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RELATIONSHIPS BETWEEN USUAL AND
APPROXIMATE INVERSE SYSTEMS

Ivan Lon�car

Abstract. We shall prove that if X = fXa; pab; Ag is an approximate inverse system of
compact non-metric spaces with surjective bonding mappings pab such that each Xa is a limit
of a usual � -directed inverse system X(a) = fX(a;), f(a;)(a;�), �ag of metric compact spaces,
then there exist: 1) a usual � -directed inverse system XD = fXd; Fde; Dg whose inverse limit
XD is homeomorphic to X = limX, 2) every Xd is a limit of an approximate inverse system
fX(a;a), g(a;a)(b;b); Ag of compact metric spaces X(a;a), 3) if the mappings pab and f(a;)(a;�)
are monotone, then g(a;a)(b;b) and Fde are monotone.

1. Introduction

In this paper we shall use the notion of inverse systems X = fXa; pab; Ag and
their limits in the usual sense [1, p. 135].

The cardinality of a set X will be denoted by card(X). The co�nality of a
cardinal number m will be denoted by cf(m). Cov(X) is the set of all normal
coverings of a topological space X . If U , V 2 Cov(X) and V re�nes U , we write
V � U . For two mappings f; g : Y ! X which are U-near (for every y 2 Y there
exists a U 2 U with f(y); g(y) 2 U), we write (f; g) � U . A basis of (open) normal
coverings of a space X is a collection C of normal coverings such that every normal
covering U 2 Cov(X) admits a re�nement V 2 C. We denote by cw(X) (covering
weight) the minimal cardinal of a basis of normal coverings of X [9, p. 181].

Lemma 1. [9, Example 2.2] If X is a compact Hausdor� space, then cw(X) =
w(X).

The notion of approximate inverse system X = fXa; pab; Ag will be used in
the sense of S. Marde�si�c [11].

Definition 1. An approximate inverse system is a collectionX = fXa; pab; Ag,
where (A;�) is a directed preordered set, Xa, a 2 A, is a topological space and
pab : Xb ! Xa, a � b, are mappings such that paa = id and the following condition
(A2) is satis�ed:
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(A2) For each a 2 A and each normal cover U 2 Cov(Xa) there is an index b � a

such that (pacpcd; pad) � U , whenever a � b � c � d.

An approximate map p = fpa : a 2 Ag : X ! X into an approximate system
X = fXa; pab; Ag is a collection of maps pa : X ! Xa, a 2 A, such that the
following condition holds

(AS) For any a 2 A and any U 2 Cov(Xa) there is b � a such that (pacpc; pa) � U

for each c � b. (See [10]).

Let X = fXa; pab; Ag be an approximate system and let p = fpa : a 2
Ag : X ! X be an approximate map. We say that p is a limit of X provided
it has the following universal property:

(UL) For any approximate map q = fqa : a 2 Ag : Y ! X of a space Y there
exists a unique map g : Y ! X such that pag = qa.

Let X = fXa; pab; Ag be an approximate system. A point x = (xa) 2
Q
fXa :

a 2 Ag is called a thread of X provided it satis�es the following condition:

(L) (8a 2 A)(8U 2 Cov(Xa))(9b � a)(8c � b) pac(xc) 2 st(xa; U).

If Xa is a T3:5 space, then the sets st(xa;U), U 2 Cov(Xa), form a basis of
the topology at the point xa. Therefore, for an approximate system of Tychono�
spaces condition (L) is equivalent to the following condition:

(L)� (8a 2 A) limfpac(xc) : c � ag = xa.

Let � be an in�nite cardinal. We say that a partially ordered set A is �-directed
if for each B � A with card(B) � � there is an a 2 A such that a � b for each
b 2 B. If A is @0-directed, then we will say that A is �-directed. An inverse system
X = fXa; pab; Ag is said to be �-directed if A is � -directed. An inverse system
X = fXa; pab; Ag is said to be �-directed if A is �-directed.

The proof of the following theorem is similar to the proof of Theorem 1.1 of [4].

Theorem 1. Let X = fXa; pab; Ag be a �-directed approximate inverse system
of compact spaces with surjective bonding mappings and limit X. Let Y be a metric
compact space. For each surjective mapping f : X ! Y there exists an a 2 A such
that for each b � a there exists a mapping gb : Xb ! Y such that f = gbpb.

Theorem 2. Let X be a compact space. There exists a �-directed inverse
system X = fXa; pab; Ag of compact metric spaces Xa and surjective bonding map-
pings pab such that X is homeomorphic to limX.

Proof. It is well-known that there exists a usual inverse system Y =
fY�; q�� ;�g of metric spaces Y� and surjective bonding mappings such that X
is homeomorphic to limY. By Theorem 9.5 of [12] there exists a �-directed inverse
system X = fXa; pab; Ag such that limX is homeomorphic to limY and each Xa

is the limit of a countable inverse subsystem of Y. This means that each Xa is a
metric compact space.

Theorem 3. [8, p. 163, Theorem 2.] If X is a locally connected compact
space, then there exists an inverse system X = fXa; pab; Ag such that each Xa is a
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metric locally connected compact space, each pab is a monotone surjection and X

is homeomorphic to limX. Conversely, the inverse limit of such system is always
a locally connected compact space.

Remark 1. We may assume that X = fXa; pab; Ag in Theorem 3 is �-directed
[12, Theorem 9.5].

Theorem 4. [13, Corollary 2.9] If X is a hereditarily locally connected contin-
uum, then there exists a �-directed inverse system X = fXa; pab; Ag such that each
Xa is a metrizable hereditarily locally connected continuum, each pab is a monotone
surjection and X is homeomorphic to limX.

Theorem 5. [3, Corollary 3] Let X = fXa; pab; Ag be a �-directed inverse sys-
tem of hereditarily locally connected continua Xa. Then X = limX is hereditarily
locally connected.

The following theorem is Theorem 1.7 from [5].

Theorem 6. Let X = fXa; pab; Ag be a �-directed inverse system of compact
metrizable spaces and surjective bonding mappings. Then X = limX is metrizable
if and only if there exists an a 2 A such that pb : X ! Xb is a homeomorphism for
each b � a.

2. Approximate subsystems

In this Section we investigate the approximate subsystem of an approximate
system X = fXa; pab;Ag. We start with the following de�nition.

Definition 2. Let X = fXa; pab; Ag be an approximate inverse system and
let B be a directed subset of A such that fXb; pbc; Bg is an approximate inverse
system. We say that fXb; pbc; Bg is an approximate subsystem of X = fXa; pab; Ag
if there exists a mapping q : limX! limfXb; pbc; Bg such that

pbq = Pb; b 2 B;

where pb : limfXb; pbc; Bg ! Xb and Pb : limX ! Xb, b 2 B, are natural projec-
tions.

We say that an approximate system X = fXa; pab; Ag is irreducible if for each
B � A with card(B) < card(A) it follows that B is not co�nal in A.

Lemma 2. Let X = fXa; pab; Ag be an approximate inverse system. There
exists a co�nal subset B of A such X = fXa; pab; Bg is irreducible.

Proof. Consider the family B of all co�nal subsets of B of A. The set fcard(B) :
B 2 Bg has the minimal element b since each card(B) is some initial ordinal number.
Let B 2 B be such that card(B) = b. It is clear that fXa; pab; Bg is irreducible.

In the sequel we will assume that X = fXa; pab; Ag is irreducible.

Lemma 3. Let X = fXa; pab; Ag be an approximate inverse system of compact
spaces such that card(A) = @0. Then there exists a countable well-ordered subset B
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of A such that the collection fXb; pbc; Bg is an approximate inverse sequence and
limX is homeomorphic to limfXb; pbc; Bg.

Proof. Let � be any �nite subset of A. There exists a �(�) 2 A such that
� � �(�) for each � 2 �. Since A is in�nite, there exists a sequence f�n : n 2 Ng
such that �1 � . . . � �n � � � � and A =

S
f�n : n 2 Ng. Recursively, we de�ne the

sets A1; . . . ; An; . . . by
A1 = �1 [ f�(�1)g;

and
An+1 = An [ �n+1 [ f�(An [ �n+1)g:

It follows that there exists a sequence

A1 � A2 � . . . � An � � � �

of �nite sets An such that A =
S
fAn : n 2 Ng. Let b1 = �(A1) and bn � �(An),

bn�1 if n � 2. We obtain a sequence B = fbn : n 2 Ng such that B is co�nal
in A. By virtue of [10, Theorem (1.19)] it follows that limX is homeomorphic to
limfXb; pbc; Bg.

Now we consider irreducible approximate inverse systems X = fXa; pab; Ag
with card(A) � @1.

Lemma 4. Let A be a directed set. For each subset B of A there exists a
directed set F1(B) such that card(F1(B)) = card(B).

Proof. For each B � A there exists a set F1(B) = B
S
f�(�) : � 2 Bg, where

� is a �nite subset of B and �(�) is de�ned as in the proof of Lemma 3. Put

Fn+1 = F1(Fn(B);

and
F1(B) =

[
fFn(B) : n 2 Ng:

It is clear that
F1(B) � F2(B) � . . . � Fn(B) � � � �

The set F1(B) is directed since each �nite subset � of F1(B) is contained in some
Fn(B) and, consequently, �(�) is contained in F1(B).

If B is �nite, then card(F1(B)) = @0. If card(B) � @0, then we have
card(f�(�) : � 2 Bg) � card(B)@0. We infer that card(F1(B)) � card(B)@0.
Similarly, card(Fn(B)) � card(B)@0. This means that card(F1(B)) � card(B)@0.
Thus

card(F1(B)) � card(B)@0; if card(B) < card(A):

The proof is completed.

Lemma 5. Let fXa; pab; Ag be an approximate inverse system such that
cw(Xa) < card(A), a 2 A. For each subset B of A with card(B) < card(A),
there exists a directed set G1(B) � B such that the collection fXa; pab; G1(B)g is
an approximate system and card(G1(B)) = card(B).
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Proof. Let Ba be a base of normal coverings of Xa. Let Ua 2 Ba. By virtue
of (A2) there exists an a(Ua) 2A such that (pad; pacpcd) � Ua, a � a(Ua) � c � d.
For each subset B of A we de�ne G1(B) by induction as follows:

a) Let G1(B) = F1(B). From Lemma 4 it follows that card(G1(B)) =
card(F1(B)) = card(B).

b) For each n > 1 we de�ne Gn(B) as follows:

1) If n is odd then Gn(B) = F1(Gn�1(B)),

2) If n is even, then Gn(B) = Gn�1(B) [ fa(Ua) : Ua 2 Ba, a 2 Gn�1(B)g.
Since card(Ba) < card(A) the set Gn(B) has the cardinality < card(A). Now we
de�ne G1(B) =

S
fGn(B) : n 2 Ng. It is obvious that card(G1(B)) < card(A).

The set G1(B) is directed. Let a; b be a pair of elements of G1(B). There
exists an n 2 N such that a; b 2 Gn(B). We may assume that n is odd. Then
a; b 2 F1(Gn�1(B)). Thus there exists a c 2 F1(Gn�1(B)) such that c � a; b. It
is clear that c 2 G1(B). The proof of directedness of G1(B) is completed.

The collection fXa; pab; G1(B)g is an approximate system. It su�ces to prove
that the condition (A2) is satis�ed. Let a be any member of G1(B). There exists
an n 2 N such that a 2 Gn(B). We have two cases.

1) If n is odd thenGn(B) = F1(Gn�1(B)). This means that a 2 F1(Gn�1(B)).
By de�nition of F1(Gn�1(B)) we infer that a(Ua) 2 F1(Gn�1(B)). Thus (A2) is
satis�ed.

2) If n is even, then Gn(B) = Gn�1(B) [ fa(Ua) : Ua 2 Cov(Xa), a 2
Gn�1(B)g. In this case a 2 Gn+1(B) � G1(B). Arguing as in the case 1, we
infer that (A2) is satis�ed.

Theorem 7. Let X = fXa; pab; Ag be an approximate inverse system of com-
pact spaces. If � � w(Xa) � � < card(A) for each a 2 A, then limX is homeomor-
phic to a limit of a �-directed usual inverse system fX�; q�� ; Tg, where each X� is
a limit of an approximate inverse subsystem fX ; p��;�g, card(�) = �.

Proof. The proof consists of several steps.

Step 1. Let B = fB� : � 2Mg be a family of all subsets of A with card(B�) =
�. Put A� = G1(B�) (Lemma 5) and let � = fA� : � 2 Mg be ordered by
inclusion �.

Step 2. If � and 	 are in � such that � � 	, then there exists a mapping
q�	 : limfX�; p�� ;	g ! limfX ; p�� ;�g.

Namely, if x = (x�; � 2 	) 2 limfX�; p�� ;	g, then by de�nition of the threads
of fX�; p�� ;	g the condition (L) is satis�ed. If (L) is satis�ed for x = (x�; � 2
	) 2 limfX�; p�� ;	g, then it is satis�ed for (x ;  2 �) since the required a0 in
(L) lies|by de�nition of the set �|in the set �. This means that (x ;  2 �) 2
limfX ; p�� ;�g. Now we de�ne q�	(x) = (x ;  2 �).

Step 3. The collection fX�; q�	;�g is a usual inverse system. It su�ces to
prove transitivity, i.e., if � � 	 � 
, then q�	q	
 = q�
. This easily follows from
the de�nition of q�	.
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Step 4. The space limX is homeomorphic to limfX	; q�	;�g, where X� =
limfX ; p�� ;�g. We shall de�ne a homeomorphism H : limX! limfX	; q�	;�g.
Let x = (xa : a 2 A) be any point of limX. Each collection fxa : a 2 � 2 �g is a
point x� of X� since X� = limfXa; pab;�g. Moreover, from the de�nition of q�	
(Step 2) it follows that q�	(x	) = x�, 	 � �. Thus, the collection fx� : � 2 �g
is a point of limfX�; q�	;�g. Let H(x) = fx�;� 2 �g. Thus, H is a continuous
mapping of limX to limfX	; q�	;�g. In order to complete the proof it su�ces to
prove that H is 1{1 and onto. Let us prove that H is 1{1. Let x = (xa : a 2 A)
and y = (ya : a 2 A) be a pair of points of limX. This means that there exists
an a 2A such that ya 6= xa. There exists a � 2 � such that a 2 �. Thus, the
collections fxa : a 2 �g and fya : a 2 �g are di�erent. From this we conclude
that x� 6= y�, x�; y� 2 X� = limfXa; pab;�g. Hence H is 1{1. Let us prove that
H is onto. Let y = (y� : � 2 �) be any point of limfX	; q�	;�g. Each y� is
a collection fxa : a 2 �g and if 	 � �, then the collection fxa : a 2 �g is the
restriction of the collection fxa : a 2 	g on �. Let x be the collection which is the
union of all collections fxa : a 2 �g, � 2 �. Hence x is a collection (xa : a 2 A)
which is a point of limX and H(x) = y.

Step 5. Inverse system fX�; q�	;�g is a �-directed inverse system. Let
ffX; p�� ;��g : � � �g be a collection of approximate subsystems fX ; p��;��g.
The set � =

S
f�� : � � �g has the cardinality � � since card(��) � �. By virtue

of Steps 1{4 there exists an approximate subsystem fX; p�� ;�g, card(�) = �.
This means that fX�; q�	;�g is a �-directed inverse system.

Corollary 1. Let X = fXa; pab; Ag be an approximate inverse system of
compact metric spaces. Then limX is homeomorphic to the limit of a �-directed
usual inverse system fX�; q�� ;�g, where each X� is a limit of an approximate
inverse subsystem fX; p�� ;�g, card(�) = @0.

Lemma 6. Let X = fXa; pab; Ag be an approximate system such that Xa, a 2
A, are compact locally connected spaces and pab are monotone surjections. If Y =
fXb; pcd; Bg is an approximate subsystem of X, then the mapping qAB : limX !
limY (de�ned in Step 2 of the proof of Theorem 7) is a monotone surjection.

Proof. Let Pa : limX ! Xa, a 2 A, be the natural projection. Similarly, let
pa : limY ! Xa, a 2 B, be the natural projection. From the de�nition of qAB (Step
2 of the proof of Theorem 7) it follows that paqAB = Pa for each a 2 B. By virtue
of [10, Corollary 4.5] and [7, Corollary 5.6] it follows that Pa and pa are monotone
surjections. Let us prove that qAB is a surjection. Let y = (ya : a 2 B) 2 limY.
The sets P�1a (ya), a 2 B, are non-empty since Pa is surjective for each a 2 A. From
the compactness of limX it follows that a limit superior Z = LsfP�1a (ya); a 2 Bg
is a non-empty subset of limX. We shall prove that for each z = (za : a 2 A) 2 Z,
Pa(z) = ya. Suppose that Pa(z) 6= ya. There exists a pair U; V of open disjoint
subsets of Xa such that ya 2 U and Pa(z) 2 V . For su�ciently large b 2 B,
Pa(P

�1
b (b)) is in U because of (AS). This means that P�1a (V ) \ P�1b (yb) = ; for

su�ciently large b 2 B. This contradicts the assumption z 2 LsfP�1a (ya); a 2 Bg.
Hence qAB is a surjection. In order to complete the proof it su�ces to prove that
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qAB is monotone. Take a point y 2 limY and suppose that q�1AB(y) is disconnected.

There exists a pair U; V of disjoint open sets in limX such that q�1AB(y) � U [ V .
From the compactness of limX it follows that qAB is closed. This means that there
exists an open neighborhood W of y such that q�1AB(y) � q�1AB(W ) � U [ V . From
the de�nition of the basis in limY it follows that there exists an open set Wa in
some Xa, a 2B such that y 2 p�1a (Wa) � W . Moreover, we may assume that Wa

is connected since Xa is locally connected. Then P
�1
a (Wa) is connected since Pa is

monotone [7, Corollary 5.6]. Moreover, q�1AB(y) � P�1a (Wa) and P
�1
a (Wa) � U [ V

since Pa = paqAB . This is impossible since U and V are disjoint open sets and
P�1a (Wa) is connected.

Theorem 8. Let X = fXa; pab; Ag be an approximate inverse system of com-
pact spaces. If � � w(Xa) < card(A) for each a 2 A and cf(card(A)) 6= �,
then X = limX is homeomorphic to a limit of a �-directed usual inverse sys-
tem fX�; q�� ; Tg, where each X� is a limit of an approximate inverse subsys-
tem fX ; p�� ;�g, card(�) = �. Moreover, if card(A) is a regular cardinal,
then X = limX is homeomorphic to a limit of a �-directed usual inverse sys-
tem fX�; q�� ; Tg, where each X� is a limit of an approximate inverse subsystem
fX ; p��;�g, card(�) = �.

A directed preordered set (A;�) is said to be co�nite provided each a 2 A has
only �nitely many predecessors. If a 2 A has exactly n predecessors, we shall write
p(a) = n+ 1. Hence, a 2 A is the �rst element of (A;�) if and only if p(a) = 1.

Lemma 7. If (A;�) is co�nite, then it satis�es the following principle of
induction:

Let B � A be a set such that:

(i) B contains all the �rst elements of A,

(ii) if B contains all the predecessors of a 2 A, then a 2 B.

Then B = A.

Lemma 8. [15, Lemma 1] Let q = (qa) : Y ! Y = fYb;Vb; qab0 ; Bg be an
approximate map (approximate resolution) of a space Y . Then there exists an

approximate map (approximate resolution) q = (qa) : Y ! Y = fY
0

c ;V
0

c; qcc0 ; Cg
of the space Y and an increasing surjection t : C ! B satisfying the following
conditions:

(i) C is directed, unbounded, antisymmetric and co�nite set;

(ii) (8c 2 C)(8b 2 B)(9c0 > c) t(c0) > b;

(iii) (8c 2 C)Y 0

c = Yt(c), V
0

c = Vt(c), q
0

c = qt(c) and q
0

cc0 = qt(c)t(c0), whenever c < c0:

Corollary 2. Let X = fXa; pab; Ag be an approximate inverse system of
compact spaces. Then there exists a co�nite approximate inverse system Y =
fYc; pcc0 ; Cg such that each Yc is some Xa, each pcc0 is some pab and limX is
homeomorphic to limY.
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Proof. By virtue of Theorem (4.2) of [10] an approximate map p : X ! X is
an approximate resolution if and only if it is a limit of X = fXa; pab; Ag. Apply
Lemma 8.

Theorem 9. Let X = fXa; pab; Ag be an approximate inverse system of com-
pact non-metric spaces with surjective bonding mappings pab. If each Xa is a limit
of a usual �-directed inverse system X(a) = fX(a;); f(a;)(a;�);�ag of metric com-
pact spaces, then:

1. there exists a usual �-directed inverse systemXD = fXd; Fde; Dg whose inverse
limit XD is homeomorphic to X = limX,

2. every Xd is a limit of an approximate inverse system fX(a;a); g(a;a)(b;b); Ag
of compact metric spaces X(a;a);

3. if the mappings pab and f(a;)(a;�) are monotone, then g(a;a)(b;b) and Fde are
monotone.

Proof. The proof consists of several steps. In the Steps 0.{11. we shall de�ne a
usual inverse system XD = fXd; Fde; Dg whose inverse limit XD is homeomorphic
to X = limX.

Step 0. From Corollary 2 it follows that we may assume that A is co�nite.

Step 1. For each Xa there exists a �-directed inverse system

X(a) = fX(a;); f(a;)(a;�);�ag (1)

such that each X(a;) is a metric compact space, each f(a;)(a;�) is monotone and
surjective andXa is homeomorphic to limX(a). Now we have the following diagram

Xa
pab
 ���� Xb

pbc ���� Xc
pd ���� X

??yf(a;a)
??yf(b;b)

??yf(c;c)

X(a;a) X(b;b) X(c;c)??yf(a;a)(a;�a)
??yf(b;b)(b;�b)

??yf(c;c)(c;�c)

X(a;�a) X(b;�b) X(c;�c)??y
??y

??y

(2)

Step 2. Put B = f(a; a) : a 2 A; a 2 �ag and put C to be the set of all
subsets c of B of the form

c = f(a; a) : a 2 Ag; (3)

where every a is the �xed element of �a.

Step 3. Let D be a subset of C containing all c 2 C for which there exist the
mappings

g(a;a)(b;b) : X(b;b) ! X(a;a); b � a; (4)

such that
fX(a;a); g(a;a)(b;b); Ag (5)
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is an approximate inverse system and each diagram

Xa
pab ������� Xb

f(a;a)

??y
??yf(b;b)

X(a;a)  �������
g(a;a)(b;b)

X(b;gb)

(6)

commutes, where f(a;a) : Xa ! X(a;a) is the canonical projection. It is clear that
the mapping g(a;a)(b;b) is unique since f(b;b) is a surjection.

Step 4. The set D is non-empty. Moreover, for each subset Sa � �a, a 2 A,
card(Sa) � @0, there exists a d 2 D such that d = f(a; a) : a 2 Ag, a � 

for every  2 Sa. Let a 2 A be some �rst element of A and let a 2 �a such
that a �  for every  2 Sa. The space X(a;a) is a metric compact space and
there exist mappings f(a;a)pab : Xb ! X(a;a), b � a. By virtue of Theorem 1 for

each b � a there exists a 1b 2 �b such that for each b � 1b ; , where  2 Sb,
there exists a monotone surjective mapping g(a;a)(b;b) : X(b;b) ! X(a;a) with
f(a;a)pab = g(a;a)(b;b)f(b;b), i.e., the diagram

Xa
pab ������� Xb

f(a;a)

??y
??yf(b;b)

X(a;a)  �������
g(a;a)(b;b)

X(b;gb)

(7)

commutes. Suppose that (a; 1b ), (a; 
2
b ), . . . , (a; 

n�1
b ) are de�ned for each a 2 A

with p(a) � n�1 such that the each diagram (6) commutes. Let a 2 A be a member
of A with p(a) = n. This means that (a; 1b ), (a; 

2
b ), . . . , (a; 

n�1
b ) are de�ned.

From the co�nitness of A it follows that the set of ja which are de�ned in �a is �nite.
Hence there exists na � n�1a , . . . , 1a. We de�ne nb 2 �b considering the space
X(a;na )

and the mappings f(a;na )pab : Xb ! X(a;na )
. Again, by Theorem 1 for each

b � a there exists a nb 2 �b such that for each b � nb , 
n�1
b , . . . , 1b and there is

a mapping g(a;b)(b;b) : X(b;b) ! X(a;na )
with f(a;na )pab = g(a;b)(b;b)f(b;b), i.e.,

the diagram

Xa
pab �������� Xb

f(a;na )

??y
??yf(b;b)

X(a;na )
 ��������
g(a;na )(b;b)

X(b;gb)

(8)

commutes. By induction on A (Lemma 7) the set D is de�ned. It remains to prove
that fX(a;a); g(a;a)(b;b); Ag is an approximate inverse system. Let U be a normal

cover of X(a;a). Then V = f�1(a;a)
(U) is a normal cover of Xa. By virtue of (A2)

there exists a b � a such that for each c � d � b we have (pad; pcapcd � V . By
virtue of the commutativity of the diagrams of the form (8) it follows that

(g(a;a)(d;d); g(a;a)(c;c)g(c;c)(d;d)) � V :

Thus, fX(a;a); g(a;a)(b;b); Ag is an approximate inverse system.
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Step 5. We de�ne a partial order on D as follows. Let d1; d2 be a pair of
members of D such that d1 = f(a; a) : a 2 A; a 2 �ag and d2 = f(a; �a) : a 2
A; �a 2 �ag. We write d2 � d1 if and only if �a � a for each a 2 A. From Step 4.
it follows that (D;�) is � -directed. Moreover, XD is a usual inverse system.

Step 6. For each d 2 D the limit space Xd of the inverse system (5) is a
compact space. Moreover, there exists a mapping Fd : X ! Xd. The existence
of Fd follows from the commutativity of the diagram (6). The following diagram
illustrates the construction of d 2 D and the space Xd.

Xa
pab ������� Xb

pbc ������� Xc
pd ���� X

??yf(a;�a)
??yf(b;�b)

??yf(c;�c)

X(a;�a) X(b;�b) X(c;�c)??yf(a;a)(a;�a)
??yf(b;b)(b;�b)

??yf(c;c)(c;�c)

X(a;a)  �������
g(a;a)(b;b)

X(b;b)  �������
g(b;b)(c;c)

X(c;c)  ����
g(c;c)

Xd

??y
??y

??y

(9)

Step 7. If d1; d2 is a pair of members of D such that d1 = f(a; a) : a 2
A; a 2 �ag, d2 = f(a; �a) : a 2 A; �a 2 �ag and d2 � d1, then for each a 2 A

commutes the diagram

X(a;�a)

g(a;�a)(b;�b) ������� X(b;�b)

f(a;a)(a;�a)

??y
??yf(b;v)(b;�b)

X(a;a)  �������
g(a;a)(b;b)

X(b;b)

(10)

This follows from the surjectivity of the mappings f(b;b) and from the commuta-
tivity of the diagrams of the form (6) for d1 and d2, i.e., from the commutativity
of the diagrams

Xa
pab ������� Xb

f(a;a)

??y
??yf(b;b)

X(a;a)  �������
g(a;a)(b;b)

X(b;gb)

(11)

and
Xa

pab
 ������� Xb

f(a;�a)

??y
??yf(b;�b)

X(a;�a)  �������
g(a;�a)(b;�b)

X(b;db)

(12)

Step 8. From Step 7. it follows that for d1; d2 2 D with d2 � d1 there exists
a mapping Fd1d2 : Xd2 ! Xd1 (see [1, p. 138]) such that Fd1 = Fd1d2Fd2 .



Relationships between usual and approximate inverse systems 93

Proof of Step 8. Let d1; d2; d3 2 D and let d1 � d2 � d3. Then Fd1d3 =
Fd1d2Fd2d3 . This follows from Step 7. and the commutativity condition in each
inverse system X(a) = fX(a;); f(a;)(a;�);�ag (see (1) of Step 1.).

Step 9. The collection fXd; Fde; Dg is a usual inverse system of compact
spaces.

Apply Steps 1.{8.

Step 10. There is a mapping F : X ! XD which is 1{1.

By Step 6. and Step 8. for each d 2 D there is a mapping Fd : X ! Xd

such that Fd1 = Fd1d2Fd2 for d2 � d1. This means that there exists a mapping
F : X ! XD [1, p. 138]. Let us prove that F is 1{1. Take a pair x; y of distinct
points ofX . There exists an a 2 A such that xa = pa(x) and ya = pa(y) are distinct
points of Xa. Now, there exists an (a; a) such that f(a;a)(xa) and f(a;a)(ya) are
distinct points of X(a;a). From Step 4. it follows that there is a d 2 D such that
Fd(x) and Fd(y) are distinct points of Xd. Thus, F is 1{1.

Step 11. The mapping F is a homeomorphism onto XD. Let y be a point
of XD. Let us prove that there exists a point x 2 X such that F (x) = y. For
each d 2 D we have a point yd = Fd(y). Now, we have the points g(a;a)Fd(y)

in X(a;a) and the subsets Ya = f�1(a;a)
(g(a;a)Fd(y)) of Xa. Let U be an open

neighborhood Ya. There exists an open neighborhood V of g(a;a)Fd(y) such that

f�1(a;a)
(V ) � U . We infer that Lsfg(b;b)(Yb) : b � ag � Ya since g(a;a)Fd(y) =

limfg(a;a)(b;b)g(b;b)Fd(y) : b � ag and the diagrams (6) commute. By virtue of [6,
Lemma 2.1] it follows that there exists a non-empty closed subset Cd of limX such
that pb(Cd) � Yb. The family fCd : d 2 Dg has the �nite intersection property.
This means that X 0 =

T
fCd : d 2 Dg is non-empty. For each x 2 X 0 we have

Fd(x) = Fd(y), d 2 D. Thus, F (y) = x. The proof is completed.

By the similar method of proof we obtain the following theorem.

Theorem 10. Let X = fXa; pab; Ag be an approximate inverse system of
compact non-metric spaces with surjective bonding mappings pab. If each Xa is a
limit of a usual �-directed inverse system X(a) = fX(a;); f(a;)(a;�);�ag of compact
spaces with w(X(a;)) � � , then:

1. there exists a usual �-directed inverse system XD = fXd; Fde; Dg whose inverse
limit XD is homeomorphic to X = limX,

2. every Xd is a limit of an approximate inverse system fX(a;a); g(a;a)(b;b); Ag
of compact spaces X(a;a),

3. if the mappings pab and f(a;)(a;�) are monotone, then g(a;a)(b;b) and Fde are
monotone.

Corollary 3. Let X = fXn; pnm;Ng be an approximate inverse sequence of
compact non-metric spaces with surjective bonding mappings pnm. If each Xn is a
limit of a usual �-directed inverse system X(n) = fX(n;); f(n;)(n;�);�ng of metric
compact spaces, then:
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1. there exists a usual �-directed inverse systemXD = fXd; Fde; Dg whose inverse
limit XD is homeomorphic to X = limX,

2. every Xd is a limit of an approximate inverse sequence fX(n;n); g(n;n)(m;m);Ng
of compact metric spaces X(n;n);

3. if the mappings pnm and f(n;)(n;�) are monotone, then g(n;n)(m;m) and Fde
are monotone.

Let P be a topological property of spaces.

Theorem 11. Let X = fXa; pab; Ag be an approximate inverse system of
compact non-metric spaces with surjective bonding mappings pab and let P be a
topological property of spaces such that:

1. each Xa is a limit of a usual �-directed inverse system X(a) =
fX(a;); f(a;)(a;�);�ag of metric compact spaces with property P,

2. if Xd is a limit of an approximate inverse system fX(a;a); g(a;a)(b;b); Ag of
compact metric spaces X(a;a) with property P, then Xd has P,

3. if Y is a limit of �-directed usual inverse system of compact spaces with prop-
erty P, then Y has P.

Then X = limX has the property P.

3. Applications

Lemma 9. Let X = fXn; pnm;Ng be an approximate inverse sequence of locally
connected metric continua. If the bonding mappings are monotone and surjective,
then X = limX is locally connected.

Proof. There exists a usual inverse sequence Y = fYi; qij ;Mg such that Yi =
Xni , qij = pnini+1pni+1ni+2 . . . pnj�1nj for each i; j 2 N and a homeomorphism
H : limX ! limY [2, Proposition 8]. Each mapping qij as a composition of the
monotone mappings is monotone. This means that Y is a usual inverse sequence of
locally connected continua with monotone bonding mappings qij . Hence limY is
locally connected. We infer that X = limX is locally connected since there exists
a homeomorphism H : limX! limY.

Lemma 10. Let X = fXa; pab; Ag be an approximate inverse system of locally
connected continua such that card(A) = @0. Then X = limX is locally connected.

Proof. By virtue of Lemma 3 there exists a countable well-ordered subset B of
A such that the collection fXb; pbc; Bg is an approximate inverse sequence and limX
is homeomorphic to limfXb; pbc; Bg. From Lemma 9 it follows that limfXb; pbc; Bg
is locally connected. Hence X = limX is locally connected.

Lemma 11. Let X = fXa; pab; Ag be an approximate inverse system of locally
connected metric continua and monotone bonding mappings. Then X = limX is
locally connected.

Proof. If card(A) = @0 then we apply Lemma 10. If card(A) � @1 then from
Corollary 1 it follows that X = limX is homeomorphic to the limit of a �-directed
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usual inverse system fX�; q��;�g, where each X� is a limit of an approximate
inverse subsystem fX ; p��;�g, card(�) = @0. From Lemma 10 it follows that
each Xa is locally connected. By Theorem 3 we infer that the limit of fX�; q�� ;�g
is locally connected. Hence, X is locally connected since X is homeomorphic to
limfX�; q�� ;�g.

Theorem 12. Let X = fXa; pab; Ag be an approximate inverse system of
locally connected continua and monotone bonding mappings. Then X = limX is a
locally connected continuum.

Proof. By virtue of Theorem 3 and Remark 1 every Xa is a limit of a usual �-
directed inverse system X(a) = fX(a;); f(a;)(a;�);�ag of metric locally connected
continua with monotone bonding mappings f(a;)(a;�). From Theorem 9 it fol-
lows that there exist : 1) a usual �-directed inverse system XD = fXd; Fde; Dg
whose inverse limit XD is homeomorphic to X = limX; 2) every Xd is a limit of
an approximate inverse system fX(a;a); g(a;a)(b;b); Ag of compact metric spaces
X(a;a) and 3) if the mappings pab and f(a;)(a;�) are monotone, then g(a;a)(b;b)
and Fde are monotone. Now, every Xd as the limit of approximate inverse system
fX(a;a); g(a;a)(b;b); Ag is locally connected because of Lemma 11. Finally, X is
locally connected since X is homeomorphic to XD = limXD and XD is locally
connected (Theorem 3).

We shall say that a non-empty compact space is perfect if it has no isolated
points.

A continuum is said to be totally regular [12, p. 47] if for each x 6= y in X

there is a positive integer n and perfect subsets A1, . . . , An of X such that xi 2 Ai

for i = 1; . . . ; n implies that fx1; . . . ; xng separates x from y in X .

Lemma 12. [12, Proposition 7.4] Each totally regular continuum is hereditarily
locally connected and rim-�nite.

The following theorem is a part of [12, Theorem 7.15].

Theorem 13. If X is a continuum then the following conditions are equiva-
lent:

1. X is totally regular,

2. X is homeomorphic to limfXa; fab;�g such that each Xa is a totally regular
continuum and each fab is a monotone surjection.

Theorem 14. [12, Theorem 7.7] Let X = fXa; pab; Ag be an inverse system
of totally regular continua Xa and monotone surjective mappings pab. Then X =
limX is totally regular.

Theorem 15. Let X be a non-metric totally regular continuum. There exists
a �-directed inverse system X = fXa; pab; Ag such that each Xa is totally regular,
each fab is a monotone surjection and X is homeomorphic to limX.

Proof. Apply [12, Theorem 9.4], Theorem 14 and Lemma 3.5 of [14].
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Now we shall prove the following theorem.

Theorem 16. Let X = fXn; pnm;Ng be an approximate inverse sequence
of totally regular metric continua. If the bonding mappings are monotone and
surjective, then X = limX is totally regular.

Proof. There exists a usual inverse sequence Y = fYi; qij ;Mg such that Yi =
Xni , qij = pnini+1pni+1ni+2 . . . pnj�1nj for each i; j 2 N and a homeomorphism
H : limX ! limY [2, Proposition 8]. Each mapping qij as a composition of the
monotone mappings is monotone. This means that Y is a usual inverse sequence
of totally regular continua with monotone bonding mappings qij . By virtue of
Theorem 14 limY is totally regular. We infer that X = limX is totally regular
since there exists a homeomorphism H : limX! limY.

Theorem 17. Let X = fXa; pab; Ag be an approximate inverse system of
totally regular continua such that card(A) = @0. Then X = limX is totally regular.

Proof. By virtue of Lemma 3 there exists a countable well-ordered subset
B of A such that the collection fXb; pbc; Bg is an approximate inverse sequence
and limX is homeomorphic to limfXb; pbc; Bg. From Theorem 16 it follows that
limfXb; pbc; Bg is totally regular. Hence X = limX is totally regular.

Theorem 18. Let X = fXa; pab; Ag be an approximate inverse system of
totally regular continua and monotone bonding mappings. If w(Xa) < � < card(A)
for each a 2 A, then X = limX is a totally regular continuum.

Proof. By virtue of Theorem 7 (for � = @0) there exists a �-directed inverse
system fX�; q�� ; Tg, where each X� is a limit of an approximate inverse subsystem
fX ; p��;�g, card(�) = @0. From Theorem 17 it follows that every X� is totally
regular. Theorem 14 completes the proof.

Theorem 19. Let X = fXa; pab; Ag be an approximate inverse system of
totally regular metric continua and monotone bonding mappings. Then X = limX
is totally regular continuum.

Proof. If card(A) = @0 then we apply Theorem 17. If card(A) � @1 then from
Theorem 18 it follows that X is totally regular.

Theorem 20. Let X = fXa; pab; Ag be an approximate inverse system of
totally regular non-metric continua with surjective monotone bonding mappings pab.
Then X = limX is totally regular.

Proof. By virtue of Theorem 15 every Xa is a limit of a usual �-directed in-
verse system X(a) = fX(a;); f(a;)(a;�);�ag of metric totally regular continua with
monotone bonding mappings f(a;)(a;�). From Theorem 9 it follows that there ex-
ist: 1) a usual �-directed inverse system XD = fXd; Fde; Dg whose inverse limit
XD is homeomorphic to X = limX, 2) every Xd is a limit of an approximate in-
verse system fX(a;a); g(a;a)(b;b); Ag of compact metric spaces X(a;a) and 3) if the
mappings pab and f(a;)(a;�) are monotone, then g(a;a)(b;b) and Fde are monotone.
Now, every Xd as the limit of approximate inverse system fX(a;a); g(a;a)(b;b); Ag
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is totally regular because of Theorem 19. Finally, X is totally regular since X is
homeomorphic to XD = limXD and XD is totally regular (Theorem 14).

Theorem 21. Let X = fXa; pab; Ag be an approximate inverse system of
totally regular continua with surjective monotone bonding mappings pab. Then X =
limX is totally regular.

Proof. Apply Theorems 19 and 20.
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