity and bilinearity of G(1)(f) and G(2)(f) are obvious.

Let us prove now that they are bounded.

jG(1)(f)hj �

Z



jv(1)u (x; u; f)jjR(h)j dx+

Z



jv
(1)
f (x; u; f)jjhj dx

�

Z



�
a
�
M(u) +M(f)

�
+ jb5(x)j

��
jR(h)j+ jh)j

�
dx

�

Z



�
a
�
M(u) +M(f)

�
+ jb5(x)j

��
max
x2�


j[R(h)](x)j +max
x2�


jh(x)j
�
dx

=

Z



�
a
�
M(u) +M(f)

�
+ jb5(x)j

��
kR(h)kC(�
) + khkC(�
)

�
dx

� c2khkW1L
�

M
(
);

where c2 > 0. For the last inequality, see Lemma 1.3. Consequently, G(1)(f) 2
L((W 1

0L
�
M (
); k:kW 1L�

M
(
));R).

Let us prove now that G(2)(f) is also bounded. We have

jG(2)(f)(h1; h2)j �

Z



�
a
�
M(u) +M(f)

�
+ jb6(x)j

�
�

�
�
jR(h1)jjR(h2)j+ jR(h1)jjh2j+ jh1jjR(h2)j+ jh1jjh2j

�
dx

�
�
a
�
M(u) +M(f)

�
+ kb6(x)kL1(
)

�
�

�
�
max
x2�


j[R(h1)](x)jmax
x2�


j[R(h2)](x)j +max
x2�


j[R(h1)](x)jmax
x2�


jh2(x)j

+max
x2�


jh1(x)jmax
x2�


j[R(h2)](x)j +max
x2�


jh1(x)jmax
x2�


jh2(x)j
�
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� c3
�
kR(h1)kC(�
)kR(h2)kC(�
) + kR(h1)kC(�
)kh2kC(�
)

+ kh1kC(�
)kR(h2)kC(�
) + kh1kC(�
)kh2kC(�
)
�

� c4kh1kW 1L�
M
(
)kh2kW 1L�

M
(
):

For the last inequality see Lemma 1.3. Thus,

G(2)(f) 2 B((W 1
0L

�
M (
); k:kW 1L�

M
(
));R):

Let us prove now that G is a (�M ; k:kW 1L�
M
(
))-mapping. Let f 2 F . We show

that the mapping

r(h) � G(f + h)�G(f)�G(1)(f)h� 2�1G(2)(f)(h; h)

is (�M ; k:kW 1L�
M
(
))-of second order at zero.

Assume that this is not so. Then there exist a sequence ~hm 2 F and a number
" > 0 such that ~hm ! 0 in L�M (
), but

jr(~hm)j � "k~hmk
2
W 1L�

M
(
):

On the other hand, using the fact that W 1;p
0 (
) ,! C(�
) and the regularity of

solution of the problem (1.1), (1.2), we obtain R(~hm)! 0 in (L�M (
); k:kM ). Using

Lemma (1.2), we deduce that 9~z 2 L�M (
) 8m j(R(~hm))(x)j � ~z(x), where 2~z 2
LM (
).

Analogously, for ~hm 2 W 1
0L

�
M (
), we obtain j~hm(x)j � ~z1(x), where 2 ~z1 2

LM (
). We have

r(h) =

Z



�
v(x; u+R(h); f + h)� v(x; u; f)� v(1)u (x; u; f)R(h)� v

(1)
f (x; u; f)h

� 2�1
�
v(2)uu (x; u; f)R

2(h) + 2v
(2)
uf (x; u; f)R(h)h+ v

(2)
ff (x; u; f)h

2
��
dx

=

Z



Z 1

0

�
v(1)u (x; u+ �R(h); f + h)R(h)� v(1)u (x; u; f)R(h)

� 2�1v(2)uu (x; u; f)R
2(h)

�
d� dx+

Z



Z 1

0

�
v
(1)
f (x; u; f + �h)h� v

(1)
f (x; u; f)h

� 2�1v
(2)
ff (x; u; f)h

2
�
d� dx �

Z



Z 1

0

v
(2)
uf (x; u; f)R(h)h d� dx

+

Z



Z 1

0

Z 1

0

v
(2)
uf (x; u+ �R(h); f + �h)hR(h) d� d�dx

=

Z



Z 1

0

�
v(1)u (x; u+ �R(h); f)� v(1)u (x; u; f)� �v(2)uu (x; u; f)R(h)

�
R(h) d�dx

+

Z



Z 1

0

�
v
(1)
f (x; u; f + �h)� v

(1)
f (x; u; f)� �v

(2)
ff (x; u; f)h

�
h d� dx

�

Z



Z 1

0

v
(2)
uf (x; u; f)R(h)h d� dx
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+

Z



Z 1

0

Z 1

0

v
(2)
uf (x; u+ �R(h); f + �h)hR(h) d� d� dx:

Let Am, Bm be two functions de�ned by:

Am(x; �) =

(
v(1)u (x;u+�R(~hm);f)�v(1)u (x;u;f)

R(~hm)
� �v

(2)
uu (x; u; f); if R(~hm) 6= 0;

0; if R(~hm) = 0;

Bm(x; �) =

8<:
v
(1)
f

(x;u;f+�~hm)�v
(1)
f

(x;u;f)

~hm
� �v

(2)
ff (x; u; f); if ~hm 6= 0;

0; if ~hm = 0:

Let Fm be de�ned by: Fm(x; �; �) = v
(2)
uf (x; u(x)+�R(

~hm); f+�~hm)�v
(2)
uf (x; u(x); f).

Then

jr(~hm)j =

����Z



Z 1

0

Am(x; �)R
2(~hm) d� dx+

Z



Z 1

0

Bm(x; �)~h
2
m d� dx

+

Z



Z 1

0

Z 1

0

Fm(x; �; �)R(~hm)~hm d� d� dx

����:
Thus

jr( ~hm)j �

Z 1

0

Z



jAm(x; �)j dx d�max
x2�


j[R(~hm)](x)j
2

+

Z 1

0

Z



jBm(x; �)j dx d�max
x2�


j~hmj
2

+

Z 1

0

Z 1

0

Z



jFm(x; �; �)j dx d� d�max
x2�


j[R(~hm)](x)jmax
x2�


j~hmj

� c5

�Z 1

0

Z



jAm(x; �)j dx d� +

Z 1

0

Z



jBm(x; �)j dx d�

+

Z 1

0

Z 1

0

Z



jFm(x; �; �)j dx d� d�

�
k~hm)k

2
W 1L�

M
(
): (2.3)

On the other hand, 9km(x) such that 0 � km(x) � 1 and

jAm(x; �)j � jv(2)uu (x; u(x) + km(x)�[R( ~hm)](x); f)j + jv(2)uu (x; u(x); f)j:

So, we obtain

jAm(x; �)j � a
�
M(u(x) + km(x)�[R( ~hm)](x)) +M(f)

�
+ jb6(x)j

+ a
�
M(u) +M(f)

�
+ jb6(x)j

� a

�
1

2
M(2~z(x))j + 2M(f) +M(u(x)) +

1

2
M(2u(x)))

�
+ 2jb6(x)j 2 L1(
):

Analogously, 9Sm(x) such that 0 � Sm(x) � 1 and

jBm(x; �)j � jv
(2)
ff (x; u(x); �Sm(x)

~hm(x) + f)j+ jv
(2)
ff (x; u(x); f)j:
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So, we obtain

jBm(x; �)j � a
�
M(u(x)) +M(�Sm(x)~hm(x) + f)

�
+ jb6(x)j

+ a
�
M(u(x)) +M(f(x))

�
+ jb6(x)j

� a

�
2M(u) +

1

2
M(2~z1(x)) +

1

2
M(2f(x)) +M(f)

�
+ 2jb6(x)j 2 L1(
):

Analogously for Fm, we obtain

jFm(x; �; �)j � jv
(2)
uf (x; u(x); f)j+ jv

(2)
uf (x; u(x) + �R(~hm); f + �~hm)j

� a

�
1

2
M(2~z(x)) +

1

2
M(2~z1(x))

1

2
M(2u) +

1

2
M(2f)

�
+ 2jb6(x)j

+ a
�
M(u) +M(f)

�
2 L1(
):

Let us remark that Am(x; �) ! 0, Bm(x; �) ! 0, Fm(x; �; �) ! 0 almost every-
where. Thus Z 1

0

Z



jAm(x; �)j dx d� ! 0 as m! +1;Z 1

0

Z



jBm(x; �)j dx d� ! 0 as m! +1;Z 1

0

Z 1

0

Z



jFm(x; �; �)j dx d� d� ! 0 as m! +1;

but this contradicts (2.3).

Now let us prove that the functional G is a (�M ; k:kW 1L�
M
(
))-Taylor mapping

of �rst order at each point f 2 F . We must estimate

r(h) � G(f + h)�G(f)�G(1)(f)h:

Assume that ~hm ! 0 in L�M (
), and jr(~hm)j � "k~hmkW 1L�
M
(
). Thus R(~hm) ! 0

in (L�M (
); k:kM ) as m ! +1. Using Lemma (1.2), we deduce that there exists

~z 2 L�M (
) and there exists ~z1 2 L�M (
) such that 8m 2 N j[R(~hm)](x)j � ~z(x) and

j~hm(x)j � ~z1(x) almost everywhere in 
. Moreover, 2~z 2 LM (
) and 2 ~z1 2 LM (
).

On the other hand, we have

jr(~hm)j =

����Z



�
v(x; u(x) + [R(~hm)](x); f(x) + ~hm(x)) � v(x; u(x); f(x))

� v(1)u (x; u(x); f(x))R(~hm)� v
(1)
f (x; u(x); f(x))~hm

�
dx

����
�

����Z



�
v(x; u(x) +R(~hm); f(x) + ~hm)� v(x; u(x); f(x) + ~hm)

� v(1)u (x; u(x); f(x))R(~hm) + v(x; u(x); f(x) + ~hm)
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� v(x; u(x); f(x)) � v
(1)
f (x; u(x); f(x))~hm

�
dx

����
=

����Z



Am(x)R(~hm) dx

����+ ����Z



Bm(x)~hmdx

����;
where

Am(x) =

(
v(x;u+R(~hm);f+~hm)�v(x;u;f+~hm)

R(~hm)
� v

(1)
u (x; u; f); if R(~hm) 6= 0;

0; if R(~hm) = 0;

Bm(x) =

(
v(x;u;f+~hm)�v(x;u;f)

~hm
� v

(1)
f (x; u; f); if ~hm 6= 0;

0; if ~hm = 0:

Consequently,

jr(~hm)j �

Z



jAm(x)j dx max
x2�


��[R(~hm)](x)�� + Z



jBm(x)jdx max
x2�


��~hm(x)��
� c6

�Z



jAm(x)j dx +

Z



jBm(x)j dx

�
k~hmkW 1LM (
): (2.4)

Let us remark that Am(x)! 0, Bm(x)! 0 almost everywhere in 
.

Using the mean value theorem, we obtain

jAm(x)j � a
�
M(u+R(~hm)) +M(f(x) + ~hm(x))

�
+ jbb3(x)j

+ a
�
M(u(x)) +M(f(x))

�
+ jbb3(x)j

� a

�
1

2
M(2 ~Z(x)) +

1

2
M(2 ~Z1(x))

�
+ 2jbb3(x)j

+ a

�
1

2
M(2u(x)) +

1

2
M(2f(x))

�
+ a

�
M(u(x)) +M(f(x))

�
2 L1(
):

Using the same reasons, we obtain

jBm(x)j � a
�
M(u(x)) +M(f(x) + ~hm(x))

�
+ jbb3(x)j

+ a
�
M(u(x)) +M(f(x))

�
+ jbb3(x)j

� a

�
2M(u(x)) +

1

2
M(2~z1(x)) +

1

2
M(2f(x))

�
+ aM(f(x)) + 2jbb3(x)j 2 L1(
):

By the Lebesgue dominated convergence theorem, we conclude thatZ



jAm(x)j dx ! 0 as m! +1

and Z



jBm(x)j dx ! 0 as m! +1;

but this contradicts (2.4).
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Now let us give the su�cient conditions of optimality for the problem (1.3),
(1.4) and (1.5).

Theorem 2.2 Suppose that, in problem (1.4), vk satis�es the conditions of
Theorem 2.1, then the functionals

Jk(f) �

Z



vk(x; u; f) dx; (k = s1 + 1; . . . ; s1 + s2)

are (�M ; k:kW 1L�
M
(
))-Taylor mappings of �rst and second order at each point

f 2 F and Jk(f) =
R

 vk(x; u; f) dx + ckkfk

2
W 1;2(
), (k = 0; . . . ; s1) are lower

(�M ; k:kW 1L�
M
(
))-semi-Taylor mappings of �rst and second order at each point

f 2 F . Consequently, 9J
(1)
k (f) and 9J

(2)
k (f), (k = 0; . . . ; s1 + s2).

Let us suppose also that, J( bf) = 0, J (1)( bf) is an open mapping of

(W 1
0L

�
M (
); k:kW 1L�

M
(
))

onto Rs2 , 9 by� 2 (Rs2)
�
, 9� > 0: Lf ( bf; by�; 1) = 0, and 8h 2 kerJ (1)( bf)

Lff ( bf; by�; 1)(h; h) � 2�khk2
W 1L�

M
(
), where Lf (

bf; by�; 1) and Lff ( bf; by�; 1) are given

by formulas (1.10), (1.11). Then bf is a strict �M -local minimum point.

Proof. All conditions of Theorem 1.5 in [2] are satis�ed. Thus bf is a strict
�M -minimum point.

Theorem 2.3. Suppose that, in problem (1.5), vk satis�es the conditions of
Theorem 2.1, then the functionals

Jk(f) �

Z



vk(x; u; f) dx; (k = s1 + 1; . . . ; s1 + s2)

are (�M ; k:kW 1L�
M
(
))-Taylor mappings of �rst and second order at each point

f 2 F and Jk(f) =
R

 vk(x; u; f) dx + ckkfk

2
W 1;2(
), (k = 0; . . . ; s1) are lower

(�M ; k:kW 1L�
M
(
))-semi-Taylor mappings of �rst and second order at each point

f 2 F . Consequently, 9J
(1)
k (f) and 9J

(2)
k (f), (k = 0; . . . ; s1 + s2).

Let us suppose also that, bf 2 F , J( bf) = 0, Jk( bf) = 0, (k = 0; . . . ; s1). Let

us put L = fh 2 W 1
0L

�
M (
)=J

(1)
k ( bf)h = 0, k = 1; . . . ; s1, J

(1)( bf)h = 0g. Suppose

that J (1)( bf) is an open map from (W 1
0L

�
M (
); k:kW 1L�

M
(
)) onto R

s2 , 9b� 2 (Rs1)�,

9by� 2 (Rs2)�, 9
 � 0, 9b�k > 0, (k = 1; . . . ; s1): Lf ( bf; by�; b�; 1) = 0 and 8h 2 L

Lff ( bf; by�; b�; 1)(h; h) � 2
khk2
W 1L�

M
(
), where Lf ( bf; by�; b�; 1) and Lff ( bf; by�; b�; 1)

are de�ned by formulas (1.7) and (1.8). Then bf is a strict �M -local minimum
point.

Proof. All conditions of Theorem 1.6 in [2] are satis�ed. Thus bf is a strict
�M -local minimum point.
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Theorem 2.4. Suppose that, in problem (1.3), vk satis�es the conditions of
Theorem 2.1, then the functionals

Jk(f) �

Z



vk(x; u; f) dx; (k = s1 + 1; . . . ; s1 + s2)

are (�M ; k:kW 1L�
M
(
))-Taylor mappings of �rst and second order at each point

f 2 F and Jk(f) =
R

 vk(x; u; f) dx + ckkfk

2
W 1;2(
), (k = 0; . . . ; s1) are lower

(�M ; k:kW 1L�
M
(
))-semi-Taylor mappings of �rst and second order at each point

f 2 F . Consequently, 9J
(1)
k (f) and 9J

(2)
k (f), (k = 0; . . . ; s1 + s2).

Let us suppose also that, J
(1)
0 ( bf) = 0 and 9� > 0 8h 2 W 1

0L
�
M (
):

J
(2)
0 ( bf)(h; h) � 2�khk2

W 1L�
M
(
). Then bf is a strict �M -local minimum point.

Proof. All conditions of Theorem 1.4 in [2] are satis�ed. Thus bf is a strict
�M -local minimum point.

Remark. Let us remark that, in Theorem 2.1, the increasing conditions sat-
is�ed by v are not su�cient to certify the Frechet-di�erentiability of functional
G : (W 1

0L
�
M (
); k:kM )! R.

Indeed, let us de�ne v : 
 �R �R ! R by: v(x; u; f) =
�
chjuj � juj � 1

�
+�

chjf j � jf j � 1
�
, and put b0(x) � 0. Let us suppose that a = 1. Let us put

M(t) = ejtj � jtj � 1, and let dm ! +1. Let ~f 2 W 1
0L

�
M (
). By the countable

additivity of Lebesgue measure,

9c > 0 9
0 � 
; �(
0) > 0; �(
0; @
) > 0;

and 8x 2 
0 j ~f(x)j � c. Let 
m � 
0 such that �(
m) = (edm � dm � 1)�1. Put
D � maxfjv(x; u; f)j : juj � c; jf j � c; x 2 
g <1.

Let ~hm be de�ned by:

~hm(x) =

�
(dm)

1
2 � ~f(x); if x 2 
m;

0; if x 2 
 n
m:

Then k~hm(x)k(M) ! 0, but jG( ~f(x) + ~hm(x)) � G( ~f (x))j �
�
chjdmj � jdmj �

1
�
�(
m)�D�(
m)!

1
2 . ThusG is not Frechet-di�erentiable in (W 1

0L
�
M (
); k:kM ).
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