SOME CHARACTERIZATIONS OF THE LORENTZIAN SPHERICAL TIMELIKE AND NULL CURVES

Miroslava Petrović-Torgašev and Emilija Šućurović

Abstract

In [5] and [6] the authors have characterized the Lorentzian spherical spacelike curves in the Minkowski 3-space E_{1}^{3}. In this paper, we shall characterize the Lorentzian spherical timelike and null curves in the same space.

1. Introduction

In the Euclidean space E^{3} a spherical unit speed curves and their characterizations are given in [3], [9] and [10]. In [5] and [6] the authors have characterized the Lorentzian spherical spacelike curves in the Minkowski 3 -space E_{1}^{3}. In this paper, we shall characterize the Lorentzian spherical timelike and null curves in the same space.

2. Preliminaries

The Minkowski 3 -space E_{1}^{3} is the Euclidean 3 -space E^{3} provided with the Lorentzian inner product

$$
g(a, b)=-a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

where $a=\left(a_{1}, a_{2}, a_{3}\right)$ and $b=\left(b_{1}, b_{2}, b_{3}\right)$.
An arbitrary vector $a=\left(a_{1}, a_{2}, a_{3}\right)$ in E_{1}^{3} can have one of three Lorentzian causal characters: it is spacelike if $g(a, a)>0$ or $a=0$, timelike if $g(a, a)<0$ and null (lightlike) if $g(a, a)=0$ and $a \neq 0$. Similarly, an arbitrary curve $\alpha=\alpha(s)$ in E_{1}^{3} is locally spacelike, timelike or null (lightlike), if all of its velocity vectors $\alpha^{\prime}(s)$ are respectively spacelike, timelike or null, for each $s \in I \subset R$. Recall that the pseudo-norm of an arbitrary vector $a \in E_{1}^{3}$ is given by

$$
\|a\|=\sqrt{|g(a, a)|}
$$

[^0]and that the velocity v of the curve α is given by $v=\left\|\alpha^{\prime}(s)\right\|$. Therefore, α is a unit speed curve if and only if $g\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right)= \pm 1$.

The Lorentzian sphere of center $m=\left(m_{1}, m_{2}, m_{3}\right)$ and radius $r \in R^{+}$in the space E_{1}^{3} is defined by

$$
S_{1}^{2}=\left\{a=\left(a_{1}, a_{2}, a_{3}\right) \in E_{1}^{3} \mid g(a-m, a-m)=r^{2}\right\}
$$

The vectors $a, b \in E_{1}^{3}$ are orthogonal if and only if $g(a, b)=0$.
Denote by $\{T(s), N(s), B(s)\}$ the moving Frenet frame along the curve $\alpha=$ $\alpha(s)$ parameterized by a pseudo-arclength parameter s, i.e. $g\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right)= \pm 1$. In particular, null curve $\alpha(s)$ in E_{1}^{3} is parameterized by a pseudo-arclength s if $g\left(\alpha^{\prime \prime}(s), \alpha^{\prime \prime}(s)\right)=1$. Let $T(s)=\alpha^{\prime}(s), N(s)=\alpha^{\prime \prime}(s) /\left\|\alpha^{\prime \prime}(s)\right\|$ and $B(s)$ be the tangent, the principal normal and the binormal vector of the curve $\alpha(s)$ respectively. If α is a timelike curve, i.e. if T is a timelike vector, then the Frenet formulae read:

$$
\begin{gathered}
T^{\prime}=\kappa N, \quad N^{\prime}=\kappa T+\tau B, \quad B^{\prime}=-\tau N \\
g(T, T)=-1, \quad g(N, N)=g(B, B)=1, \quad g(T, N)=g(T, B)=g(N, B)=0
\end{gathered}
$$

On the other hand, if α is a null curve, i.e. if T is a null vector, then the Frenet formulae read:

$$
\begin{gathered}
T^{\prime}=\kappa N, \quad N^{\prime}=\tau T-\kappa B, \quad B^{\prime}=-\tau N \\
g(T, T)=g(B, B)=0, \quad g(N, N)=1, \quad g(T, N)=g(N, B)=0, \quad g(T, B)=1
\end{gathered}
$$

where κ takes only two values: $\kappa=0$ when α is a straight null line or $\kappa=1$ in all other cases. The functions $\kappa=\kappa(s)$ and $\tau=\tau(s)$ are called the curvature and the torsion of α respectively [8].

3. The Lorentzian spherical timelike curves

THEOREM 3.1. Let $\alpha(s)$ be a plane unit speed timelike curve with a curvature $\kappa=\kappa(s)$. Then α lies on the Lorentzian sphere of center m and radius $r \in R^{+}$in E_{1}^{3} if and only if $\kappa=$ constant $\neq 0$ and

$$
\alpha-m=(1 / \kappa) N \pm \sqrt{r^{2}-(1 / \kappa)^{2}} B
$$

Proof. Let us first suppose that α lies on the Lorentzian sphere of center m and radius $r \in R^{+}$. Then $g(\alpha-m, \alpha-m)=r^{2}$, for each $s \in I \subset R$. By differentiation with respect to s of the previous relation, we find that

$$
\begin{equation*}
g(T, \alpha-m)=0 \tag{3.1}
\end{equation*}
$$

Further, the differentiation with respect to s of (3.1) gives

$$
\begin{aligned}
& g\left(T^{\prime}, \alpha-m\right)+g(T, T)=0, \\
& \kappa g(N, \alpha-m)=1,
\end{aligned}
$$

where we have used the corresponding Frenet formula. It follows that $\kappa \neq 0$ for each $s \in I \subset R$ and that

$$
\begin{equation*}
g(N, \alpha-m)=1 / \kappa \tag{3.2}
\end{equation*}
$$

Next, decompose the vector $\alpha-m$ as

$$
\begin{equation*}
\alpha-m=a T+b N+c B \tag{3.3}
\end{equation*}
$$

where $a=a(s), b=b(s)$ and $c=c(s)$ are arbitrary functions. Then the relations (3.1) and (3.2) imply that

$$
g(T, \alpha-m)=-a=0, \quad g(N, \alpha-m)=b=1 / \kappa, \quad g(B, \alpha-m)=c
$$

Further, the differentiation of (3.2) with respect to s gives

$$
g\left(N^{\prime}, \alpha-m\right)+g\left(N, \alpha^{\prime}\right)=(1 / \kappa)^{\prime} .
$$

By assumption α is a plane curve. Hence $\tau=0$ and using the corresponding Frenet formula we get that $\kappa g(T, \alpha-m)=(1 / \kappa)^{\prime}$. Then the relation (3.1) implies $(1 / \kappa)^{\prime}=0$ and thus $1 / \kappa=$ constant $\in R$, i.e. $\kappa=$ constant $\in R$. Since $\kappa \neq 0$ for each s, it follows that $\kappa=$ constant $\neq 0$. Further, the substitution of the coefficients a, b and c in (3.3) gives

$$
\alpha-m=(1 / \kappa) N+c B
$$

Now it is easy to see that $g(\alpha-m, \alpha-m)=(1 / \kappa)^{2}+c^{2}=r^{2}$, so it follows that $c= \pm \sqrt{r^{2}-(1 / \kappa)^{2}}$. Consequently,

$$
\alpha-m=(1 / \kappa) N \pm \sqrt{r^{2}-(1 / \kappa)^{2}} B
$$

Conversely, if $\kappa=$ constant $\neq 0$ and

$$
\alpha-m=(1 / \kappa) N \pm \sqrt{r^{2}-(1 / \kappa)^{2}} B
$$

$m \in E_{1}^{3}$ is an arbitrary vector and $r \in R^{+}$, we shall prove that $m=$ constant. Since

$$
m=\alpha-(1 / \kappa) N \pm \sqrt{r^{2}-(1 / \kappa)^{2}} B
$$

by differentiation with respect to s of the previous equation and using the corresponding Frenet formulae we get $m^{\prime}=0$. It follows that $m=$ constant and that $g(\alpha-m, \alpha-m)=r^{2}$. Therefore, α lies on the Lorentzian sphere of center m and radius r.

Remark. In [8] a classification of all W-curves (i.e. a curves for which a curvature and a torsion are constants) in space E_{1}^{3} is given. Since α is a curve with $\kappa=$ constant $\neq 0$ and $\tau=0$, by that classification it is a part of an orthogonal hyperbola.

THEOREM 3.2. Let $\alpha(s)$ be a unit speed timelike curve in E_{1}^{3} with a curvature $\kappa(s) \neq 0$ and a torsion $\tau(s) \neq 0$ for each $s \in I \subset R$. Then α lies on the Lorentzian sphere of radius $r \in R^{+}$if and only if

$$
(1 / \kappa)^{2}+\left((1 / \tau)(1 / \kappa)^{\prime}\right)^{2}=r^{2}
$$

Proof. Let us first suppose that α lies on the Lorentzian sphere of center m and radius r. Then $g(\alpha-m, \alpha-m)=r^{2}$. By three differentiations with respect to s of the previous equation and using the corresponding Frenet formulae, we get

$$
g(B, \alpha-m)=(1 / \tau)(1 / \kappa)^{\prime}
$$

Next, decompose the vector $\alpha-m$ as

$$
\begin{equation*}
\alpha-m=a T+b N+c B, \tag{3.4}
\end{equation*}
$$

where $a=a(s), b=b(s)$ and $c=c(s)$ are arbitrary functions. Then
$g(T, \alpha-m)=-a=0, \quad g(N, \alpha-m)=b=1 / \kappa, \quad g(B, \alpha-m)=c=(1 / \tau)(1 / \kappa)^{\prime}$.
Therefore, substitution of the coefficients a, b and c in (3.4) gives

$$
\alpha-m=(1 / \kappa) N+(1 / \tau)(1 / \kappa)^{\prime} B .
$$

Thus

$$
g(\alpha-m, \alpha-m)=r^{2}=(1 / \kappa)^{2}+\left((1 / \tau)(1 / \kappa)^{\prime}\right)^{2}
$$

Conversely, if

$$
\begin{equation*}
(1 / \kappa)^{2}+\left((1 / \tau)(1 / \kappa)^{\prime}\right)^{2}=r^{2} \tag{3.5}
\end{equation*}
$$

where $r \in R^{+}$, we may consider the vector $m \in E_{1}^{3}$ of the form

$$
\begin{equation*}
m=\alpha-(1 / \kappa) N-(1 / \tau)(1 / \kappa)^{\prime} B \tag{3.6}
\end{equation*}
$$

We shall prove that $m=$ constant. By differentiation with respect to s of the previous equation, we have that

$$
\begin{align*}
m^{\prime} & =T-(1 / \kappa)^{\prime} N-(1 / \kappa)(\kappa T+\tau B)-\left((1 / \tau)(1 / \kappa)^{\prime}\right)^{\prime} B+(1 / \tau)(1 / \kappa)^{\prime}(\tau N) \\
& =\left(-\tau / \kappa-\left((1 / \tau)(1 / \kappa)^{\prime}\right)^{\prime}\right) B \tag{3.7}
\end{align*}
$$

By differentiation with respect to s of the assumption (3.5), we have

$$
(2 / \kappa)(1 / \kappa)^{\prime}+(2 / \tau)(1 / \kappa)^{\prime}\left((1 / \tau)(1 / \kappa)^{\prime}\right)^{\prime}=0
$$

and thus

$$
\begin{equation*}
(\tau / \kappa)+\left((1 / \tau)(1 / \kappa)^{\prime}\right)^{\prime}=0 \tag{3.8}
\end{equation*}
$$

Substituting the last relation in (3.7), we find that $m^{\prime}=0$ for each $s \in I \subset R$ and thus $m=$ constant. The relation (3.6) implies that

$$
g(\alpha-m, \alpha-m)=(1 / \kappa)^{2}+\left((1 / \tau)(1 / \kappa)^{\prime}\right)^{2}=r^{2}
$$

Hence α lies on the Lorentzian sphere of center m and radius r.
THEOREM 3.3. Let $\alpha(s)$ be a unit speed timelike curve, with a curvature $\kappa(s) \neq$ 0 and a torsion $\tau(s) \neq 0$ for each $s \in I \subset R$. Then α lies on a Lorentzian sphere in E_{1}^{3} if and only if

$$
(\tau / \kappa)=-\left((1 / \tau)(1 / \kappa)^{\prime}\right)^{\prime} .
$$

Proof. Let us first assume that α is a curve lying on the Lorentzian sphere of radius $r \in R^{+}$. Then by the Theorem 3.2 it follows that the relation (3.5) holds, so differentiation with respect s of the relation (3.5) implies the relation (3.8).

Conversely, suppose that the equation (3.8) holds for each $s \in I \subset R$. Since (3.8) is the differential of the equation

$$
(1 / \kappa)^{2}+\left((1 / \tau)(1 / \kappa)^{\prime}\right)^{2}=c=\text { constant }>0
$$

we may take $c=r^{2}, r \in R^{+}$. Finally, by Theorem 3.2 it follows that image of the curve α lies on a Lorentzian sphere of radius r.

THEOREM 3.4. A unit speed timelike curve $\alpha(s)$ with $\kappa(s) \neq 0$ and $\tau(s) \neq 0$ for each $s \in I \subset R$ lies on a Lorentzian sphere in E_{1}^{3} if and only if $\kappa(s)>0$ and there is a differentiable function $f(s)$ such that $f \tau=(1 / \kappa)^{\prime}$ and $f^{\prime}+\tau / \kappa=0$.

Proof. Let us first assume that $\alpha(s)$ is a curve lying on the Lorentzian sphere. Then by the Theorem 3.3 we have that $\tau / \kappa=-\left((1 / \tau)(1 / \kappa)^{\prime}\right)^{\prime}$. Next, define the differentiable function $f=f(s)$ by

$$
f=(1 / \tau)(1 / \kappa)^{\prime}
$$

Consequently, $f^{\prime}=-\tau / \kappa$. Since $\kappa(s)=\left\|T^{\prime}\right\| \geq 0$ and $\kappa(s) \neq 0$ for each $s \in I \subset R$, it follows that $\kappa(s)>0$.

Conversely, assume that α is a curve for which $\kappa>0$ for each $s \in I \subset R$ and that there is a differentiable function $f(s)$ such that $f \tau=(1 / \kappa)^{\prime}$ and $f^{\prime}=-\tau / \kappa$. Next, since $f=(1 / \tau)(1 / \kappa)^{\prime}$, we have that

$$
\left((1 / \tau)(1 / \kappa)^{\prime}\right)^{\prime}=-\tau / \kappa
$$

Hence by the Theorem 3.3 it follows that α lies on a Lorentzian sphere.
Theorem 3.5. A unit speed timelike curve $\alpha(s)$ with $\kappa(s) \neq 0$ and $\tau(s) \neq 0$ lies on a Lorentzian sphere in E_{1}^{3} if and only if there are constants $A, B \in R$ such that the equation

$$
\kappa\left(A \cos \left(\int_{0}^{s} \tau(s) d s\right)+B \sin \left(\int_{0}^{s} \tau(s) d s\right)\right)=1
$$

holds for each $s \in I \subset R$.
Proof. Let us first suppose that $\alpha(s)$ is a curve lying on a Lorentzian sphere. Then by the Theorem 3.4 there is a differentiable function $f(s)$ such that $f \tau=(1 / \kappa)^{\prime}$ and $f^{\prime}=-\tau / \kappa$. Next, define the C^{2} function $\theta(s)$ and the C^{1} functions $g(s)$ and $h(s)$ by $\theta(s)=\int_{0}^{s} \tau(s) d s$,

$$
\begin{equation*}
g(s)=(1 / \kappa) \cos \theta-f(s) \sin \theta, \quad h(s)=(1 / \kappa) \sin \theta+f(s) \cos \theta \tag{3.9}
\end{equation*}
$$

Differentiation with respect to s of the functions θ, g and h easily gives $\theta^{\prime}(s)=\tau(s)$, $g^{\prime}(s)=h^{\prime}(s)=0$ and therefore $g(s)=A, h(s)=B$, so the relation (3.9) becomes

$$
(1 / \kappa) \cos \theta-f(s) \sin \theta=A, \quad(1 / \kappa) \sin \theta+f(s) \cos \theta=B
$$

Multiplying the first of the previous equations with $\cos \theta$ and the second with $\sin \theta$ and adding, we find that $1 / \kappa=A \cos \theta+B \sin \theta$. Thus the equation

$$
\kappa\left(A \cos \left(\int_{0}^{s} \tau(s) d s\right)+B \sin \left(\int_{0}^{s} \tau(s) d s\right)\right)=1
$$

is satisfied.

Conversely, let A and B be the real constants, such that the equation

$$
\begin{equation*}
\kappa\left(A \cos \left(\int_{0}^{s} \tau(s) d s\right)+B \sin \left(\int_{0}^{s} \tau(s) d s\right)\right)=1 \tag{3.10}
\end{equation*}
$$

holds for each $s \in I \subset R$. Then obviously $\kappa(s) \neq 0$ and therefore $\kappa(s)=\left\|T^{\prime}\right\|>0$ for each s. The differentiation with respect to s of the relation (3.10) gives

$$
\begin{equation*}
\tau\left(-A \sin \left(\int_{0}^{s} \tau(s) d s\right)+B \cos \left(\int_{0}^{s} \tau(s) d s\right)\right)=(1 / \kappa)^{\prime} \tag{3.11}
\end{equation*}
$$

Next, define the differentiable function $f(s)$ by

$$
\begin{equation*}
f(s)=-A \sin \left(\int_{0}^{s} \tau(s) d s\right)+B \cos \left(\int_{0}^{s} \tau(s) d s\right) \tag{3.12}
\end{equation*}
$$

Then the relations (3.11) and (3.12) give $(1 / \kappa)^{\prime}=\tau f$, that is $f=(1 / \tau)(1 / \kappa)^{\prime}$. By differentiation with respect to s of (3.12) and using (3.10), we find that

$$
f^{\prime}=-\tau\left(A \cos \left(\int_{0}^{s} \tau(s) d s\right)+B \sin \left(\int_{0}^{s} \tau(s) d s\right)\right)=-\tau / \kappa
$$

Therefore, by the Theorem 3.4 it follows that $\alpha(s)$ lies on a Lorentizan sphere.

4. The Lorentzian spherical null curves

THEOREM 4.1. There are no null curves $\alpha(s)$ lying on the Lorentzian sphere in E_{1}^{3}.

Proof. Assume that $\alpha(s)$ is a null curve lying on the Lorentzian sphere of center $m \in E_{1}^{3}$ and radius $r \in R^{+}$. Then we have

$$
\begin{equation*}
g(\alpha-m, \alpha-m)=r^{2} \tag{4.1}
\end{equation*}
$$

for each $s \in I \subset R$. If α is a straight null line with the equation $\alpha(s)=p+s q$, $p, q \in E_{1}^{3}$, then by differentiation with respect to s of the relation (4.1) we get $g(p+s q-m, q)=0$ and therefore $g(q, p)=g(q, m)=$ constant. It follows that $p=m$ and consequently $\alpha-m=s q$. But then $g(\alpha-m, \alpha-m)=0$, which is a contradiction. On the other hand, if α is not a straight null line, by differentiation with respect to s of the relation (4.1), we find that

$$
\begin{equation*}
g(T, \alpha-m)=0 \tag{4.2}
\end{equation*}
$$

By differentiation with respect to s of the relation (4.2), we get

$$
g\left(T^{\prime}, \alpha-m\right)+g(T, T)=0, \quad \kappa g(N, \alpha-m)=0
$$

and since in this case we have $\kappa=1$ for each $s \in I \subset R$, it follows that

$$
\begin{equation*}
g(N, \alpha-m)=0 \tag{4.3}
\end{equation*}
$$

By differentiation of (4.3) and using the corresponding Frenet formula, we find that

$$
\tau g(T, \alpha-m)-\kappa g(B, \alpha-m)=0
$$

which together with the relation (4.2) gives $-\kappa g(B, \alpha-m)=0$, and consequently

$$
\begin{equation*}
g(B, \alpha-m)=0 . \tag{4.4}
\end{equation*}
$$

Next, decompose the vector $\alpha-m$ as

$$
\begin{equation*}
\alpha-m=a T+b N+c B \tag{4.5}
\end{equation*}
$$

where $a=a(s), b=b(s)$ and $c=c(s)$ are arbitrary functions. Then by the relations (4.2), (4.3) and (4.4), we have that

$$
g(T, \alpha-m)=c=0, \quad g(N, \alpha-m)=b=0, \quad g(B, \alpha-m)=a=0
$$

Therefore, the equation (4.5) implies that $\alpha=m$, which is a contradiction.

REFERENCES

[1] M. Barros, B. Y. Chen, Spherical submanifolds which are of 2-type via the second standard immersion of the shpere, Nagoya Math. J., 108 (1987), 77-91.
[2] G. S. Birman, K. Nomizu, Trigonometry in Lorentzian geometry, Amer. Math. Month. 91(9) (1984), 543-549.
[3] R. S. Milman, G. D. Parker, Elements of Differential Geometry, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1977.
[4] B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.
[5] U. Pekmen, S. Pasali, Some characterizations of Lorentzian spherical space-like curves, Mathematica Moravica 3 (1999), 33-37.
[6] M. Petrović-Torgašev, E. Šućurović, Some characterizations of Lorentzian spherical spacelike curves with the timelike and the null principal normal, Mathematica Moravica 4 (2000), 8392.
[7] I. Van de Woestyne, Minimal surface of the 3-dimensional Minkowski space, Geometry and Topology of Submanifolds, II, World Scientific, Singapore, (1990), 344-369.
[8] J. Walrave, Curves and surfaces in Minkowski space, Ph. thesis, K. U. Leuven, Fac. of Science, Leuven, 1995.
[9] Y. C. Wong, A global formulation of the condition for a curve to lie in a sphere, Monatschefte fur Mathematik 67 (1963), 363-365.
[10] Y. C. Wong, On an explicit characterization of spherical curves, Proc. Amer. Math. Soc. 34 (1972), 239-242.
(received 28.07.2000, in revised form 01.12.2001)
Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Yugoslavia
E-mail: mirapt@uis0.uis.kg.ac.yu, emilija@knez.uis.kg.ac.yu

[^0]: AMS Subject Classification: 53 C 50, 53 C 40.
 Keywords and phrases: Lorentzian 3-space, Lorentzian sphere, causal character, curvature, torsion.

