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A NOTE ON THE HURWITZ ZETA FUNCTION

Djurdje Cvijovi�c and Jacek Klinowski

Abstract. We show that the Hurwitz zeta function and polylogarithm, �(�; a) and Li�(z),
form a discrete Fourier transform pair for Re � > 1. Many formulae, the majority of them
previously unknown, are obtained as a corollary to this result. In particular, the transformation
relation allows the evaluation of �(�; a) at rational values of the parameter a. It is also shown
that, by making use of the transform pair, various known results can be deduced easily and in a
uni�ed manner. For instance,

2�(2n+ 1; 1=3) = (32n+1 � 1)�(2n + 1) + (�1)n�132n
p
3
(2�)2n+1

(2n+ 1)!
B2n+1(1=3);

n � 1, where Bn(�) stands for the Bernoulli polynomial of degree n.

1. Introduction

As the various zeta functions (Riemann, Hurwitz, Epstein, Lerch, Selberg and
their generalisations) constantly �nd new applications in di�erent areas of math-
ematics (number theory, analysis, numerical methods etc.) and physics (quantum
�eld theory, string theory, cosmology etc.), further development of their theory is
needed. In this note we extend the procedure used in [1] to establish a new relation
between the Hurwitz zeta function and polylogartithms.

2. Statement of the results

The Riemann and the Hurwitz zeta functions, �(�) and �(�; a) respectively,
are both analytic over the whole �-complex plane, except at � = 1, where they
have a simple pole. �(�) and �(�; a) can be de�ned for Re � 6 1, � 6= 1, as analytic
continuations of the following series [2, p. 19 and p. 22]

�(�) =
1P
k=1

1

k�
and �(�; a) =

1P
k=0

1

(k + a)�
; 0 < a 6 1; Re � > 1: (1)

Throughout the text Li�(z), here referred to as the polylogarithm, denotes the
Dirichlet power series de�ned by

Li�(z) =
1P
k=1

zk

k�
(2)
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which converges absolutely for all � if jzj < 1, for Re � > 0 if jzj = 1, z 6= 1, and for
Re � > 1 if z = 1. It is known that Li�(z) admits an analytic continuation which
makes it regular for every �. It is evident that Li�(1) = �(�; 1) = �(�).

The Bernoulli polynomial of degree n, denoted by Bn(x), is de�ned by the
power series [2, p. 25]

tetx

et � 1
=

1P
n=0

Bn(x)
tn

n!
; jtj < 2� (3)

and Bn = Bn(0) is the n-th Bernoulli number. Note that the (Euler) relation exists
between the even-indexed Bernoulli numbers B2n and the values �(2n). For a more
detailed discussion of �(�) and �(�; a) see Whittaker and Watson [3]. An extensive
list of formulae involving Li�(z) can be found in Prudnikov et al. [4, pp. 762{763].
The theory of this and related functions (for example the Legendre chi function,
and the generalised and associated Clausen functions) is well covered in Lewin's
standard text [5]. Formulae involving Bn(x) and Bn can be found in Magnus et al.
[2, pp. 25{32], Abramowitz and Stegun [6, pp. 803{806], Gradshteyn and Ryzhik
[7, pp. 1076{1080] and Prudnikov et al. [4, pp. 765{766]. Our results are as follows.

Theorem. Assume that t is a positive integer and set ! = exp(i 2�=t). Let
�(�; a) and Li�(z) be the Hurwitz zeta function and the polylogarithm de�ned as in
(1) and (2). Then:

�(�; s=t) =
1

t

tP
r=1

t� Li�(!
r)!�rs; s = 1; 2; . . . ; t; (4a)

Li�(!
r) =

1

t�

tP
s=1

�(�; s=t)!rs; r = 1; 2; . . . ; t: (4b)

Corollary 1. Consider

S�(x) =
1P
k=1

sin(2k�x)

k�
and C�(x) =

1P
k=1

cos(2k�x)

k�
; Re � > 1 (5)

and assume that p and q, with p > 0 and q > 0, are integers. Then:

(i) S�(p=q) =
1

q�

qP
s=1

�(�; s=q) sin(s 2�p=q); 0 6 p 6 q; (6a)

(ii) C�(p=q) =
1

q�

qP
s=1

�(�; s=q) cos(s 2�p=q); 0 6 p 6 q; (6b)

(iii) �(�; p=q) = q��1
qP

s=1
[C�(s=q) cos(s 2�p=q) + S�(s=q) sin(s 2�p=q)]; 1 6 p 6 q;

(6c)

(iv) �(�; p=q)� �(�; 1� p=q) = 2q��1
qP

s=1
S�(s=q) sin(s 2�p=q); 1 6 p 6 q � 1;

(6d)

(v) �(�; p=q) + �(�; 1� p=q) = 2q��1
qP

s=1
C�(s=q) cos(s 2�p=q); 1 6 p 6 q � 1:

(6e)
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Corollary 2. Assume that p, q and n, with p > 0 and q, n > 0, are integers.
Let Bn(x) be the Bernoulli polynomial of degree n de�ned in (3). If n > 1, the
following holds:

(i) B2n+1(p=q) = (�1)n�1 2(2n+ 1)!

(2�q)2n+1

qP
s=1

�(2n+ 1; s=q) sin(s 2�p=q); 0 6 p 6 q;
(7a)

(ii) B2n(p=q) = (�1)n�1 2(2n)!

(2�q)2n

qP
s=1

�(2n; s=q) cos(s 2�p=q); 0 6 p 6 q;
(7b)

(iii) �(2n+ 1; p=q)� �(2n+ 1; 1� p=q) =

= (�1)n�1q2n (2�)
2n+1

(2n+ 1)!

qP
s=1

B2n+1(s=q) sin(s 2�p=q); 1 6 p 6 q � 1; (7c)

(iv) �(2n; p=q)� �(2n; 1� p=q) =

= (�1)n�1q2n�1 (2�)
2n

(2n)!

qP
s=1

B2n(s=q) cos(s 2�p=q); 1 6 p 6 q � 1: (7d)

Note. The formula (4b) in the Theorem and the parts (i) and (ii) of Corol-
lary 1 and Corollary 2 have been recently deduced [1]. The formula in (7a) was
�rst given by Almkvist and Meurman [8], but it appears that the remaining results
and the Theorem in the form given above are unknown. For further discussion of
the results and illustrative examples see Section 4.

3. Proof of the results

Before proving the Theorem, we recall the de�nition of the discrete Fourier
transform [9, Chapter 8]. Let (ar) (r = 0; 1; . . . ; t�1, t > 1) be a sequence of real or
complex numbers with period t (ar+t = ar for all r 2 N0) and let ! = exp(i 2�=t).
Then, the discrete Fourier transform pair of the sequences (ar) and (a�s) is de�ned
as

a�s =
1

t

t�1P
r=0

ar!
�rs; s = 0; 1; . . . ; t� 1;

ar =
t�1P
s=0

a�s!
rs; r = 0; 1; . . . ; t� 1:

The �rst relation is known as the direct discrete Fourier transform, and the second
as the inverse discrete Fourier transform. We note that although it is usually
asserted that 0 6 r 6 t� 1 and 0 6 s 6 t� 1, r and s can be arbitrary integers (or
residues modulo t).

Proof of Theorem. We shall �rst derive the formula in (4b), i.e. show that the
sequence t� Li�(!

r) is the inverse Fourier transform of �(�; s=t) .
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The sequence of the numbers Li�(!
r) (and thus t� Li�(!

r)) given by

Li�(!
r) =

1P
k=1

exp(i 2k�r=t)

k�
=

1P
k=0

exp(i 2(k + 1)�r=t)

(k + 1)�
; r = 1; 2; . . . ; t

is clearly periodic with period t, and the absolute convergence of the series involved
is assured when Re � > 1 (see (2)).

Next, we recall the division law in Z: for any a 2 Z, b 2 N there exist unique
c; d 2 Z such that a = bc + d and 0 6 d < b. Here, in the case of the series for
Li�(!

r), this means that any (k; t) (k 2 N0, t 2 N) uniquely determine the integers
m and s such that k = tm+ s where m = 0; 1; 2; . . . and s = 0; 1; . . . ; t� 1. Hence,
it follows by absolute convergence that

Li�(!
r) =

1P
m=0

t�1P
s=0

exp[i 2(tm+ s+ 1)�r=t]

(tm+ s+ 1)�
=

1P
m=0

tP
s=1

exp[i 2(tm+ s)�r=t]

(tm+ s)�

=
1

t�

tP
s=1

1P
m=0

exp(i 2m�r) exp(i 2s�r=t)

(m+ s=t)�

which can be further simpli�ed to

Li�(!
r) =

1

t�

tP
s=1

1P
m=0

exp(i 2s�r=t)

(m+ s=t)�
=

1

t�

tP
s=1

exp(i 2s�r=t)
1P

m=0

1

(m+ s=t)�

since exp(i 2m�r) = 1 (m and r are integers). In view of the de�nition of the
Hurwitz zeta function in (1), the last double sum results in the required formula
in (4b).

Finally, what remains is to show that the transform relations in (4a) and in
(4b) form a discrete Fourier pair. Indeed, substitution of (4b) into (4a) yields

�(�; s=t) =
1

t

tP
r=1

t� Li�(!
r)!�rs =

1

t

tP
r=1

t�
�
t��

tP
s=1

�(�; s=t)!rs
�
!�rs

=
1

t

tP
s=1

�(�; s=t)
tP

r=1
!rs!�rs = �(�; s=t); s = 1; 2; . . . ; t

because of the following orthogonality relationship

tP
r=1

!rs!�rs =

�
t; if r = s;

0; otherwise

and thus the proposed transform relations in (4) are established for Re � > 1. This
completes the proof when Re � > 1, and for other values of � the relations hold by
the principle of analytic continuation.

Proof of Corollary 1. Clearly, the series in (5) are absolutely convergent for
any real x and simple consideration of them shows that

S�(1� x) = �S�(x) and C�(1� x) = C�(x) (8a)
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while

S�(1) = S�(0) = 0 and C�(1) = C�(0) = �(�): (8b)

Moreover, the following

Li� [exp(i 2k�x)] = C�(x) + iS�(x) (9)

holds by (2).

Now, in view of (9) the required formulae in (6a,b), valid for 1 6 p 6 q, follow
trivially from (4b). It can be shown by direct veri�cation that they remain valid
for p = 0.

Next, by making use of (9) the expression in (4a) can be rewritten as follows

�(�; s=t) = t��1
tP

r=1
(�1(r) + i�2(r)) = t��1

tP
r=1

�1(r)

= t��1
tP

r=1
[C�(r=t) cos(r 2�s=t) + S�(r=t) sin(r 2�s=t)]; 1 6 s 6 t

(10a)

i.e. the imaginary part vanishes since for

�2(r) = S�(r=t) cos(r 2�s=t)� C�(r=t) sin(r 2�s=t)

we have that �2(t) = 0 and that �2(t � r) = ��2(r) (1 6 r 6 t � 1) (see (8a,b))

and therefore
Pt�1

r=1�2(r) = 0.

In this way we have arrived at the proposed formula in (6c). Finally, the
desired results in (6d) and (6e) are obtained from (10a) and

�(�; 1� s=t) = t��1
tP

r=1
[C�(r=t) cos(r 2�s=t)� S�(r=t) sin(r 2�s=t)] (10b)

where 1 6 s 6 t� 1. Here, the case s = t should be excluded considering that for
�(�; a) must be a 6= 0.

Proof of Corollary 2. It is easy to verify that parts (i){(iv) are immediate
consequences of (i), (ii), (iv) and (v) in Corollary 1 by recalling the following
Fourier series representation of the Bernoulli polynomials Bn(x) [6, p. 805, Entry
23.1.17 and 23.1.18]

B2n�1(x) = (�1)n 2(2n� 1)!

(2�)2n�1

1P
k=1

sin(2k�x)

k2n�1

where 0 6 x 6 1 for n = 2; 3; . . . , 0 < x < 1 for n = 1 and

B2n(x) = (�1)n�1 2(2n)!
(2�)2n

1P
k=1

cos(2k�x)

k2n

where 0 6 x 6 1 for n = 1; 2; 3; . . .
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4. Concluding remarks

It has been shown that the Hurwitz zeta function and the polylogarithm form
a discrete Fourier pair. We note that more non-obvious identities, some with useful
physical applications, can be deduced from (4a,b) by using the theory of the discrete
Fourier transform, particularly the theorems on convolution [9, Chapter 8]. As an
illustration, we give

tP
r=1

t2�C2
� (r=t) +

tP
r=1

t2�S2
�(r=t) =

tP
r=1

�2(�; r=t)

whici is obtained by applying the Rayleigh-Parseval formula on the Fourier pair in
(4a,b) where (4b) is combined by (9).

The theorem allows evaluation of the Hurwitz zeta function �(�; a) at rational
values of the parameter a. Recall that an analytic continuation from [10]

�(1� �; s=t) =
2�(�)

(2�t)�

tP
r=1

�(�; r=t) cos�(�=2� 2rs=t); 1 6 s 6 t (11)

has a similar property. However, equation (11) cannot in general be used directly
to yield �(�; a) for � a positive integer, unlike the following well known relations [6,
p. 260, Eq. 6.4.7 in conjunction with Eq. 6.4.10]

�(2n+ 1; x)� �(2n+ 1; 1� x) =
�

(2n)!
cot(�x)(2n) (12a)

�(2n; x) + �(2n; 1� x) = � �

(2n� 1)!
cot(�x)(2n�1) (12b)

which are valid when 0 < x < 1 and n > 1 and involve derivatives of cot(�x).
Compare (12a,b) with our (7c,d) and observe that by combining them we arrive at
the following interesting sums

qP
s=1

B2n+1(s=q) sin(s 2�p=q) = (�1)n�1 2n+ 1

2(2�q)2n
cot(�x)(2n)

����
x=p=q

qP
s=1

B2n(s=q) cos(s 2�p=q) = (�1)n n

(2�q)2n�1
cot(�x)(2n�1)

����
x=p=q

:

Further, in view of (6a,b) the trigonometric series C�(x) and S�(x) in (5) are
in the general case, when x is a rational, summed in closed form in terms of the
Hurwitz zeta function. For instance

S�(1=3) = �S�(2=3) = (1=2)3��
p
3(�(�; 1=3)� �(�; 2=3))

S�(1=4) = �S�(3=4) = 4��(�(�; 1=4)� �(�; 3=4))

S�(1=6) = �S�(5=6) = (1=2)6��
p
3[(�(�; 1=6)� �(�; 5=6)) + (�(�; 1=3)� �(�; 2=3))]:

Note that (6a) can be rewritten as

S�(p=q) =
1

q�

q�1P
s=1

�(�; s=q) sin(s 2�p=q)

=
1

q�

[(q�1)=2]P
s=1

(�(�; s=q)� �(�; 1� s=q)) sin(s 2�p=q)
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and (6b) as

C�(p=q) =
1

q�

[(q�1)=2]P
s=1

(�(�; s=q) + �(�; 1� s=q)) cos(s 2�p=q) +A�(�)q��

where A = 1 and A = 2 � 2� when q is an odd and even integer respectively.
Moreover, it is easy to verify that the other expressions given in Corollary 1 and
Corollary 2 can be similarly rewritten.

In order to show that various results can be deduced easily and, in particular,
in a uni�ed manner, we give several examples of the application of the theorem and
its corollaries. Almost all these results can be found in Hansen's text [11] while,
for instance, Prudnikov et al. [4, pp. 765{766] list those given in Examples (i) and
(ii), respectively.

Examples.

(i) Let C� be de�ned by (5). Then:

C�(1=2) = (21�� � 1)�(�)

C�(1=3) = C�(2=3) = (1=2)(31�� � 1)�(�)

C�(1=4) = C�(3=4) = 2��(21�� � 1)�(�)

C�(1=6) = C�(5=6) = (1=2)(31�� � 1)(21�� � 1)�(�):

(ii) Let Bn(x) and Bn be the Bernoulli polynomials and numbers. If n > 1,
then:

B2n(0) = B2n(1) = B2n = (�1)n�1 2(2n)!
(2�)2n

�(2n)

B2n(1=2) = (1=2)(21�2n � 1)B2n

B2n(1=3) = B2n(2=3) = (1=2)(31�2n � 1)B2n

B2n(1=4) = B2n(3=4) = 2�2n(21�2n � 1)B2n

B2n(1=6) = B2n(5=6) = (1=2)(21�2n � 1)(31�2n � 1)B2n:

(iii) If n is a positive integer and Qn is given by Qn = (�1)n�1 (2�)
2n+1

(2n+ 1)!
then:

�(2n+ 1; 1=2) = (22n+1 � 1)�(2n+ 1)

2�(2n+ 1; 1=3) = (32n+1 � 1)�(2n+ 1) +
p
3B2n+1(1=3)3

2nQn

2�(2n+ 1; 2=3) = (32n+1 � 1)�(2n+ 1)�
p
3B2n+1(1=3)3

2nQn

2�(2n+ 1; 1=4) = 22n+1(22n+1 � 1)�(2n+ 1) + 2B2n+1(1=4)4
2nQn

2�(2n+ 1; 3=4) = 22n+1(22n+1 � 1)�(2n+ 1)� 2B2n+1(1=4)4
2nQn

2�(2n+ 1; 1=6) = (32n+1 � 1)(22n+1 � 1)�(2n+ 1)

+
p
3 (B2n+1(1=6) +B2n+1(1=3))6

2nQn
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2�(2n+ 1; 5=6) = (32n+1 � 1)(22n+1 � 1)�(2n+ 1)

�
p
3 (B2n+1(1=6) +B2n+1(1=3))6

2nQn:

Proof. Note that in view of (8b) on putting p = 0 in (6b) we have

qP
s=1

�(�; s=q) = q��(�)

and hence the following identities hold

�(�; 1=2) = (2� � 1)�(�)

�(�; 1=3) + �(�; 2=3) = (3� � 1)�(�)

�(�; 1=4) + �(�; 3=4) = 2�(2� � 1)�(�)

�(�; 1=6) + �(�; 5=6) = (2� � 1)(3� � 1)�(�):

Then, all the formulae for special values in Examples (i){(iii) follow readily on
making use of these identities in conjunction with parts (ii) of Corollary 1 and
Corollary 2 and part (iii) of Corollary 2, respectively.
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