
MATEMATIQKI VESNIK

53 (2001), 21{27
UDK 514.752.2

originalni nauqni rad

research paper

SOME CHARACTERIZATIONS OF THE LORENTZIAN

SPHERICAL TIMELIKE AND NULL CURVES

Miroslava Petrovi�c-Torga�sev and Emilija �Su�curovi�c

Abstract. In [5] and [6] the authors have characterized the Lorentzian spherical spacelike
curves in the Minkowski 3-space E3

1
. In this paper, we shall characterize the Lorentzian spherical

timelike and null curves in the same space.

1. Introduction

In the Euclidean space E3 a spherical unit speed curves and their characteriza-
tions are given in [3], [9] and [10]. In [5] and [6] the authors have characterized the
Lorentzian spherical spacelike curves in the Minkowski 3-space E3

1 . In this paper,
we shall characterize the Lorentzian spherical timelike and null curves in the same
space.

2. Preliminaries

The Minkowski 3-space E3
1 is the Euclidean 3-space E3 provided with the

Lorentzian inner product

g(a; b) = �a1b1 + a2b2 + a3b3;

where a = (a1; a2; a3) and b = (b1; b2; b3).

An arbitrary vector a = (a1; a2; a3) in E3
1 can have one of three Lorentzian

causal characters: it is spacelike if g(a; a) > 0 or a = 0, timelike if g(a; a) < 0 and
null (lightlike) if g(a; a) = 0 and a 6= 0. Similarly, an arbitrary curve � = �(s) in
E3
1 is locally spacelike, timelike or null (lightlike), if all of its velocity vectors �0(s)

are respectively spacelike, timelike or null, for each s 2 I � R. Recall that the
pseudo-norm of an arbitrary vector a 2 E3

1 is given by

k a k =
p
j g(a; a) j;
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22 Characterizations of the Lorentzian curves

and that the velocity v of the curve � is given by v = k�0(s)k. Therefore, � is a
unit speed curve if and only if g(�0(s); �0(s)) = �1.

The Lorentzian sphere of center m = (m1;m2;m3) and radius r 2 R+ in the
space E3

1 is de�ned by

S21 = fa = (a1; a2; a3) 2 E3
1 j g(a�m; a�m) = r2g:

The vectors a; b 2 E3
1 are orthogonal if and only if g(a; b) = 0.

Denote by fT (s); N(s); B(s)g the moving Frenet frame along the curve � =
�(s) parameterized by a pseudo-arclength parameter s, i.e. g(�0(s); �0(s)) = �1.
In particular, null curve �(s) in E3

1 is parameterized by a pseudo-arclength s if
g(�00(s); �00(s)) = 1. Let T (s) = �0(s), N(s) = � 00(s)=k� 00(s)k and B(s) be the
tangent, the principal normal and the binormal vector of the curve �(s) respectively.
If � is a timelike curve, i.e. if T is a timelike vector, then the Frenet formulae read:

T 0 = �N; N 0 = �T + �B; B0 = ��N;

g(T; T ) = �1; g(N;N) = g(B;B) = 1; g(T;N) = g(T;B) = g(N;B) = 0:

On the other hand, if � is a null curve, i.e. if T is a null vector, then the Frenet
formulae read:

T 0 = �N; N 0 = �T � �B; B0 = ��N;

g(T; T ) = g(B;B) = 0; g(N;N) = 1; g(T;N) = g(N;B) = 0; g(T;B) = 1

where � takes only two values: � = 0 when � is a straight null line or � = 1 in all
other cases. The functions � = �(s) and � = �(s) are called the curvature and the
torsion of � respectively [8].

3. The Lorentzian spherical timelike curves

Theorem 3.1. Let �(s) be a plane unit speed timelike curve with a curvature
� = �(s). Then � lies on the Lorentzian sphere of center m and radius r 2 R+ in
E3
1 if and only if � = constant 6= 0 and

��m = (1=�)N �
p
r2 � (1=�)2B:

Proof. Let us �rst suppose that � lies on the Lorentzian sphere of centerm and
radius r 2 R+. Then g(��m;��m) = r2, for each s 2 I � R. By di�erentiation
with respect to s of the previous relation, we �nd that

g(T; ��m) = 0: (3.1)

Further, the di�erentiation with respect to s of (3.1) gives

g(T 0; ��m) + g(T; T ) = 0;

� g(N;��m) = 1;

where we have used the corresponding Frenet formula. It follows that � 6= 0 for
each s 2 I � R and that

g(N;��m) = 1=�: (3.2)
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Next, decompose the vector ��m as

��m = aT + bN + cB; (3.3)

where a = a(s), b = b(s) and c = c(s) are arbitrary functions. Then the relations
(3.1) and (3.2) imply that

g(T; ��m) = �a = 0; g(N;��m) = b = 1=�; g(B;��m) = c:

Further, the di�erentiation of (3.2) with respect to s gives

g(N 0; ��m) + g(N;�0) = (1=�)0:

By assumption � is a plane curve. Hence � = 0 and using the corresponding
Frenet formula we get that �g(T; ��m) = (1=�)0. Then the relation (3.1) implies
(1=�)0 = 0 and thus 1=� = constant 2 R, i.e. � = constant 2 R. Since � 6= 0 for
each s, it follows that � = constant 6= 0. Further, the substitution of the coe�cients
a, b and c in (3.3) gives

��m = (1=�)N + cB:

Now it is easy to see that g(� �m;� �m) = (1=�)2 + c2 = r2, so it follows that

c = �
p
r2 � (1=�)2. Consequently,

��m = (1=�)N �
p
r2 � (1=�)2B:

Conversely, if � = constant 6= 0 and

��m = (1=�)N �
p
r2 � (1=�)2B;

m 2 E3
1 is an arbitrary vector and r 2 R+, we shall prove that m = constant. Since

m = �� (1=�)N �
p
r2 � (1=�)2B;

by di�erentiation with respect to s of the previous equation and using the corre-
sponding Frenet formulae we get m0 = 0. It follows that m = constant and that
g(��m;��m) = r2. Therefore, � lies on the Lorentzian sphere of center m and
radius r.

Remark. In [8] a classi�cation of all W -curves (i.e. a curves for which a
curvature and a torsion are constants) in space E3

1 is given. Since � is a curve with
� = constant 6= 0 and � = 0, by that classi�cation it is a part of an orthogonal
hyperbola.

Theorem 3.2. Let �(s) be a unit speed timelike curve in E3
1 with a curvature

�(s) 6= 0 and a torsion �(s) 6= 0 for each s 2 I � R. Then � lies on the Lorentzian
sphere of radius r 2 R+ if and only if

(1=�)2 + ((1=�)(1=�)0)2 = r2:

Proof. Let us �rst suppose that � lies on the Lorentzian sphere of center m
and radius r. Then g(� �m;� �m) = r2. By three di�erentiations with respect
to s of the previous equation and using the corresponding Frenet formulae, we get

g(B;��m) = (1=�)(1=�)0:
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Next, decompose the vector ��m as

��m = aT + bN + cB; (3.4)

where a = a(s), b = b(s) and c = c(s) are arbitrary functions. Then

g(T; ��m) = �a = 0; g(N;��m) = b = 1=�; g(B;��m) = c = (1=�)(1=�)0:

Therefore, substitution of the coe�cients a, b and c in (3.4) gives

��m = (1=�)N + (1=�)(1=�)0B:

Thus
g(��m;��m) = r2 = (1=�)2 + ((1=�)(1=�)0)2:

Conversely, if
(1=�)2 + ((1=�)(1=�)0)2 = r2; (3.5)

where r 2 R+, we may consider the vector m 2 E3
1 of the form

m = �� (1=�)N � (1=�)(1=�)0B: (3.6)

We shall prove that m = constant. By di�erentiation with respect to s of the
previous equation, we have that

m0 = T � (1=�)0N � (1=�)(�T + �B) � ((1=�)(1=�)0)0B + (1=�)(1=�)0(�N)

= (��=�� ((1=�)(1=�)0)0)B:
(3.7)

By di�erentiation with respect to s of the assumption (3.5), we have

(2=�)(1=�)0 + (2=�)(1=�)0((1=�)(1=�)0)0 = 0

and thus
(�=�) + ((1=�)(1=�)0)0 = 0: (3.8)

Substituting the last relation in (3.7), we �nd that m0 = 0 for each s 2 I � R and
thus m = constant. The relation (3.6) implies that

g(��m;��m) = (1=�)2 + ((1=�)(1=�)0)2 = r2:

Hence � lies on the Lorentzian sphere of center m and radius r.

Theorem 3.3. Let �(s) be a unit speed timelike curve, with a curvature �(s) 6=
0 and a torsion �(s) 6= 0 for each s 2 I � R. Then � lies on a Lorentzian sphere
in E3

1 if and only if

(�=�) = �((1=�)(1=�)0)0:

Proof. Let us �rst assume that � is a curve lying on the Lorentzian sphere of
radius r 2 R+. Then by the Theorem 3.2 it follows that the relation (3.5) holds,
so di�erentiation with respect s of the relation (3.5) implies the relation (3.8).
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Conversely, suppose that the equation (3.8) holds for each s 2 I � R. Since
(3.8) is the di�erential of the equation

(1=�)2 + ((1=�)(1=�)0)2 = c = constant > 0;

we may take c = r2, r 2 R+. Finally, by Theorem 3.2 it follows that image of the
curve � lies on a Lorentzian sphere of radius r.

Theorem 3.4. A unit speed timelike curve �(s) with �(s) 6= 0 and �(s) 6= 0
for each s 2 I � R lies on a Lorentzian sphere in E3

1 if and only if �(s) > 0 and
there is a di�erentiable function f(s) such that f� = (1=�)0 and f 0 + �=� = 0.

Proof. Let us �rst assume that �(s) is a curve lying on the Lorentzian sphere.
Then by the Theorem 3.3 we have that �=� = �((1=�)(1=�)0)0. Next, de�ne the
di�erentiable function f = f(s) by

f = (1=�)(1=�)0:

Consequently, f 0 = ��=�. Since �(s) = kT 0k � 0 and �(s) 6= 0 for each s 2 I � R,
it follows that �(s) > 0.

Conversely, assume that � is a curve for which � > 0 for each s 2 I � R
and that there is a di�erentiable function f(s) such that f� = (1=�)0 and
f 0 = ��=�. Next, since f = (1=�)(1=�)0, we have that

((1=�)(1=�)0)0 = ��=�:

Hence by the Theorem 3.3 it follows that � lies on a Lorentzian sphere.

Theorem 3.5. A unit speed timelike curve �(s) with �(s) 6= 0 and �(s) 6= 0
lies on a Lorentzian sphere in E3

1 if and only if there are constants A;B 2 R such
that the equation

�
�
A cos

� Z s

0

�(s) ds
�
+ B sin

� Z s

0

�(s) ds
��

= 1:

holds for each s 2 I � R.

Proof. Let us �rst suppose that �(s) is a curve lying on a Lorentzian
sphere. Then by the Theorem 3.4 there is a di�erentiable function f(s) such that
f� = (1=�)0 and f 0 = ��=�. Next, de�ne the C2 function �(s) and the C1 functions
g(s) and h(s) by �(s) =

R
s

0
�(s) ds,

g(s) = (1=�) cos � � f(s) sin �; h(s) = (1=�) sin � + f(s) cos �: (3.9)

Di�erentiation with respect to s of the functions �, g and h easily gives �0(s) = �(s),
g0(s) = h0(s) = 0 and therefore g(s) = A, h(s) = B, so the relation (3.9) becomes

(1=�) cos � � f(s) sin � = A; (1=�) sin � + f(s) cos � = B:

Multiplying the �rst of the previous equations with cos � and the second with sin �
and adding, we �nd that 1=� = A cos � +B sin �. Thus the equation

�
�
A cos

� Z s

0

�(s) ds
�
+ B sin

� Z s

0

�(s) ds
��

= 1;

is satis�ed.
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Conversely, let A and B be the real constants, such that the equation

�
�
A cos

� Z s

0

�(s) ds
�
+B sin

� Z s

0

�(s) ds
��

= 1 (3.10)

holds for each s 2 I � R. Then obviously �(s) 6= 0 and therefore �(s) = kT 0k > 0
for each s. The di�erentiation with respect to s of the relation (3.10) gives

�
�
�A sin

� Z s

0

�(s) ds
�
+B cos

� Z s

0

�(s) ds
��

= (1=�)0: (3.11)

Next, de�ne the di�erentiable function f(s) by

f(s) = �A sin
� Z s

0

�(s) ds
�
+B cos

� Z s

0

�(s) ds
�
: (3.12)

Then the relations (3.11) and (3.12) give (1=�)0 = �f , that is f = (1=�)(1=�)0. By
di�erentiation with respect to s of (3.12) and using (3.10), we �nd that

f 0 = ��
�
A cos

� Z s

0

�(s) ds
�
+B sin

� Z s

0

�(s) ds
��

= ��=�:

Therefore, by the Theorem 3.4 it follows that �(s) lies on a Lorentizan sphere.

4. The Lorentzian spherical null curves

Theorem 4.1. There are no null curves �(s) lying on the Lorentzian sphere
in E3

1 .

Proof. Assume that �(s) is a null curve lying on the Lorentzian sphere of
center m 2 E3

1 and radius r 2 R+. Then we have

g(��m;��m) = r2; (4.1)

for each s 2 I � R. If � is a straight null line with the equation �(s) = p + sq,
p; q 2 E3

1 , then by di�erentiation with respect to s of the relation (4.1) we get
g(p + sq � m; q) = 0 and therefore g(q; p) = g(q;m) = constant. It follows that
p = m and consequently � �m = sq. But then g(� �m;� �m) = 0, which is a
contradiction. On the other hand, if � is not a straight null line, by di�erentiation
with respect to s of the relation (4.1), we �nd that

g(T; ��m) = 0: (4.2)

By di�erentiation with respect to s of the relation (4.2), we get

g(T 0; ��m) + g(T; T ) = 0; �g(N;��m) = 0;

and since in this case we have � = 1 for each s 2 I � R, it follows that

g(N;��m) = 0: (4.3)
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By di�erentiation of (4.3) and using the corresponding Frenet formula, we �nd that

�g(T; ��m)� �g(B;��m) = 0;

which together with the relation (4.2) gives ��g(B;��m) = 0, and consequently

g(B;��m) = 0: (4.4)

Next, decompose the vector ��m as

��m = aT + bN + cB; (4.5)

where a = a(s), b = b(s) and c = c(s) are arbitrary functions. Then by the relations
(4.2), (4.3) and (4.4), we have that

g(T; ��m) = c = 0; g(N;��m) = b = 0; g(B;��m) = a = 0:

Therefore, the equation (4.5) implies that � = m, which is a contradiction.
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