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CONVEXITY AND REFLEXIVITY

Sergio Falcon and Kishin Sadarangani

Abstract. In recent years some papers have appeared containing generalizations of the
concept of convexity with the help of the notion of measure of noncompactness. Furthermore,
some authors have introduced the concept of near uniform convexity by means of the Hausdor�
measure and of weak near uniform convexity by means of the De Blasi measure. In this work we
present a generalization of these concepts by means of a general set quantity.

1. Introduction

The concept of convexity plays an important role in the classical geometry of
normed spaces. It is frequently used in the metric �xed point theory and other
branches of nonlinear analysis [6, 9, 10, 13, 15].

In recent years some papers have appeared containing generalizations of the
concept of convexity with the help of the notion of measure of noncompactness.
Namely, Hu� [15] and Goebel and Sekowski [14] introduced independently the con-
cept of near uniform convexity which seems to be a natural generalization of uniform
convexity de�ned by Clarkson [9]. Recently Cabrera [8] has introduced the concept
of weak near uniform convexity using the De Blasi measure of weak noncompact-
ness.

In order to recall this concept let us introduce some notation. Assume (E; k k)
is an in�nite-dimensional Banach space with the zero element �. Denote by BE

and SE the closed unit ball and the unit sphere in E, respectively. For a subset X
of E we denote by convX the convex hull and by ConvX the closed convex hull
of X .

Moreover, if we assume that X is a nonempty and bounded set in E, then the
quantity �(X) de�ned in the following way:

�(X) = inff " > 0 : there exists a compact set Y such that X � Y + "BE g

is called the Hausdor� measure of noncompactness of the set X . For the properties
of the function � we refer to [2].
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We say that a Banach space E is nearly uniformly convex (NUC, for short) if
for each " > 0 there exists � > 0 such that if X is a convex closed subset of BE

with dist(�;X) > 1 � �, then �(X) 6 " [15]. For further purposes we recall that
this de�nition is equivalent to the following one [1]:

E is NUC if and only if lim
"!0

supf�(F (f; ")) : f 2 SE� g = 0

where E� denotes the dual space of E and F (f; ") is de�ned as the slice of BE ,
that is to say

F (f; ") = fx 2 BE : f(x) > 1� " g:

Similarly we de�ne the next concept. Namely, a space E is said to be locally
nearly uniformly convex (LNUC) if

lim
"!0

�(F (f; ")) = 0 for any f 2 SE� :

Finally, recall that a space E is referred to as nearly strictly convex (NSC) if
its unit sphere does not contain noncompact and convex sets. Equivalently, E is
NSC if �(F (f; 0)) = 0 for each f 2 SE� such that F (f; 0) 6= ;.

Notice that NUC ) LNUC ) NSC, but no converse implication is true. The
concepts introduced above have a lot of applications in geometry of Banach spaces
and in �xed point thoery [1, 13, 15, 18]. For example, they enable us to select some
di�erent classes of Banach spaces which are equivalent from the viewpoint of the
classical geometry of Banach spaces.

Let us also mention that each NUC or LNUC Banach space is re
exive but in
general the converse implication is not true [1].

Recently Cabrera [8] has generalized the above mentioned concepts with the
help of the notion of the De Blasi measure of weak noncompactness. Namely, if we
assume that X is nonempty and bounded in E and if we denote byM!

E the family
consisting of all relatively weakly compact subsets of E, the quantity �(X) de�ned
in the following way

�(X) = inff " > 0 : there exists a set Y 2M!
E such that X � Y + "BE g

is called the De Blasi measure of weak noncompactness of the set X .

Observe that in the case when E is re
exive we have �(X) = 0 for every
X 2 ME. We refer to [5, 11] for more details.

We give the following de�nitions formally analogous to the above mentioned
which appear in [8].

We say that a Banach space E is weakly nearly uniformly convex (WNUC) if

lim
"!0

supf�(F (f; ")) : f 2 SE� g = 0:

A Banach space is said to be weakly locally nearly uniformly convex (WLNUC) if

lim
"!0

�(F (f; ")) = 0 for any f 2 SE� :
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Finally, a Banach space E is referred to as weakly strictly convex (WNSC) if

�(F (f; 0)) = 0 for each f 2 SE� such that F (f; 0) 6= ;:

It is proved in [8] that the concepts of WNUC and WLNUC do not select new
classes of Banach spaces but they create a characterization of re
exivity. Moreover,
an example of nonre
exive Banach space is given in [8] which is WNSC.

In the above mentioned generalizations of the concept of convexity the main
tools are the Hausdor� measure of noncompactness and the De Blasi measure of
weak noncompactness. Notice that these measures are the Hausdor� distance be-
tween a nonempty and bounded subset C of E and a certain family of nonempty
and bounded subsets of this space (relatively compact subsets of E and relatively
weakly compact subsets of E, respectively).

In this paper we study some facts about the re
exivity and the convexity
obtained by using the Hausdor� distance to a certain family of nonempty and
bounded subsets of E. This generalization of measures of noncompactness has
been treated in [4].

2. Hausdor� distance

For x 2 E, C � E and for " > 0 we write

d(x;C) = inff kx� yk : y 2 C g; B(C; ") = f y 2 E : d(y; C) 6 " g:

Observe that B(C; ") = C+"BE. The family of all nonempty and bounded susbets
of E will be denoted by ME .

For C;D 2 ME we consider the Hausdor� nonsymmetric distance de�ned in
the following way:

H 0(C;D) = inff " > 0 : C � B(D; ") g = inff " > 0 : C � D + "B g:

The Hausdor� distance between C and D is de�ned as

H(C;D) = maxfH 0(C;D); H 0(D;C)g:

Observe that the function H is a metric on the family Mbc
E where Mbc

E = fC 2
ME : C = C g.

In what follows let N be a nonempty subfamily of ME. Consider two real
functions de�ned on the family ME in the following way:

H 0
N (C) = inffH 0(C;P ) : P 2 N g; HN (C) = inffH(C;P ) : P 2 N g:

For further goals let us recall that the function HN was introduced in [3] on a
complete metric space S. The main result obtained in [3] is formulated in the
following proposition.

Proposition 1. Let N be a nonempty subfamily of ME satisfying the condi-
tion M 2 N and ; 6= P � M =) P 2 N . Then the equality H 0

N (C) = HN (C)
holds for every C 2ME.
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In what follows we recall the concept of set quantity which appears in [4].

Definition 1. A mapping � : ME ! [0;1) is said to be a set quantity if it
satis�es the following conditions for C;D 2ME and � 2 K:

1. �(C [D) = maxf�(C); �(D)g,

2. �(�C) = j�j�(C),

3. �(C +D) 6 �(C) + �(D),

4. �(convC) = �(C).

From this de�nition it can be easily seen that � satis�es:

(a) �(f0g) = 0,

(b) C � D =) �(C) 6 �(D),

(c) �(C) = �(C).

The family ker� de�ned in the usual way, ker� = fC 2 ME : �(C) = 0 g,
will be called the kernel of the quantity �.

If ker� is the collection of all nonempty and relatively compact subsets of E
then � is referred to as a measure of noncompactness. In the case when ker� is
the family of all nonempty and relatively weakly compact subsets of E we will say
that � is a measure of weak noncompactness.

In what follows we recall a theorem which appears in [4] and which gives us a
way to construct set quantities.

Theorem 1. Let N be a subfamily of ME satisfying the following conditions:
1. N 6= ;. 2. P;M 2 N () P 6= ;, M 6= ; and P [M 2 N . 3. � 2 K and P 2
N =) �P 2 N . 4. P;M 2 N =) P +M 2 N . 5. P 2 N =) convP 2 N .
6. N is closed in the topology generated by the distance H on ME.

Then HN has the following properties: (a) HN is a set quantity. (b) kerHN =
N . (c) N =ME () HN (BE) = 0. (d) N 6=ME () HN (BE) = 1. (e) If �
is other set quantity in E with ker� = N then � 6 �(BE)HN .

3. Convexity induced by a set quantity

We start with the following de�nition.

Definition 2. We say that a Banach space E is �-uniformly convex (�-UC,
for short) if

lim
"!0

supf�(F (f; ")) : f 2 SE� g = 0;

where � is a set quantity.

Similarly we de�ne the next concept.

Definition 3. A space E is said to be �-locally uniformly convex (�-LUC,
for short) if

lim
"!0

�(F (f; ")) = 0 for each f 2 SE� :
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Finally, we give the following de�nition.

Definition 4. A space E is referred to as �-strictly convex (�-SC, for short)
if �(F (f; 0)) = 0 for each f 2 SE� such that F (f; 0) 6= ;.

Notice that �-UC =) �-LUC =) �-SC. A natural question is if the converse
implications are true.

When � = �, the Hausdor� measure of noncompactness, there exist examples
which prove the converse implications are not true [1].

When � = �, the De Blasi measure of noncompactness, in [8] it is proved
that the concepts of �-UC and �-LUC coincide with the concept of re
exivity and,
moreover, an example of nonre
exive Banach space is given which is �-SC.

Notice that the measures � and � satisfy the Cantor condition [2]. We recall
this de�nition.

Definition 5. A set quantity � satis�es the Cantor condition if for each
decreasing sequence (Xn)n=1;2;... of nonempty, closed and bounded subsets of E
such that �(Xn)! 0 when n!1, the intersection of all Xn,

T
Xn is nonempty.

In the following theorem we prove the main result.

Theorem 2. Let � be a set quantity in E which satis�es the Cantor condition.
If E is �-LUC, then E is re
exive.

Proof. Fix a functional f 2 SE� and consider the sequence of the slices
fF (f; 1

n
)g. Observe all the slices are nonempty, convex, closed and F (f; 1

n
) �

F (f; 1

n+1
) for n = 1; 2; . . . . In view of our assumption we have lim�(F (f; 1

n
)) = 0

when n!1. Taking into account the properties of the De Blasi measure of weak
noncompactness � [3] we can deduce

1\
n=1

F
�
f;

1

n

�
6= ;:

On the other hand we have

1\
n=1

F
�
f;

1

n

�
= F (f; 0)

which implies F (f; 0) 6= ; for each f 2 SE� .

In other words, we have that there exists x 2 SE such that f(x) = 1. This
means that every functional f of SE� attains its norm on the unit sphere SE . The
same is also true for an arbitrary functional f 2 E� (f 6= �) since the functional
f=kfk belongs to SE� .

Finally we conclude, in virtue of James theorem [16], that E is re
exive. Thus
the proof is complete.

This result generalizes one obtained in [18]. Moreover, we can obtain the
following characterization of re
exive spaces.
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Theorem 3. A Banach space E is re
exive if and only if there exists a set
quantity � satisfying the Cantor condition such that E is �-LUC.

Proof. If E is re
exive then we take the set quantity � and the result is obvious.
The converse implication is proved in the preceding theorem.

Some interesting questions are the following.

Does there exist a set quantity such that it does not satisfy the Cantor condi-
tion?

Do there exist a Banach space E and a set quantity � such that E is �-LUC
and is not re
exive?

In order to answer these questions we will study the convexity induced by the
family of all weakly conditionally compact subsets. Recall that a subset A of E
is called weakly conditionally compact (WCC) if every sequence in A has a weak
Cauchy subsequence. It is obvious that WCC subsets are bounded. We denote by
PWCC(E) the family of all nonempty and weakly conditionally compact subsets
of E.

Proposition 2. PWCC(E) satis�es the conditions of Theorem 1.

Proof. The conditions 1{4 follow immediately. The condition 5 is proved in [7].
The condition 6 appears in [12, Exercise 2, p. 237].

In virtue of Theorem 1, we can consider the set quantity HN where N =
PWCC(E) = ME. By Rosenthal characterization of Banach spaces containig no
copies of l1, if E contains no copy of l1 then N = PWCC(E) =ME and by (c) of
Theorem 1, HN is identically equal to zero in E. Consequently, E is an HN -LUC
space.

Thus, every nonre
exive Banach space which contains no copy of l1 (c0, the
James space J , for example) solves the second question mentioned above.

On the other hand, in virtue of Theorem 1, the set quantity HN does not
sastisfy the Cantor condition in the spaces c0 and J and this fact answers the �rst
question mentioned above.

Proposition 3. l1 is not HN -SC.

Proof. As l1 is a Shur space, the weakly conditionally compact subsets are
relatively norm compact and, as relatively norm compact subsets are, obviously,
weakly conditionally compact, we deduce HN = � in l1. But l1 is not �-SC as it is
proved in [14], and the proof is complete.

In what follows, we prove that under certain assumptions on the set quantity
�, there exist �-SC Banach spaces which are not �-LUC.

Recall that a Banach space E is said to be strictly convex (SC) if kx+y
2
k < 1

whenever x; y 2 SE and x 6= y.

Proposition 4. Let E be an SC Banach space and f 2 SE� . If F (f; 0) is
nonempty, then F (f; 0) contains only one element.
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Proof. Suppose x1; x2 2 F (f; 0) and x1 6= x2. From F (f; 0) = fx 2 SE� :
f(x) = 1 g we infer

f

�
x1 + x2

2

�
=

1

2
(f(x1) + f(x2)) = 1:

On the other hand, as f 2 SE� and x1; x2 2 SE� we have

1 = f

�
x1 + x2

2

�
6 kfk �





x1 + x2
2





 6




x1 + x2

2





 6 1

and this implies kx1+x2
2

k = 1. This fact contradicts our hypothesis.

Notice that if � is a set quantity such that the subsets containing only one
element belong to its kernel, then every SC Banach space is �-SC.

In what follows we recall a theorem due to Clarkson [9] which states that any
separable Banach space may be given a new norm, equivalent to the original one,
with respect to which the space is strictly convex. Finally, we are ready for another
mentioned question.

Theorem 4. Let � be a set quantity which satis�es the Cantor condition and
its kernel contains the singletons. Under these assumptions there exists a �-SC
Banach space which is not �-LUC.

Proof. We consider a nonre
exive and separable Banach space E (l1, for
example). By Clarkson's theorem there exists an equivalent norm jjj � jjj, such that
(E; jjj � jjj) is SC Banach space. In virtue of the last proposition and Theorem 2,
we deduce that (E; jjj � jjj) is not �-LUC.

Finally, notice that the set quantity given by kAk = supf kxk : x 2 A g has
the kernel which does not contain the singletons.

An interesting question is to give other examples of set quantities such that
the singletons do not belong to their kernels.
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