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VARYING FUNCTIONS
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Abstract. The class of slowly varying functions is not closed under subtraction. In previous
papers we found some subclasses of nondecreasing slowly varying functions, characterized by the
good decomposition property, which (under additional conditions) are closed under subtraction.
The main result of this paper is that the assumption that functions are nondecreasing is essential
because only nondecreasing functions can have the good decomposition property.

A positive measurable function l, de�ned on some neighborhood of in�nity, is
said to be slowly varying (SV ) if, for every s > 0,

l(st)

l(t)
! 1 (t! +1): (1)

These functions were introduced by Karamata [4] (see also [1] and [5]).

We deal with di�erences of slowly varying functions. The class of all slowly
varying functions is not closed under subtraction, though it is closed under the
operations of addition, multiplication and division of functions. We consider addi-
tional assumptions under which it is possible to say something about subtraction of
slowly varying functions. In [2] and [3] we studied the di�erences of slowly varying
functions in the case when the functions are monotone nondecreasing. In this paper
we show that, in contrast to the nondecreasing case, in the class of nonincreasing
slowly varying functions it is not possible to �nd a subclass which behaves nicely
with respect to the operation of subtraction.

The main object of our study in [2] was the following property of good decom-
position in the class of nondecreasing functions, which is closely related with the
operation of subtraction.

Definition 1. A nondecreasing slowly varying function l is said to have the

property of good decomposition in the class of nondecreasing functions if whenever
we decompose l into a sum l = f + g of two nondecreasing functions f and g, then
f and g are necessarily slowly varying.
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In this paper we consider other classes of monotone functions, such as: nonin-
creasing, convex decreasing, concave increasing and study the good decomposition
property in these classes. We adapt De�nition 1 to be appropriate to these cases,
by assuming that when l is in one of these classes, then the summands f and g also
belong to the same class.

Convex increasing functions appear in this context in the following way: we
consider functions of the form l(ex), which are convex increasing and l is slowly
varying (note that an increasing slowly varying function l cannot be convex, because
its rate of growth is smaller than the rate of growth of any power function).

By making the change of variablesL(x) = l(ex) we pass to the class of additively
slowly varying functions. These are positive measurable functions L de�ned on
some neighborhood of in�nity and such that

lim
x!+1

L(y + x)

L(x)
= 1; (2)

for every y 2 R. Obviously, L is additively slowly varying if and only if l is slowly
varying.

In Section 1 we consider the nonincreasing functions and in Section 2 functions
having monotone derivatives. The functions in Section 1 are slowly varying in the
multiplicative sense (see (1)) and the result of Theorem 1 is complementary to those
from [2], while in Section 2 the functions are slowly varying in the additive sense
(see (2) and [3]).

1. Nonincreasing functions

In paper [2] we found a subclass, denoted by O�+ (see De�nition 2 below), of
nondecreasing slowly varying functions satisfying that the di�erence of two func-
tions from that class, if nondecreasing, is slowly varying.

Definition 2. A positive nondecreasing function f belongs to the class O�+

if

lim sup
t!+1

(f(st)� f(t)) = M(s)

is �nite for every s > 1.

The characterization theorem for the class O�+ from [2] is the following.

Theorem A. Let l be a nondecreasing slowly varying function. Then l has the
good decomposition property in the class of nondecreasing functions if and only if

it belongs to the class O�+.

In [2] we considered nondecreasing slowly varying functions only. This can be
justi�ed by the following theorem, which shows that nonincreasing slowly varying
functions never have the good decomposition property in the class of nonincreasing
functions.
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Theorem 1. Every nonincreasing slowly varying function l is a sum of two

nonincreasing functions such that at least one of them is not slowly varying.

Proof. In the proof we shall decompose the slowly varying function l into a sum
of two nonincreasing functions f and g such that, for an increasing sequence tn, f is
constant on every even interval [t2n; t2n+1] and g is constant on every odd interval
[t2n+1; t2n+2]. Note that such a construction is possible for every nonincreasing,
not necessarily slowly varying, function, but if l is not slowly varying, the assertion
of the theorem is trivial.

Since l is positive nonincreasing it has a �nite limit limt!1 l(t) = c > 0.
Suppose �rst c = 0.

Because l is slowly varying, it cannot be identically equal to zero starting from
some t. Let t00n be an increasing sequence of continuity points of l, t00n !1, n!1,
and such that

l(t00n � 1) > l(t00n): (3)

For a �xed s, 0 < s < 1, choose a subsequence t0n of t00n such that

t0n < st0n+1: (4)

For n large enough, by (3) we have that

l(st0n)� l(t0n) > l(t0n � 1)� l(t0n) > 0:

Thus condition (3) ensures that, if the function l has in�nitely many intervals on
which it is constant, then the points st0n and t0n do not belong to the same interval.

Then, since l (t) ! 0, t!1, we can chose again a subsequence tn of t0n such
that

l(stn)� l(tn) > l(tn+1): (5)

De�ne

f(t) =

� P1

i=2n+1(�1)
i+1l(ti); t 2 [t2n; t2n+1]

l(t)�
P
1

i=2n(�1)
il(ti); t 2 [t2n+1; t2n+2]

and g(t) = l(t) � f(t), which has a similar form. Note that f and g are uniquely
determined by the decomposition above. From the de�nition of f it follows that
f(t2n) = f(t2n+1) < l(t2n+1) and also that f(st2n)�f(t2n) = l(st2n)� l(t2n), since
by (4) we have st2n 2 [t2n�1; t2n]. Then we have

f(st2n)� f(t2n)

f(t2n)
>

l(st2n)� l(t2n)

l(t2n+1)
> 1

where the last inequality follows from (5). This proves that f is not slowly varying.
In a similar way by considering the points t2n+1, it can be shown that g is not slowly
varying either. So in the case when l tends to zero it can always be decomposed
into a sum of two nonincreasing functions neither of which is slowly varying.

If limt!1 l(t) = c > 0, since f and g are nonincreasing, one of them must
have a positive limit too, and hence is slowly varying. Thus by applying the same
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construction as above to the function l(t) � c we �nd a decomposition l(t) � c =
f(t)+g(t), such that l(t) = f(t)+g1(t), where f =2 SV and g1(t) = g(t)+c 2 SV .

2. Decreasing convex functions

Functions from the class O�+ cannot grow faster than log t. In order to be
able to say something about di�erences of functions with faster rate of growth we
imposed [3] some second order monotonicity conditions, i.e. monotonicity conditions
on derivatives. As already mentioned, an increasing slowly varying function l cannot
be convex, it can only be concave. But even with the additional assumption of
concavity in De�nition 1 all functions with the good decomposition property are
those from O�+ (see [2]).

In order to be able to consider the good decomposition property for functions
such as l(t) = log� t, � > 1, we studied in [3] slowly varying functions l, such that
the function L(x) = l(ex) is convex increasing and we introduced the class O�+

2

which is characterized by the good decomposition property in the class of convex
increasing functions.

Definition 3. A positive convex increasing function F belongs to the class
O�+

2 if for every y 2 R there is a constant C = C(y) (not depending on x) such
that

0 6 F (x+ 2y)� 2F (x+ y) + F (x) 6 Cx; (6)

for x large enough.

We proved that if a positive increasing convex function F belongs to O�+

2 ,
then F is additively slowly varying and the following theorem holds.

Theorem B. ([3]) An increasing convex additively slowly varying function L
has the good decomposition property in the class of increasing convex functions if

and only if it belongs to the class O�+

2 .

Except for the convex increasing case, in the class of positive functions with sec-
ond order monotonicity conditions (i.e. having monotone left and right derivatives)
there are two more cases to consider after the change of variables L(x) = l(ex):
decreasing convex and increasing concave functions (since concave decreasing func-
tions cannot be positive at in�nity).

In Proposition 1 we consider the case of positive concave increasing functions,
which always have the good decomposition property. In Theorem 2 we show that
positive convex decreasing functions never have the good decomposition property.

Proposition 1. Every positive concave additively slowly varying function L
tending to +1 has the good decomposition property in the class of positive concave

functions.

Proof. If L tends to a constant the assertion is trivial. When L(t) ! 1,
the assertion follows from the fact that every positive concave increasing function
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F is additively slowly varying. Indeed, since F 0 decreases, the di�erence 0 <
F (x+ y)� F (x) is bounded by a constant C, and since F tends to +1,

F (x + y)� F (x)

F (x)
6

C

F (x)
! 0:

Then for every decomposition L = F +G, where both F and G are positive concave
increasing, it follows that both F and G are additively slowly varying.

Now we deal with convex decreasing functions. Note that even if we decompose
a convex decreasing function according to the construction from Theorem 1, the
summands obtained are never convex.

The question is: if we impose in the decomposition the additional condition of
the convexity of summands, does this yield their slow variation? Theorem 2 gives
a negative answer to this question. We prove that a convex decreasing additively
slowly varying function L never has the good decomposition property in the class
of convex decreasing functions. We exclude the case when L(x) = c > 0 for all
x > x0, where in every decomposition of L into two convex decreasing summands,
trivially both summands must be constant starting from x0.

Theorem 2. Every positive convex decreasing additively slowly varying func-

tion L can be decomposed into a sum L = F +G of two positive convex decreasing

functions such that at least one of them is not additively slowly varying.

Proof. In this proposition all derivatives are left derivatives. Note that L
has a nonnegative limit and therefore limx!+1 L0(x) = 0. Suppose �rst that
limx!+1 L(x) = 0. Consider

D�yL(x) = L(x� y)� L (x) + yL0(x);

for y > 0 �xed. Then obviously limx!+1D�yL(x) = 0. Also, since �L0 is positive
nonincreasing, we have �xL0(x) < 2L(x=2) ! 0 and we can choose an increas-
ing sequence xn (of continuity points of L0) tending to in�nity and satisfying the
following three conditions: xn � y > xn�1, D�yL(xn) > 0, and

D�yL(xn) > L(xn+1)� xn+1L
0(xn+1): (7)

((7) is possible since on both sides of the preceding inequality we have positive
functions tending to zero.)

De�ne F 0 and G0 = L0 � F 0 in the following way

F 0(x) =

� P1

i=2n+1(�1)
i+1L0(xi); x 2 [x2n; x2n+1]

L0(x)�
P
1

i=2n(�1)
iL0(xi); x 2 [x2n+1; x2n+2]:

(8)

From (8) it follows that F 0 is negative nondecreasing because it is equal to a
negative constant on the intervals [x2n; x2n+1] and di�ers by a constant from L0

on the intervals [x2n+1; x2n+2], and G0 has a similar form, only it is constant on
the intervals [x2n+1; x2n+2]. Thus the functions F and G (de�ned by (8) and the
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conditions limx!+1 F (x) = 0 and limx!+1G(x) = 0) are convex decreasing and
uniquely determined.

We have from (8) for x 2 [x2n�1; x2n]

F 0(x)� F 0(x2n) = L0(x) � L0(x2n);

from which (by integrating from x2n � y to x2n) it follows that

D�yF (x2n) = D�yL(x2n): (9)

From (8) it follows that

F (x2n) = F (x2n+1)� F 0(x2n+1)(x2n+1 � x2n)

< L(x2n+1)� L0(x2n+1)x2n+1 < D�yL(x2n): (10)

For the last inequality we have used condition (7). We have, since x2n � y 2
[x2n�1; x2n],

F (x2n � y)� F (x2n) > D�yF (x2n) = D�yL(x2n) (11)

by (9). Thus we have by (10) and (11)

F (x2n � y)� F (x2n)

F (x2n)
>
D�yL(x2n)

D�yL(x2n)
= 1

which proves that F is not additively slowly varying. In the same way, by consid-
ering the points x2n+1, it can be seen that G is not slowly varying either.

In the case when limx!1 L(x) = c > 0, then at least one of the summands has a
positive limit too and must be slowly varying. By applying the same construction as
above to the function L(x)�c we can �nd a decomposition of L(x)�c = F (x)+G(x),
such that L(x) = F (x)+G1(x), where G1(x) = G(x)+c is additively slowly varying
and F is not.
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