ON SPLITTING RINGS FOR AZUMAYA SKEW GROUP RINGS

George Szeto and Lianyong Xue

Abstract. Let *B* be a ring with 1, *G* an automorphism group of *B* of order *n* for some integer *n*, B * G the skew group ring over *B* with a free basis $\{g \mid g \in G\}$, B^G the set of elements in *B* fixed under *G*, and \overline{G} the inner automorphism group of B * G induced by *G*. It is shown that when the center *C* of *B* is a *G*-Galois algebra over C^G with Galois group $G|_C \cong G$ or *B* is a *G*-Galois extension of B^G and $n^{-1} \in B$, then, B * G is an Azumaya algebra if and only if so is $(B * G)^{\overline{G}}$, and some splitting rings of B * G, $(B * G)^{\overline{G}}$ and *B* are shown to be the same.

1. Introduction

Let B be a ring with 1, C the center of B, G an automorphism group of B of order n for some integer n, B * G a skew group ring over B with a free basis $\{g \mid g \in G\}, B^G$ the set of elements in B fixed under G, \overline{G} the inner automorphism group of B * G induced by G, that is, $\overline{g}(f) = gfg^{-1}$ for each $f \in B * G$ and $g \in G$. We note that \overline{G} restricted to B is G.

In [1] and [2], the Azumaya skew group ring B * G over C^G was characterized in terms of Azumaya Galois extension B of B^G and the H-separable extension B * Gof B respectively. Also in [3], the commutator subring of B in B * G was studied. In the present paper, under a Galois condition on B, the Azumaya skew group ring B * G is characterized in terms of the Azumaya fixed subring $(B * G)^{\overline{G}}$ under \overline{G} and the Azumaya coefficient ring B, that is, when C is a G-Galois algebra over C^G with Galois group $G|_C \cong G$ or B is a G-Galois extension of B^G and $n^{-1} \in B$, then, B * G is an Azumaya algebra if and only if so is $(B * G)^{\overline{G}}$.

Let A be an Azumaya algebra. It is well known that any separable maximal commutative subalgebra of A is a splitting ring for A ([4], Theorem 5.5, p. 64). In this paper, we call F a splitting ring for A if F is a separable maximal commutative subalgebra of A. We then show that when C is a G-Galois algebra over C^G with Galois group $G|_C \cong G$, F is a splitting ring for the Azumaya algebra B * G containing C if and only if F is a splitting ring for the Azumaya algebra B. Moreover,

AMS Subject Classification: 16 S 30, 16 W 20

 $Keywords\ and\ phrases:$ Skew group rings, Azumaya algebras, Galois extensions, splitting rings

when B is a G-Galois extension of B^G and $n^{-1} \in B$, F is a splitting ring for the Azumaya algebra B * G containing the center of $(B * G)^{\overline{G}}$, then, F is a splitting ring for $(B * G)^{\overline{G}}$ if and only if G is Abelian. At the end, two examples are constructed to demonstrate the results.

This paper was written under the support of a Caterpillar Fellowship at Bradley University. We would like to thank Caterpillar Inc. for the support.

2. Basic definitions and notations

Throughout this paper, B will represent a ring with 1, G an automorphism group of B, C the center of B, B * G a skew ring in which the multiplication is given by gb = g(b)g for $b \in B$ and $g \in G$, B^G the set of elements in B fixed under G, Z the center of B * G, \overline{G} the inner automorphism group of B * G induced by G, that is, $\overline{g}(f) = gfg^{-1}$ for each $f \in B * G$ and $g \in G$. We note that \overline{G} restricted to B is G.

Let A be a subring of a ring B with the same identity 1. We denote $V_B(A)$ the commutator subring of A in B. We call B a separable extension of A if there exist $\{a_i, b_i \text{ in } B, i = 1, 2, \dots, m \text{ for some integer } m\}$ such that $\sum a_i b_i = 1$, and $\sum ba_i \otimes b_i = \sum a_i \otimes b_i b$ for all b in B where \otimes is over A, and a ring B is called a *H*-separable extension of *A* if $B \otimes_A B$ is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule. An Azumaya algebra is a separable extension of its center. B is called a G-Galois extension of B^G if there exist elements $\{c_i, d_i \text{ in } B, i = 1, 2, \dots, m\}$ for some integer m such that $\sum_{i=1}^m c_i g(d_i) = \delta_{1,g}$. The set $\{c_i, d_i\}$ is called a G-Galois system for B. B is called a DeMeyer-Kanzaki G-Galois extension if B is an Azumaya C-algebra and C is G-Galois algebra with $G|_C \cong G$. If A is an Azumaya C-algebra and S is a commutative C-algebra such that $A \otimes_C S \cong \operatorname{Hom}_S(E, E)$ for some S-progenerator E, then S is called a splitting ring for the Azumaya algebra A. It is well known (Theorem 5.5 in [4] on p. 64) that any separable maximal commutative subalgebra of A is a splitting ring for A. In the present paper, S is called a splitting ring for A if S is a separable maximal commutative subalgebra of A.

3. Characterizations of Azumaya skew group rings

In this section we shall characterize an Azumaya skew group ring B * G in terms of $(B * G)^{\overline{G}}$ and B under a Galois condition that C is a G-Galois algebra over C^{G} with Galois group $G|_{C} \cong G$ or B is a G-Galois extension of B^{G} and $n^{-1} \in B$. We begin with a Lemma.

LEMMA 3.1. If C is a G-Galois algebra over C^G with Galois group $G|_C \cong G,$ then

(a) B * G is H-separable over B.

(b) B * G is H-separable over $(B * G)^{\overline{G}}$.

- (c) The center of B * G, $Z = C^G$.
- $(d) V_{B*G}(C) = B.$

Proof. (a) Since C is a G-Galois algebra over C^G with Galois group $G|_C \cong G$ and $C \subseteq V_{B*G}(B)$, $V_{B*G}(B)$ is \overline{G} -Galois extension of $(V_{B*G}(B))^{\overline{G}}$ with the same Galois system as C. Hence, B*G is H-separable extension of B by ([3], Theorem 1).

(b) Since C is a G-Galois extension of C^G with Galois group $G|_C \cong G$, B * G is a \overline{G} -Galois extension of $(B * G)^{\overline{G}}$ with the same Galois system as C. But \overline{G} acts on B * G is inner, so B * G is H-separable extension of $(B * G)^{\overline{G}}$ by ([7], Corollary 3).

(c) By (a), B * G is *H*-separable over *B*. Moreover, *B* is a direct summand of B * G as a left *B*-module, so *B* satisfies the double centralizer property in B * G ([8], Proposition 1.2), that is, $B = V_{B*G}(V_{B*G}(B))$. This implies that the center of B * G is contained in *B*. Thus, $Z = C^G$.

(d) Clearly, $B \subseteq V_{B*G}(C)$. Conversely, for each $\sum_{g \in G} b_g g$ in $V_{B*G}(C)$, we have $c(\sum_{g \in G} b_g g) = (\sum_{g \in G} b_g g)c$ for each c in C, so $cb_g = b_g g(c)$, that is, $b_g(c-g(c)) = 0$ for each $g \in G$ and $c \in C$. But C is a commutative G-Galois extension of C^G , so the ideal of C generated by $\{c - g(c) \mid c \in C\}$ is C ([4], Proposition 1.2-(5)). Thus $b_g = 0$ for each $g \neq 1$. But then $\sum_{g \in G} b_g g = b_1 \in B$. Hence $V_{B*G}(C) \subseteq B$, and so $V_{B*G}(C) = B$.

THEOREM 3.2. Assume C is a G-Galois algebra over C^G with Galois group $G|_C \cong G$. The the following statements are equivalent:

- (1) B * G is Azumaya.
- (2) $(B * G)^{\overline{G}}$ is Azumaya.
- (3) B is Azumaya.

Proof. (1) \iff (2). Since C is a G-Galois algebra over C^G with Galois group $G|_C \cong G$, there exists an element $c \in C$ such that $\operatorname{Tr}_G(c) = 1$, where $\operatorname{Tr}_G()$ is the trace of G ([4], Corollary 1.3-(1)). By Lemma 3.1-(b), B * G is H-separable over $(B * G)^{\overline{G}}$ and B * G is a finitely generated and projective left module over $(B * G)^{\overline{G}}$ ([5], Theorem 1), so (2) \implies (1) by ([6], Theorem 1). Conversely, since the restriction of \overline{G} to C is G, $(B * G)^{\overline{G}}$ is a direct summand of B * G as a $(B * G)^{\overline{G}}$ -bimodule by using the fact that $\operatorname{Tr}_G(c) = 1$. Thus the separability of B * G over Z implies the separability of $(B * G)^{\overline{G}}$ over Z by the argument as given on p. 120 in [5]. Since Z is contained in the center of $(B * G)^{\overline{G}}$, $(B * G)^{\overline{G}}$ is Azumaya. This proves (1) \implies (2).

(1) \implies (3). Assume B * G is Azumaya. Since C is a G-Galois algebra over C^G , $Z = C^G$ by Lemma 3.1-(c). Hence B * G is an Azumaya C^G -algebra. By Lemma 3.1-(d), $V_{B*G}(C) = B$. Therefore, B is a separable C^G -algebra (for C is a separable C^G -algebra) by the commutator theorem for Azumaya algebras ([4], Theorem 4.3, p. 57). Thus B is an Azumaya algebra.

(3) \implies (1). Since C is a $G|_C$ -Galois algebra over C^G , B * G is a H-separable extension of B by Lemma 3.1-(a). By hypothesis, B is an Azumaya C-algebra, so B * G is a separable extension over C by the transitivity of separable extensions. Noting that C is a separable C^G -algebra (for it is G-Galois), we conclude that B * G

is a separable extension of C^G . Moreover, by Lemma 1-(c), $Z = C^G$, so B * G is an Azumaya C^G -algebra.

THEOREM 3.3. Let B be a G-Galois extension of B^G and $n^{-1} \in B$. Then, B * G is an Azumaya algebra if and only if so is $(B * G)^{\overline{G}}$. In this case, the center of $(B * G)^{\overline{G}}$ is the center of ZG where Z is the center of B * G.

Proof. Since $n^{-1} \in B$, $\operatorname{Tr}_G(n^{-1}) = 1$. By hypothesis B is a G-Galois extension of B^G , so B * G is a \overline{G} -Galois extension of $(B * G)^{\overline{G}}$ with an inner Galois group \overline{G} with the same Galois system as B. Thus the argument in the proof of $(1) \iff (2)$ in Theorem 3.2 implies that B * G is an Azumaya algebra if and only if so is $(B * G)^{\overline{G}}$.

Next, we calculate the center of $(B * G)^{\overline{G}}$. Let Z be the center of B * G. Then the center of $(B * G)^{\overline{G}} = V_{(B*G)^{\overline{G}}}((B * G)^{\overline{G}}) = (B * G)^{\overline{G}} \cap V_{B*G}((B * G)^{\overline{G}}) =$ $(B * G)^{\overline{G}} \cap V_{B*G}(V_{B*G}(ZG))$. Since $n^{-1} \in B$, ZG is a separable Z-algebra. Hence $V_{B*G}(V_{B*G}(ZG)) = ZG$ because B * G is an Azumaya Z-algebra ([4], Theorem 4.3, p. 57). Thus, the center of $(B * G)^{\overline{G}} = (B * G)^{\overline{G}} \cap (ZG) = V_{B*G}(ZG) \cap (ZG) =$ $V_{ZG}(ZG) =$ the center of ZG.

4. Splitting rings

In this section, we shall show that some splitting rings for B * G, $(B * G)^{\overline{G}}$ and B are the same. Recall that a splitting ring is a separable maximal commutative subalgebra. We first give a result on the splitting rings for any Azumaya algebra.

THEOREM 4.1. Let A be an Azumaya C-algebra and D a separable commutative subalgebra of A. Then (i) $V_A(D)$ is an Azumaya D-algebra, and (ii) F is a splitting ring for A containing D if and only if F is a splitting ring for $V_A(D)$ over D.

Proof. (i) Since A is an Azumaya C-algebra and D a separable subalgebra of A, $V_A(V_A(D)) = D$ and $V_A(D)$ is separable subalgebra of A by the commutator theorem for Azumaya algebras ([4], Theorem 4.3, p. 57). Since D is a commutative subalgebra of A, $C \subset D \subset$ the center of $V_A(D)$. Hence $V_A(D)$ is separable over D. Moreover, the center of $V_A(D) = V_{V_A(D)}(V_A(D)) \subset V_A(V_A(D)) = D$; and so the center of $V_A(D) = D$, that is, $V_A(D)$ is an Azumaya D-algebra.

(ii) (\implies) Let F be a splitting ring for A containing D. Then $D \subset F$ and $F = V_A(F)$, and so $F = V_A(F) \subset V_A(D)$. Hence $V_{V_A(D)}(F) = V_A(D) \cap V_A(F) = V_A(F) = F$. Thus F is a maximal commutative subalgebra of $V_A(D)$. Moreover, since F is separable over C and $C \subset$ the center of $V_A(D) = D \subset F =$ the center of F, F is separable over D. Thus, F is splitting ring for $V_A(D)$ over D.

 (\Leftarrow) Let F be splitting ring for $V_A(D)$ over D. Then $D \subset F$ and $F = V_{V_A(D)}(F)$, and so $V_A(F) \subset V_A(D)$. Hence $V_A(F) = V_A(D) \cap V_A(F) = V_{V_A(D)}(F) = F$. Thus F is a maximal commutative subalgebra of A. Moreover, since F is separable over D and D is separable over C, F is separable over C. Therefore, F is splitting ring for A.

THEOREM 4.2. Assume B is a DeMeyer-Kanzaki G-Galois extension (that is, B is an Azumaya C-algebra and C is a G-Galois extension of C^G with $G|_C \cong G$). Then, F is a splitting ring for the Azumaya algebra B * G containing C if and only if F is a splitting ring for the Azumaya algebra B.

Proof. (\implies) Assume F is a splitting ring for the Azumaya algebra B * G containing C. Then $C \subseteq F$ and $F = V_{B*G}(F)$. Hence $F = V_{B*G}(F) \subseteq V_{B*G}(G)$. Since C is a G-Galois extension of C^G , $V_{B*G}(C) = B$ by Lemma 3.2-(d). Thus $V_{B*G}(F) \subseteq V_{B*G}(C) = B$. Therefore $V_{B*G}(F) = V_B(F)$. But then $F = V_{B*G}(F) = V_B(F)$; and so F is a splitting ring for B.

 (\Leftarrow) Let F be a splitting ring for the Azumaya algebra B. Then $C \subseteq F$ and $F = V_B(F)$. Hence $V_{B*G}(F) \subseteq V_{B*G}(C)$. By Lemma 3.2-(d) again, $V_{B*G}(C) = B$, so $V_{B*G}(F) \subseteq V_{B*G}(C) = B$. Thus $V_{B*G}(F) = V_B(F)$; and so $F = V_B(F) = V_{B*G}(F)$. Therefore, F is a splitting ring for the Azumaya algebra B*G containing C.

Next, we consider another Galois condition on B.

THEOREM 4.3. Let B be a G-Galois extension of B^G , $n^{-1} \in B$ and B * G an Azumaya algebra. Then, F is a splitting ring for B * G containing D, where D is the center of $(B * G)^{\overline{G}}$ if and only if F is a splitting ring for $V_{B*G}(D)$.

Proof. This is an immediate consequence of Theorem 4.1-(ii) for the Azumaya algebra $B\ast G.\blacksquare$

COROLLARY 4.4. Assume B is a G-Galois extension of B^G , $n^{-1} \in B$ and B * G an Azumaya algebra. Let G be an Abelian group. Then, F is a splitting ring for B * G containing ZG if and only if F is a splitting ring for $(B * G)^{\overline{G}}$.

Proof. Since G is Abelian, $n^{-1} \in B$ and Z is the center of B * G, ZG is a commutative separable subalgebra. Let D = ZG. Then D is the center of $(B * G)^{\overline{G}}$ by Theorem 3.4. Moreover, $V_{B*G}(D) = V_{B*G}(ZG) = (B * G)^{\overline{G}}$, so by Theorem 4.3, F is a splitting ring for B * G containing ZG (= D) if and only if F is a splitting ring for $(B * G)^{\overline{G}} (= V_{B*G}(D))$.

THEOREM 4.5. Assume B is a G-Galois extension of B^G , $n^{-1} \in B$ and B * Gis Azumaya algebra. Let F be a splitting ring for B * G containing D, where D is the center of $(B * G)^{\overline{G}}$. Then, F is a splitting ring for $(B * G)^{\overline{G}}$ if and only if G is Abelian.

Proof. (⇒) Since *F* is a splitting ring for B * G, $F = V_{B*G}(F)$. Now, $F = V_{(B*G)\overline{G}}(F)$, so $F = V_{(B*G)\overline{G}}(F) = (B*G)^{\overline{G}} \cap V_{B*G}(F) = (B*G)^{\overline{G}} \cap F$. Thus $F \subset (B*G)^{\overline{G}}$, and so $F \subset V_{B*G}(ZG)$. Therefore, $V_{B*G}(V_{B*G}(ZG)) \subset V_{B*G}(F) = F$. Since $n^{-1} \in B$, *ZG* is a separable *Z*-algebra. Hence $V_{B*G}(V_{B*G}(ZG)) = ZG$ because B * G is an Azumaya *Z*-algebra ([4], Theorem 4.3, p. 57). Thus, *ZG* ⊂ *F*. But *F* is commutative, so *G* is Abelian.

 (\Leftarrow) Assume G is Abelian. Since Z is the center of B*G, ZG is commutative. Hence $ZG \subset F$, and so $F = V_{B*G}(F) \subset V_{B*G}(ZG)$. Thus $F = V_{B*G}(F) =$ $V_{B*G}(ZG) \cap V_{B*G}(F) = (B*G)^{\overline{G}} \cap V_{B*G}(F) = V_{(B*G)^{\overline{G}}}(F).$ Therefore, F is a splitting ring for $(B*G)^{\overline{G}}$.

By Corollary 4.4 and Theorem 4.5, under the hypothesis of Theorem 4.3, two of the following statements imply the third:

- (1) F is a splitting ring for B * G containing the center of $(B * G)^{\overline{G}}$.
- (2) F is a splitting ring for $(B * G)^{\overline{G}}$.
- (3) G is Abelian.

We conclude the present paper with two examples of skew group rings B * G to show the relationship of the splitting rings between B * G, B and $(B * G)^{\overline{G}}$.

EXAMPLE 1. Let B = Q[i, j, k] = Q + Qi + Qj + Qk be the quaternion algebra over the rational field Q, $G = \{g_1 = 1, g_i, g_j, g_k \mid g_i(x) = ixi^{-1}, g_j(x) = jxj^{-1}, g_k(x) = kxk^{-1}$ for all $x \in B\}$, and A = B * G. Then

(1) *B* is a *G*-Galois extension of B^G with *G*-Galois system $\{\frac{1}{2}, -\frac{1}{2}i, -\frac{1}{2}j, -\frac{1}{2}k; \frac{1}{2}, \frac{1}{2}i, \frac{1}{2}j, \frac{1}{2}k\}$ and $4^{-1} \in B$.

(2) $B^G = Q$, so A is an Azumaya Q-algebra ([1], Theorem 3.1).

(3) D = Q[i] = Q + Qi is a commutative separable Q-subalgebra of A.

(4) $V_A(D) = D + Dg_i + (Qj + Qk)g_j + (Qj + Qk)g_k$ is an Azumaya D-algebra by Theorem 4.1-(i).

(5) $F = D + Dg_i$ is a splitting ring for $V_A(D)$, so, by Theorem 4.1-(ii), $F = D + Dg_i$ is also a splitting ring for A.

(6) $(B * G)^{\overline{G}} = V_{B*G}(QG) = QG$ which is a commutative separable subalgebra, so QG is a splitting ring for $(B * G)^{\overline{G}} (= QG)$ and for B * G by Theorem 4.3 (or Corollary 4.4 for G is Abelian).

EXAMPLE 2. Let $M_2(Q)$ be the matrix ring of order 2 over the rational field Q, $B = M_2(Q) \oplus M_2(Q), g: B \to B$ by g(a, b) = (b, a) for all $(a, b) \in B$. Then,

(1) g is an automorphism of B of order 2.

(2) Let $G = \{1, g\}$. Then B is a G-Galois extension of B^G with the Galois system $\{a_1 = (I, 0), a_2 = (0, I); b_1 = (I, 0), b_2 = (0, I)\}$, that is, $a_1b_1 + a_2b_2 = (I, I)$ and $a_1g(b_1) + a_2g(b_2) = (0, 0)$, where I is the identity of $M_2(Q)$ and 0 is the zero matrix in $M_2(Q)$.

(3) Let C be the center of B. Then $C = Q \oplus Q$, and C is a G-Galois extension of C^G with the same Galois system as B and $C|_G \cong G$.

(4) B * G is an Azumaya C^G -algebra where $C^G = \{ (a, a) \mid a \in Q \}$ since B is an Azumaya C-algebra by Theorem 3.2.

(5) $(B * G)^{\overline{G}} = C^G + C^G g.$

(6) Since C is a commutative separable subalgebra of B * G, $V_{B*G}(C)$ is an Azumaya C-algebra by Theorem 4.1-(i).

(7) $V_{B*G}(C) = B$ by Lemma 3.1-(d).

(8) Let $F = Q\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + Q\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Then F is a separable maximal commutative subalgebra of $M_2(Q)$, and so $F \oplus F$ is a separable maximal commutative subalgebra of B, that is, $F \oplus F$ is a splitting ring for B. Thus, $F \oplus F$ is a splitting ring for B * G by Theorem 4.2.

REFERENCES

- Alfaro, R. and Szeto, G., On Galois extensions of an Azumaya algebra, Comm. in Algebra 25 (6) (1997), 1873-1882.
- [2] Alfaro, R. and Szeto, G., Skew group rings which are Azumaya, Comm. in Algebra 23 (6) (1995), 2255-2261.
- [3] Alfaro, R. and Szeto, G., The centralizer on H-separable skew group rings, Rings, Extension and Cohomology, Vol. 159, 1995.
- [4] De Meyer, F. R. and Ingraham, E., Separable Algebras over Commutative Rings, Vol. 181, Springer Verlag, Berlin, Heidelberg, New York, 1971.
- [5] De Meyer, F. R., Some notes on the general Galois theory of rings, Osaka J. Math 2 (1965), 117-127.
- [6] Okamoto, H., On projective H-separable extensions of Azumaya algebras, Results in Mathematics 14 (1988), 330-332.
- [7] Sugano, K., On a special type of Galois extensions, Hokkaido J. Math. 9 (1980), 123-128.
- [8] Sugano, K., Note on semisimple extensions and separable extensions, Osaka J. Math. 4 (1967), 265-270.

(received 08.11.1999.)

Department of Mathematics, Bradley University, Peoria, Illinois 61625, USA