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ON SPLITTING RINGS FOR
AZUMAYA SKEW GROUP RINGS

George Szeto and Lianyong Xue

Abstract. Let B be a ring with 1, G an automorphism group of B of order n for some
integer n, B * G the skew group ring over B with a free basis {g | ¢ € G}, B the set of elements
in B fixed under G, and G the inner automorphism group of B x G induced by G. It is shown
that when the center C' of B is a G-Galois algebra over C¢ with Galois group G|c =2 G or B is
a G-Galois extension of B¢ and n~! € B, then, B x G is an Azumaya algebra if and only if so is
(B x G)¢, and some splitting rings of B x G, (B * G)¢ and B are shown to be the same.

1. Introduction

Let B be a ring with 1, C' the center of B, G an automorphism group of B
of order n for some integer n, B * G a skew group ring over B with a free basis
{g| g€ G}, BY the set of elements in B fixed under G, G the inner automorphism
group of B * G induced by G, that is, g(f) = gfg ' for each f € BxG and g € G.
We note that G restricted to B is G.

In [1] and [2], the Azumaya skew group ring B*G over C was characterized in
terms of Azumaya Galois extension B of B¢ and the H-separable extension B * G
of B respectively. Also in [3], the commutator subring of B in B x G was studied.
In the present paper, under a Galois condition on B, the Azumaya skew group ring
B % G is characterized in terms of the Azumaya fixed subring (B * G)¢ under G
and the Azumaya coefficient ring B, that is, when C is a G-Galois algebra over C¢
with Galois group G|c & G or B is a G-Galois extension of BY and n~! € B, then,
B % G is an Azumaya algebra if and only if so is (B * G)“.

Let A be an Azumaya algebra. It is well known that any separable maximal
commutative subalgebra of A is a splitting ring for A ([4], Theorem 5.5, p. 64). In
this paper, we call F" a splitting ring for A if F is a separable maximal commutative
subalgebra of A. We then show that when C is a G-Galois algebra over C¢ with
Galois group G|¢ =2 G, F is a splitting ring for the Azumaya algebra B * G con-
taining C' if and only if F'is a splitting ring for the Azumaya algebra B. Moreover,
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when B is a G-Galois extension of BY and n~' € B, F is a splitting ring for the
Azumaya algebra B G containing the center of (B+G)%, then, F is a splitting ring
for (B x G)a if and only if G is Abelian. At the end, two examples are constructed
to demonstrate the results.

This paper was written under the support of a Caterpillar Fellowship at
Bradley University. We would like to thank Caterpillar Inc. for the support.

2. Basic definitions and notations

Throughout this paper, B will represent a ring with 1, G an automorphism
group of B, C the center of B, B * G a skew ring in which the multiplication is
given by gb = g(b)g for b € B and g € G, BY the set of elements in B fixed under
G, Z the center of B x G, G the inner automorphism group of B * G induced by G,
that is, g(f) = gfg~" for each f € B* G and g € G. We note that G restricted to
Bis G.

Let A be a subring of a ring B with the same identity 1. We denote Vp(A)
the commutator subring of A in B. We call B a separable extension of A if there
exist {a;,b; in B, i = 1,2,...,m for some integer m } such that > a;b; = 1, and
S ba; @b; = > a; @ b;b for all b in B where @ is over A, and a ring B is called
a H-separable extension of A if B ®4 B is isomorphic to a direct summand of
a finite direct sum of B as a B-bimodule. An Azumaya algebra is a separable
extension of its center. B is called a G-Galois extension of B¢ if there exist elements
{¢i,d; in B,i=1,2,...,m} for some integer m such that 3" | ¢;g(d;) = 61,4. The
set {c;,d;} is called a G-Galois system for B. B is called a DeMeyer-Kanzaki G-
Galois extension if B is an Azumaya C-algebra and C is G-Galois algebra with
Glc 2 G. If Ais an Azumaya C-algebra and S is a commutative C-algebra such
that A®¢ S = Homg(FE, E) for some S-progenerator E, then S is called a splitting
ring for the Azumaya algebra A. It is well known (Theorem 5.5 in [4] on p. 64)
that any separable maximal commutative subalgebra of A is a splitting ring for A.
In the present paper, S is called a splitting ring for A if S is a separable maximal
commutative subalgebra of A.

3. Characterizations of Azumaya skew group rings

In this section we shall characterize an Azumaya skew group ring B*G in terms
of (B *G)% and B under a Galois condition that C is a G-Galois algebra over C¢
with Galois group G|¢ = G or B is a G-Galois extension of B and n™! € B. We
begin with a Lemma.

LeMMA 3.1. If C is a G-Galois algebra over C¢ with Galois group G|c = G,
then

(a) B x G is H-separable over B.

(b) B G is H-separable over (B % G)C.
(c) The center of Bx G, Z = CY.

(d) Vp.c(C) = B.
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Proof. (a) Since C is a G-Galois algebra over C¢ with Galois group G|¢ = G
and C C Vg.q(B), Vg.g(B) is G-Galois extension of (VB*G(B))a with the same
Galois system as C. Hence, BxG is H-separable extension of B by ([3], Theorem 1).

(b) Since C is a G-Galois extension of C¢ with Galois group G|¢ 2 G, B*G is
a G-Galois extension of (B x G)E with the same Galois system as C. But G acts on
B G is inner, so B G is H-separable extension of (B x G)C by ([7], Corollary 3).

(c) By (a), B* G is H-separable over B. Moreover, B is a direct summand of
B x G as a left B-module, so B satisfies the double centralizer property in B x G
(8], Proposition 1.2), that is, B = Vg.q(Vs.c(B)). This implies that the center
of B x G is contained in B. Thus, Z = C¢.

(d) Clearly, B C Vp.(C). Conversely, for each } ; bygin Vp.c(C), we have
(X geq be9) = (3 eq bgg)e for each cin O so cby = byg(c), that is, by(c—g(c)) =0
for each ¢ € G and ¢ € C. But C is a commutative G-Galois extension of C%, so
the ideal of C' generated by {c¢—g(c) | c € C'} is C ([4], Proposition 1.2-(5)). Thus
by = 0 for each g # 1. But then > _,b,9 = b1 € B. Hence Vp.¢(C) C B, and so
Vi(C) = B.m

geG

THEOREM 3.2. Assume C is a G-Galois algebra over C¢ with Galois group
G|c = G. The the following statements are equivalent:

(1) B x G is Azumaya.
(2) (B %G is Azumaya.
(3) B is Azumaya.

Proof. (1) <= (2). Since C is a G-Galois algebra over C“ with Galois group
G|c = G, there exists an element ¢ € C such that Trg(c) = 1, where Trg( ) is
the trace of G ([4], Corollary 1.3-(1)). By Lemma 3.1-(b), B x G is H-separable
over (B x G)a and B x G is a finitely generated and projective left module over
(B % G)C ([5], Theorem 1), so (2) = (1) by ([6], Theorem 1). Conversely, since
the restriction of G to C'is G, (B*G)C is a direct summand of Bx@ as a (B*G)C-
bimodule by using the fact that Trg(c¢) = 1. Thus the separability of B x G over

Z implies the separability of (B * G)“ over Z by the argument as given on p. 120
in [5]. Since Z is contained in the center of (B * G), (B x G)“ is Azumaya. This
proves (1) = (2).

(1) = (3). Assume B % G is Azumaya. Since C is a G-Galois algebra over
CY% 7 = C% by Lemma 3.1-(c). Hence B * G is an Azumaya C%-algebra. By
Lemma 3.1-(d), Vp.q(C) = B. Therefore, B is a separable C%-algebra, (for C is
a separable C'%-algebra) by the commutator theorem for Azumaya algebras ([4],
Theorem 4.3, p. 57). Thus B is an Azumaya algebra.

(3) = (1). Since C is a G|¢-Galois algebra over C%, B x G is a H-separable
extension of B by Lemma 3.1-(a). By hypothesis, B is an Azumaya C-algebra, so
B x G is a separable extension over C' by the transitivity of separable extensions.
Noting that C is a separable C'%-algebra (for it is G-Galois), we conclude that BxG
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is a separable extension of C“. Moreover, by Lemma 1-(c), Z = CY, so B x G is
an Azumaya C%-algebra. m

THEOREM 3.3. Let B be a G-Galois extension of B¢ and n=' € B. Then,
B xG is an Azumaya algebra if and only if so is (B * G)a. In this case, the center
of (B x G)a is the center of ZG where Z is the center of B x G.

Proof. Since n™t € B, Trg(n~!) = 1. By hypothesis B is a G-Galois extension
of B, so B G is a G-Galois extension of (B * @)% with an inner Galois group G
with the same Galois system as B. Thus the argument in the proof of (1) < (2)
in Theorem 3.2 implies that BxG is an Azumaya algebra if and only if so is (B*G)a.

Next, we calculate the center of (B * G)é. Let Z be the center of B+ G. Then
the center of (B x G)¢ = (B*G)g((B *G)Y) = (Bx @)% NVga((BxG)Y) =

(B*G)% NVp.q(VB.c(ZG)). Since n™! € B, ZG is a separable Z-algebra. Hence
Vi+a(VBwa(ZG)) = ZG because B*(G is an Azumaya Z-algebra ([4], Theorem 4.3,
p. 57). Thus, the center of (B * G)¢ = (B xG)Y N (ZG) = Vg.q(ZG) N (ZG) =
Vz26(Z@G) = the center of ZG. m

4. Splitting rings

In this section, we shall show that some splitting rings for Bx G, (B * G)a and
B are the same. Recall that a splitting ring is a separable maximal commutative
subalgebra. We first give a result on the splitting rings for any Azumaya algebra.

THEOREM 4.1. Let A be an Azumaya C-algebra and D a separable commu-
tative subalgebra of A. Then (i) Va(D) is an Azumaya D-algebra, and (ii) F is
a splitting ring for A containing D if and only if F is a splitting ring for Va(D)
over D.

Proof. (i) Since A is an Azumaya C-algebra and D a separable subalgebra of
A, Va(Va(D)) = D and Va(D) is separable subalgebra of A by the commutator
theorem for Azumaya algebras ([4], Theorem 4.3, p. 57). Since D is a commutative
subalgebra of A, C' C D C the center of V4(D). Hence V4(D) is separable over D.
Moreover, the center of Va(D) = Vy, (p)(Va(D)) C Va(Va(D)) = D; and so the
center of V(D) = D, that is, V4(D) is an Azumaya D-algebra.

(ii) ( = ) Let F be a splitting ring for A containing D. Then D C F and
F =V4(F), and so F = VA(F) C Va(D). Hence VVA(D)(F) =Va(D)NVa(F) =
Va(F) = F. Thus F is a maximal commutative subalgebra of V4(D). Moreover,
since F' is separable over C and C C the center of V4(D) = D C F = the center of
F, F is separable over D. Thus, F' is splitting ring for V4 (D) over D.

( <) Let F be splitting ring for V4(D) over D. Then D C F and F =
VVA(D)(F)v and so VA(F) C VA(D). Hence VA(F) = VA(D)HVA(F) = VVA(D)(F) =
F. Thus F is a maximal commutative subalgebra of A. Moreover, since F is
separable over D and D is separable over C, F' is separable over C'. Therefore, F’
is splitting ring for A. m
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THEOREM 4.2. Assume B is a DeMeyer-Kanzaki G-Galois extension (that is,
B is an Azumaya C-algebra and C is a G-Galois extension of C¢ with Glc = G ).
Then, F' is a splitting ring for the Azumaya algebra B x G containing C if and only
if F is a splitting ring for the Azumaya algebra B.

Proof. ( = ) Assume F is a splitting ring for the Azumaya algebra B x G
containing C. Then C C F and F = Vp.q(F). Hence F = Vp.¢(F) C Vp.g(G).
Since C is a G-Galois extension of CY Vg.q(C) = B by Lemma 3.2-(d).
Thus VB*G(F) - VB*G(C) = B. Therefore VB*G(F) = VB(F) But then
F =Vp.q(F)=Vg(F); and so F is a splitting ring for B.

( <= ) Let F be a splitting ring for the Azumaya algebra B. Then C' C F
and F' = Vg(F). Hence Vp.q(F) C Vpic(C). By Lemma 3.2-(d) again,
Vi:a(C) = B, so Vp.g(F) C Vg.q(C) = B. Thus Vp.a(F) = Vp(F); and so
F =Vg(F) = Vp.a(F). Therefore, F is a splitting ring for the Azumaya algebra
B x G containing C'. m

Next, we consider another Galois condition on B.

THEOREM 4.3. Let B be a G-Galois extension of B¢, n™' € B and B * G an
Azumaya algebra. Then, F' is a splitting ring for B x G containing D, where D is
the center of (B G)C if and only if F is a splitting ring for Va.q(D).

Proof. This is an immediate consequence of Theorem 4.1-(ii) for the Azumaya
algebra B+ G. m

COROLLARY 4.4. Assume B is a G-Galois extension of BY, n=' € B and
B xG an Azumaya algebra. Let G be an Abelian group. Then, F' is a splitting ring
for B x G containing ZG if and only if F is a splitting ring for (B * G)¢.

Proof. Since G is Abelian, n=! € B and Z is the center of B * G, ZG is a
commutative separable subalgebra. Let D = ZG. Then D is the center of (B G)E
by Theorem 3.4. Moreover, Vg.q(D) = Vg.¢(ZG) = (B*G)a7 so by Theorem 4.3,
F is a splitting ring for B * G containing ZG (= D) if and only if F is a splitting
ring for (B G)¢ (=Vwg(D)). m

THEOREM 4.5. Assume B is a G-Galois extension of B¢, n™' € B and BxG
is Azumaya algebra. Let F' be a splitting ring for B x G containing D, where D is
the center of (B*G)Y. Then, F is a splitting ring for (B G)Y if and only if G is
Abelian.

Proof. ( =) Since F is a splitting ring for B * G, F' = Vp.g(F). Now,

F=Vg.qa(F) 0 F =V, (F)= (BxG)“NVp.q(F) = (B+xG)“NF. Thus

F C(BxG)% and so F C Vg.q(ZG). Therefore, Vp.c(Vp:q(ZG)) C Vpug(F) =
F. Since n~! € B, ZG is a separable Z-algebra. Hence Vg.q(Vp.c(ZG)) = ZG
because B x G is an Azumaya Z-algebra ([4], Theorem 4.3, p. 57). Thus, ZG C F.
But F' is commutative, so G is Abelian.

( <) Assume G is Abelian. Since Z is the center of BxG, ZG is commutative.
Hence ZG C F, and so F = V.g(F) C VB.g(ZG). Thus F = Vp.q(F) =
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VB*G(ZG) n VB*G(F) = (B * G)a n VB*G(F) =V

(B*G)E(F)' Therefore, F' is a
G m

splitting ring for (B x G)

By Corollary 4.4 and Theorem 4.5, under the hypothesis of Theorem 4.3, two
of the following statements imply the third:

(1) F is a splitting ring for B * G containing the center of (B % G)a.

(2) F is a splitting ring for (B % G)%.

(3) G is Abelian.

We conclude the present paper with two examples of skew group rings B * G
to show the relationship of the splitting rings between B x G, B and (B * G)¢.

EXAMPLE 1. Let B = Q[i,j,k] = Q@ + Qi + Qj + Qk be the quaternion
algebra over the rational field Q, G = { g1 = 1,4i,95,9x | gi(x) = izi ', g;(z) =
jrj L ge(x) = kxk™! for all z € B}, and A = B * G. Then

(1) B is a G-Galois extension of BY with G-Galois system {3, —1i, —1j, —$k;
7, %k} and 47! € B.

2) BY = Q, so A is an Azumaya Q-algebra ([1], Theorem 3.1).
3) D = QJi] = Q + Qi is a commutative separable @-subalgebra of A.

(4) Va(D) = D+ Dg; + (Qj + Qk)g; + (Qj + Qk)gy. is an Azumaya D-algebra
by Theorem 4.1-(i).

(5) F = D + Dy is a splitting ring for V4(D), so, by Theorem 4.1-(ii), F' =
D + Dy; is also a splitting ring for A.

(6) (B*G)% = Vi,a(QG) = QG which is a commutative separable subalgebra,
so QG is a splitting ring for (B * G)“ (= Q@) and for B * G by Theorem 4.3 (or
Corollary 4.4 for G is Abelian).

ExXAMPLE 2. Let M2(Q) be the matrix ring of order 2 over the rational field @,
B = M(Q) ® M2(Q), g: B — B by g(a,b) = (b,a) for all (a,b) € B. Then,

(1) g is an automorphism of B of order 2.

(2) Let G = {1,g}. Then B is a G-Galois extension of B with the Galois
system {(Ll = (I, 0),a2 = (0, I); by = (I, 0),bs = (07 I)}7 that is, a1b1 + asbs = (I, I)
and a1 g(b1) + a2g(b2) = (0,0), where I is the identity of M>(Q) and 0 is the zero
matrix in M»(Q).

(3) Let C be the center of B. Then C = Q ® @, and C is a G-Galois extension
of C% with the same Galois system as B and C|¢ = G.

(4) B * G is an Azumaya C%-algebra where C% = { (a,a) | a € Q } since B is
an Azumaya C-algebra by Theorem 3.2.

(5) (BxG)C =C% + CY%.

(6) Since C' is a commutative separable subalgebra of B x G, Vp.¢(C) is an
Azumaya C-algebra by Theorem 4.1-(i).

(7) VB«c(C) = B by Lemma 3.1-(d).

1 1,1
3 b3

(
(



On splitting rings for Azumaya skew group rings 69

(8) Let FF =Q [(1) (1)] +Q [(1) _01 ] Then F is a separable maximal commutative

subalgebra of M2(Q), and so F'& F' is a separable maximal commutative subalgebra
of B, that is, F' & F' is a splitting ring for B. Thus, F' & F is a splitting ring for
B % G by Theorem 4.2.
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