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CONDITIONAL ESTIMATION IN EXPONENTIAL MODELS

Smail Mahdi

Abstract. A two-sided conditional con�dence interval for the parameter of an exponential
probability distribution is constructed. The construction relies on a decision following a prelim-
inary test of signi�cance for the equality of two exponential population means. The coverage
probability, the expected length together with the coe�cient of variation of this interval are stud-
ied. A shrinkage version of the interval is also proposed. Furthermore, a numerical study on the
accuracy of the interval estimator is performed.

1. Introduction

Preliminary test of signi�cance estimators initiated in Bancroft [3] are widely
used in practice to improve e�ciency of estimators. In this paper, we consider the
problem of interval estimation for the parameter �1 of an exponential population
when it is suspected that �1 is greater or equal than the parameter �2 of another
exponential population. We estimate then �1 after performing a preliminary test on
equality of the two population parameters. The conditional interval estimation of
the exponential scale and location parameters following rejection of a preliminary
test is investigated in and Chiou and Han [4,5] in the case of a single sample.
In Chiou and Han [4] a conditional con�dence interval for the scale parameter �
of a two-parameter exponential distribution is constructed following a rejection of
a pre-test with signi�cance level � for H0 : � = �0 versus Ha : � 6= �0. This
interval is compared in terms of length and coverage probability to a corresponding
unconditional interval with same targeted coverage probability. The inference is
based on a type II censored sample. The authors have shown that the conditional

interval performs fairly well when  = �̂=�0 is close to one and when � is not

small, say � � :4. �̂ is the minimum variance unbiased estimator of �. However, if
one has prior knowledge that  is not close to one, then it is recommended to use
the unconditional con�dence interval. Similar results are obtained in Chiou and
Han [5] for the case of conditional estimation of the exponential location parameter
based on a non censored sample. For a detailed account on the use of preliminary
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test procedures, see, for instance, Jugde and Bock [8], Mahdi [10], Giles et al. [7],
and more recently, Rai and Srivastava [14]. It is worth nothing that preliminary
test procedures require high computations which lead to analytically unmanageable
formulas. Therefore the use of computer programming and numerical solutions are
unavoidable to study the properties of pre-test estimators, as pointed out in Mahdi
[9]. We organize this paper as follows. In section 2 we state the considered problem
and in sections 3 and 4 we respectively derive the coverage probability and the
expected length of the conditional interval estimator. In section 5, we study the
coe�cient of variation for the length of the constructed interval. In section 6, we
introduce a shrinkage version of the conditional con�dence interval. A numerical
application and simulation results are given in sections 7 and 8, respectively. We
conclude in section 9. A table and �gures illustrating the numerical results are
presented in Appendix.

2. Statement of the problem

Suppose that X1; � � � ; Xn1 and Y1; � � � ; Yn2 are two independent random sam-
ples of n1 and n2 observations from the exponential distributions exp(�1) and
exp(�2), respectively. It is suspected that �1 � �2. A two sided con�dence in-
terval for �1 is desired.

Let U1 =
n1P
i=1

Xi and U2 =
n2P
j=1

Yj . It is well known that
2Ui

�i
, i = 1; 2, are

independent and distributed as chi-square variables with 2ni degrees of freedom,

respectively ( see, e.g., Takada [15] or Epstein [6]). Thus Ui �
�i
2
�22ni for i = 1; 2.

If �1 > �2, a (1� �)100% con�dence interval for �1 is given by

I1 =

"
2U1

�22n1;�=2
;

2U1
�22n1;(1��=2)

#
; (1)

where �2n;� designates the 100(1��)% percentile point of the chi-squared distribu-
tion with n degrees of freedom. However, if �1 = �2, we can pool the two samples
and use the con�dence interval

I2 =

"
2(U1 + U2)

�22(n1+n2);�=2
;

2(U1 + U2)

�22(n1+n2);(1��=2)

#
; (2)

for estimating �1. But since �1 and �2 are unknown, the question arises as whether
I1 or I2 is to be used as a con�dence interval for �1. To answer this question, we
�rst test the null hypothesis H0: �1 = �2 against the alternative H1: �1 > �2.

Under the null hypothesis H0, we have

� =
n2U1
n1U2

� F(2n1;2n2) (3)

where F(2n1;2n2) represents the Fisher variable with 2n1 and 2n2 degrees of freedom.
Therefore, we do not reject H0 at the level of signi�cance �, if � � F(2n1;2n2;�), and
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reject H0 otherwise. For simpli�cation, the 100(1 � �)% percentile of the Fisher
distribution with 2n1 and 2n2 degrees of freedom, F(2n1;2n2;�), will be denoted by
F�, thereafter.

We suggest to estimate the parameter �1 by the following conditional con�-
dence interval

I =

�
I1; if � > F�

I2; if � � F�
(4)

based on the response of the preliminary test of signi�cance. The coverage proba-
bility of the interval I together with its expected length are studied below.

3. Coverage probability of the conditional con�dence interval

Since
2Ui

�i
, i = 1; 2, are independently distributed as chi-squared variables

with 2ni degrees of freedom, respectively, the joint probability density function of
(U1; U2) is given by

f(u1; u2) =

(
Kun1�11 un2�12 exp�[

u1
�1

+
u2
�2
]; if (u1; u2) 2 [0;1)2;

0; otherwise
(5)

where
K = [�(n1)�(n2)�

n1
1 �n22 ]�1: (6)

The coverage probability of the con�dence interval I is given by P = P1+P2, such
that

P1 = Prob

"
2U1

�22n1;�=2
� �1 �

2U1
�22n1;(1��=2)

; � > F�

#
(7)

and

P2 = Prob

"
2(U1 + U2)

�22(n1+n2);�=2
� �1 �

2(U1 + U2)

�22(n1+n2);(1��=2)
; � � F�

#
: (8)

3.1. Evaluation of the probability P1. To evaluate P1, we integrate the
joint probability density function (5) over the u1u2 plane region D1 given by

D1 =

�
(u1; u2) such that

b

2
�1 � u1 �

a

2
�1 and 0 � u2 � �u1

�
;

where a = �22n1;�=2, b = �22n1;(1��=2) and � =
n2
n1F�

. Thus,

P1 = K

Z a

2 �1

u1=
b

2 �1

un1�11 exp(�
u1
�1
)

�Z �u1

u2=0

un2�12 exp(�
u2
�2
) du2

�
du1

= K�n22

�
�(n2)�(n1)�

n1
1 I�(n1;

b

2
;
a

2
)�

�
n2P
j=1

�(n2)�(n1 + n2 � j)

�(n2 � j + 1)
(
�

�2
)n2�j

� (
�1�2

�2 + ��1
)n1+n2�j � I�(n1 + n2 � j;

b

2
(
�2 + ��1

�2
);

a

2�2
(�2 + ��1))

��
;

(9)
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where I� represents the incomplete gamma function, that is,

I�(n; x0; x1) =
1

�(n)

Z x1

x0

zn�1 exp[�z] dz; (10)

as de�ned in Pearson [12], for instance.

Now substituting the value � =
�2
�1

into equation (9), we get

P1 = I�(n1;
b

2
;
a

2
)�

1

�(n1)

�
n2P
j=1

�(n1 + n2 � j)

�(n2 � j + 1)
(

�

�+ �
)n1(

�

�+ �
)n2�j

� I�(n1 + n2 � j;
b

2
(
�+ �

�
);
a

2
(
�+ �

�
))

�
: (11)

3.2. Evaluation of the probability P2. The probability P2 is evaluated by
integrating f(u1; u2) over the plane region D2 given by

D2 =

�
(u1; u2) such that

2(u1 + u2)

c
< �1 <

2(u1 + u2)

d
and

u1
u2

<
1

�

�

where c = �22(n1+n2);�=2 and d = �22(n1+n2);1��=2. In order to evaluate P2, we

subdivide D into two disjoint regions D21 and D22 such that

D21 =

�
(u1; u2) such that 0 < u1 <

d �1
2(1 + �)

and
d �1
2

� u1 < u2 <
c �1
2
� u1

�

and

D22 =

�
(u1; u2) such that

d �1
2(1 + �)

< u1 <
c �1

2(1 + �)
and �u1 < u2 <

c �1
2
� u1

�
:

Let us denote ID21 the integral of f(u1; u2) over D21 and ID22 the integral
of f(u1; u2) over D22. To evaluate these integrals, we need to consider separately
the case � 6= 1 and the case � = 1. In the case � 6= 1, we get after several steps of
integration

ID21 = K

Z d�1
2(1+�)

u1=0

un1�11 exp[�
u1
�1
]

�Z c�1
2 �u1

u2=
d�1
2 �u1

un2�12 exp[�
u2
�2
] du2

�
du1

=
1

�(n1)�(n2)

�
� exp[�

c

2�
]f

n2P
j=1

�(n2)

�(n2 � j + 1)
f
n2�jP
k=0

�
n2 � j

k

�
(
c

2�
)n2�j�k

� (�1)k
1

�k
[
�

�� 1
]n1+kf

n1+kP
l=1

�(n1 + k)

�(n1 + k � l + 1)
(�1)l+1

�

�
d(� � 1)

2(1 + �)�

�n1+k�l

exp[
d(�� 1)

2(1 + �)�
]� (�1)n1+k+1(n1 + k � 1)!gg]

+ [exp[�
d

2�
]f

n2P
j=1

�(n2)

�(n2 � j + 1)
f
n2�jP
k=0

�
n2 � j

k

�
(
d

2�
)n2�j�k(�1)k(

1

�k
)
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� [(
�

�� 1
)n1+kf

n1+kP
l=1

�(n1 + k)

�(n1 + k � l + 1)
(�1)l+1

�
d(�� 1)

2(1 + �)�

�n1+k�l

� exp[
d(� � 1)

2(1 + �)�
]� (�1)n1+k+1(n1 + k � 1)!gg]

�
; (12)

and in the case � = 1, we have

ID21 =
1

�(n1)�(n2)

�
� exp[�

c

2�
]f

n2P
j=1

�(n2)

�(n2 � j + 1)
f
n2�jP
k=0

�
n2 � j

k

�
(
c

2�
)n2�j�k

� (�1)k(
1

�k
)(

1

n1 + k
)(

d

2(1 + �)
)n1+kgg

+ [exp[�
d

2�
]f

n2P
j=1

�(n2)

�(n2 � j + 1)
f
n2�jP
k=0

�
n2 � j

k

�
(
d

2�
)n2�j�k(�1)k

� (
1

�k
)(

1

n1 + k
)(

d

2(1 + �)
)n1+kgg]

�
: (13)

Similarly, by integrating carefully f(u1; u2) over the domain D22, we get

ID22 = K

Z c�1
2(1+�)

d�1
2(1+�)

un1�11 exp[�
u1
�1
]

�Z c�1
2 �u1

u2=�u1

un2�12 exp[�
u2
�2
] du2

�
du1

=
1

�(n1)

n2P
j=1

�(n2)

�(n2 � j + 1)
(
�

�
)n2�j [

n1+n2�jP
k=1

�(n1 + n2 � j)

�(n1 + n2 � j � k + 1)
(

�

�+ �
)k

� f(
d

2(1 + �)
)n1+n2�j�k exp[�

d(� + �)

2(1 + �)�
]� (

c

2(1 + �)
)n1+n2�j�k

� exp[�
c(�+ �)

2(1 + �)�
]g]�

1

�(n1)

n2P
j=1

1

�(n2 � j + 1)
f
n2�jP
l=0

1

�n2�j�l

�

�
n2 � j

l

�
(�1)l(

c

2�
)l exp[�

c

2�
](

c

2(1 + �)
)n1+n2�j�l

� f
n1+n2�j�lP

k=1

�(n1 + n2 � j � l)

�(n1 + n2 � j � l � k + 1)
(�1)k+1

� [(
2�(1 + �)

c(1� �)
)k exp[

c(1� �)

2�(1 + �)
]� (

2�(1 + �)

d(1� �)
)k exp[

d(1� �)

2�(1 + �)
]]gg;

(14)

in the case � 6= 1. For � = 1, we have

ID22 =
1

�(n1)

n2P
j=1

1

�(n2 � j + 1)
f�[

n2�jP
l=0

(
c

2
)l(�1)l

�
n2 � j

l

�
exp[�

c

2
]

1

n1 + n2 � j � l

� [(
c

2(1 + �)
)n1+n2�j�l � (

d

2(1 + �)
)n1+n2�j�l]] + �n2�j

1

n1 + n2 � j

� [(
c

2(1 + �)
)n1+n2�j � (

d

2(1 + �)
)n1+n2�j ]g: (15)
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Thus,
P2 = ID21 + ID22: (16)

As a partial check of the above results, we consider the particular cases F� = 0
and F� = 1. When F� ! 0, that is, � ! 1, both ID21 and ID22 tend to zero for
any value of �. Thus P2 tends to zero as well. This agrees with the decision of non
pooling the two samples. Furthermore, when we let � ! 1 in equation (11), we
get

P1 = I�(n1;
b

2
;
a

2
) =

1

�(n1)

Z a

2

b

2

zn1�1 exp[�z] dz: (17)

Now by using the change of variable � = 2z in equation (17), we �nd

P1 =
1

22n1=2
1

�(2n1=2)

Z a

b

�
2n1�2

2 exp[�
�

2
] d� = 1� � (18)

which is the coverage probability of the con�dence interval I1 based only on the
sample X1; � � � ; Xn1 . On the other hand, when we substitute � = 0, that is, we

let F� ! 1 in equation (11), we get P1 = I�(n1;
b

2
;
a

2
) � I�(n1;

b

2
;
a

2
) = 0 which

also agrees with the decision of pooling the two samples. So, the whole con�dence
coe�cient is carried by P2 in such a case.

4. Expected length of the conditional con�dence interval

The length of the conditional con�dence interval is expressed by the random
variable

L =

8><
>:

2(
1

b
�

1

a
)U1; if � > F�

2(
1

d
�

1

c
)(U1 + U2); if � � F�

(19)

The expected value of the random variable L is given by

E(L) = E(L j � > F�)P (� > F�) +E(L j � � F�)P (� � F�): (20)

Theorem 1. The expected length of the conditional con�dence interval, ex-
pressed as a fraction of �1, is given by

E(L)

�1
= 2(

1

d
�

1

c
)[n2�I� n1�F�

n2

(n1; n2 + 1) + n1I� n1�F�
n2

(n1 + 1; n2)]

+ 2(
1

b
�

1

a
)n1 � I� n2

n1�F�

(n2; n1 + 1); (21)

where I� represents the Euler Incomplete Beta function (25).

To prove Theorem 1, we evaluate separately E(Lj� > F�) and E(Lj� � F�)
below.
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4.1. Evaluation of E(Lj� > F�). To evaluate E(Lj� > F�), let us make

the change of variables x = u1 and y =
n2u1
n1u2

in equation (5). The Jacobian for

this transformation is
n2u1
n1u22

and, the ranges of x and y are [0;1) and [F�;1),

respectively. The probability density function of the random vector (X;Y ) is given
by

g(x; y) = K(
n2
n1

)n2
xn1+n2�1

yn2+1
exp[�x(

1

�1
+

n2
n1�2y

)]: (22)

Thus, the conditional expectation E(Lj� > F�) is given by

E(Lj� > F�) =
2( 1b �

1
a )

P (� > F�)

Z
1

x=0

Z
1

y=F�

xg(x; y) dy dx: (23)

After integration and simpli�cation, we get

E(Lj� > F�) = 2
1

P (� > F�)
(
1

b
�

1

a
) �1n1 � I� n2

n1�F�

(n2; n1 + 1) (24)

where

I�x0(m;n) =
1

�(m;n)

Z x0

0

tm�1

(1 + t)m+n
dt; (25)

as de�ned in Pearson [13].

4.2. Evaluation of E(Lj� � F�). Similarly, to evaluate E(Lj� � F�), we

make the change of variables x = u1 + u2 and y =
n2u1
n1u2

in equation (5). The

Jacobian for this transformation is
(n1y + n2)

2

n1n2x
. This leads to the joint probability

density function of (X;Y ) given by

h(x; y) = K
nn11 nn22

(n2 + n1y)n1+n2
xn1+n2�1yn1�1 exp[�(

1

n2 + n1y
)(
n1xy

�1
+
n2x

�2
)] (26)

with 0 � x <1 and 0 � y � F�.

Thus,

E(Lj� � F�) =
1

P (� � F�)
2(
1

d
�

1

c
)

Z
1

x=0

Z F�

y=0

xh(x; y) dy dx: (27)

After integration and simpli�cation, we get

E(Lj� � F�) = 2(
1

d
�
1

c
)

1

P (� � F�)
�1[n2�I��(n1; n2+1)+n1I��(n1+1; n2)]; (28)

where � =
n1�F�
n2

. Substituting terms from equations (24) and (28) into equation

(20), we get the result stated in Theorem 1.

As a partial check of the above results, we �rst let F� = 0 in equation (21),
that is, we always reject H0 and use the con�dence bounds based only on the
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sample X1; � � � ; Xn1 . In this case,
n1�F�
n2

= 0 and
n2

n1�F�
!1. This gives E(L) =

2(
1

b
�
1

a
)n1�1 which is the average length of the con�dence interval I1. On the other

hand, if we let F� ! 1 in equation (21), that is we always pool the two samples,

we get E(L) = 2(
1

d
�

1

c
)[n1�1 + n2�2] which the average length of the con�dence

interval I2 as expected.

Corollary 1. When F� ! 1, the expected length of the conditional con�-
dence interval increases monotonically as � increases.

Proof. When F� !1, the average length of the conditional con�dence interval
is given by

E(L) = 2(
1

d
�

1

c
)[n1 + n2�]�1 (29)

which is an increasing function of �. The maximum value corresponds to the
average length of the con�dence interval I2 when �1 = �2.

Theorem 2. The average length of the conditional con�dence interval is max-

imum for F�0 = (
n2
n1

)2[
1=d� 1=c

1=b� 1=a� 1=d+ 1=c
] and, decreases monotonically as we

move from this optimum in both direction.

Proof. If we di�erentiate the expression (21) with respect to F�, we get after
simpli�cations

dE(L)

dF�
=

nn11 nn22 �n1+1Fn1�1
�

(n2 + n1�F�)n1+n2+1
�
n21(k2 � k1)F� + n22k2

�
(30)

where k1 = 2 (
1

b
�

1

a
) and k2 = 2 (

1

d
�

1

c
). The equation,

dE(L)

dF�
= 0, admits the

roots F� = 0, F� =1 and F� = F�0 =
n22
n21

k2
k1 � k2

= (
n2
n1

)2[
1=d� 1=c

1=b� 1=a� 1=d+ 1=c
].

It is easy to see that k2 � k1 < 0, k2 > 0 and F�0 > 0, since that, percentile values
of chi-squared distributions increase as the number of degrees of freedom increases.

Furthermore,
dE(L)

dF�
> 0 for F� < F�0 and,

dE(L)

dF�
< 0 for F� > F�0 . Therefore,

F� = F�0 is a maximum value for E(L). This result suggests to search the best
preliminary test signi�cance level � only by numerical studies. However, we have
to consider large values of F�, that is, small values of �.

5. Coe�cient of variation of the length of the conditional

con�dence interval

The sensitivity of the length of the conditional con�dence interval can be mea-
sured by the length variance and more accurately by its coe�cient of variation. To
evaluate these two parameters, we need �rst to compute the second order moment
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E(L2) of L. The value of E(L2) follows from the mathematical routines previously
applied to evaluate E(L). After integration, we get

E(L2)

�21
= 4

�
(
1

d
�

1

c
)2[n2(n2 + 1)�2I� n1�F�

n2

(n1; n2 + 2)

+ n1(n1 + 1)I� n1�F�
n2

(n1 + 2; n2) + 2n1n2�I� n1�F�
n2

(n1 + 1; n2 + 1)]

+ (
1

b
�

1

a
)2 n1(n1 + 1)I� n2

n1�F�

(n2; n1 + 2)

�
: (31)

The variance and the coe�cient of variation of the length L is easily obtained by
combining equations (21) and (31). However, the obtained expressions are di�cult
to handle analytically. Nevertheless, in the case, F� !1, we have

V ar(L) = 4(
1

d
�

1

c
)2�21[n2�

2 + n1] (32)

and

CV (L) =

p
V ar(L)

E(L)
=

s
n2�2 + n1
(n1 + n2�)2

: (33)

The partial di�erentiation of the coe�cient of variation of L with respect to � gives

dCV (L)

d�
= �

n1n2(1� �)

(n1 + n2�)3

�
n2�

2 + n1
(n1 + n2�)2

�� 1
2

< 0: (34)

This shows that, for large values of F�, the coe�cient of variation of L decreases
when � increases from 0 to 1.

6. Shrinkage interval estimator

Although preliminary test point estimators often provide better results than
non conditional estimators, they have been found to possess high risks, see, for
instance, Ahmed [1]. Therefore, shrinkage version of preliminary test estimators
have been proposed which dominate, in terms of bias and e�ciency, the usual
preliminary test estimators, see, e.g., Ahmed [1] and, Ahmed and Badahdah [2].
Accordingly, we propose the following shrinkage interval estimator

IS =

�
I1; if � > F�

IS2 ; if � � F�
(35)

where

IS2 =

�
I1 with probability 


I2 with probability 1� 
:
(36)

The probability 1�
 re
ects the degree of con�dence in H0 when this hypothesis is
not rejected. However, the prior choice of 
 is very ambiguous and the experimenter
has often to rely on data at hand to �x 
. Note that for 
 = 0, IS = I and for 
 = 1,
IS = I1. In absence of any prior information, we suggest to use 
 = 1 � Pv(�)



36 S. Mahdi

where Pv(�) is the P-value corresponding to the observed �. Then, more Pv(�) is
large, more we use IS2 = I2, as it should be. Analytical study on interval IS is not
attempted here but numerical investigations are conducted. Figure 2 in Appendix
B displays simulation results on the performance of IS when 
 = 1 � Pv(�) and
� = :0001.

7. Numerical application

As a numerical application of formulas (11), (16) and (21), we considered the

cases of n1 = n2 = 25, � = 5%, � = :2; :5; :8; :9; 1 and � = 0; 1; :001; �
0

. In this
case, �

0

= :99 and corresponds to F�0 = :516. The obtained results are summarized
in Table 1 of appendix A. The last four columns of Table 1 represent respectively:
the coverage probability of I (P:C:I:), the expected length of I (E:L:I) which
is expressed as a fraction of �1, the expected length (E:L:I1) of I1, with same
coverage probability as I and also expressed as a fraction of �1, and, the reduction
rate (RR) in average length of I1 due to conditional estimating . The reduction
rate is evaluated as RR = [E:L:I1�E:L:I ]=E:L:I1. From column 2, we see that the
coverage probability of I is always :95 when � = 1 and when both � = 0 and � = 1.
This agrees with the extreme cases of always rejecting H0 and always accepting
H0, respectively. In all other cases, the coverage probability of I is less than or
equal to :95. From column 3, we see that the expected length of I is maximum for
� = �

0

and it is always less than or equal to the average length of I1 which has a
95% coverage probability, expect when � = �

0

. However, when � = �
0

, the expected
length of I is close to the expected length of I1 since �

0

= :99 ' 1. Furthermore, we
see that for � = 0, the expected length given in column 3 increases as � increases
from 0 to 1. This agrees with Corollary 1. Now from column 5, we remark that for
� = :001 the reduction rate RR increases signi�cantly as � increases and reaches
the maximum value :32 for large values of �. Moreover, the associated coverage
probability is fairly large especially when � is large. Therefore, for large values of
�, the interval I based on � = :001 performs better than I1 in this situation.

8. Simulation results

To see the performance of intervals I and IS over interval I1, we conducted
a simulation study in the cases of 5 � n1 � 20, 5 � n2 � 20, � = :05, � = :1
to 1, and, � = 1; 10�1; 10�4; 0, �0; (�0 ' 1). To this end, we randomly drew 106

pairs (n1; n2) and for each pair we generated 105 random samples X1; � � � ; Xn1 and
Y1; � � � ; Yn2 from exp(�1) and exp(�2) distributions, respectively. Then, for each
situation of the parameter space, we estimated empirically the average coverage
probability, the expected length, the median length and the coe�cient of variation
of I , I1 and IS . The results are illustrated in �gures 1 to 4 of Appendix B. The
simulation showed that interval I1 always maintains a 95% coverage probability.
In the particular case � = 1, I and I1 have on average same length and coverage
probability. Figure 1 shows that for � = 10�1, I and I1 have almost the same
average length and coverage probability when � � :2. However, when :2 < � < :5,
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both coverage probability and average length of I decrease. For � � :5, the coverage
probability of I increases and reaches a maximum of 96% of coverage probability
of I1 while the average length of I continues to decrease to reach about 72% of
average length of I1. Figure 2 shows that for � = 10�4 the coverage probability of
I decreases when � � :3 and increases when � > :3. This coverage probability gets
close to :95 when � > :75. Furthermore, the average length of I decreases when
� < :4 and increases slowly for � > :4. Nevertheless, it keeps a value less than
or equal to 64% of length of I1 for :4 < � � 1. Figure 2 also shows that, for any
value �, Is has almost a 95% con�dence level but a very large average length in
comparison to I . Note that IS is computed using the probability 
 =1 - p-value
corresponding to �. Figure 3 shows that, for � = 0, the average length of I increases
uniformly for � > 0 and takes on values much smaller than the average length of
I1. Figure 4 shows that, for � = �0, I and I1 have very similar average length and
coverage probability for � � :8. However, when � > :8, I has a slightly larger
length and coverage probability than I1. On the other hand, the simulations have
shown globally that the median lengths have same trend as average lengths and,
that I has smaller average length coe�cients of variation than I1. Consequently,
� = 10�4 provides a better interval estimator I for �1 when � � :75. Although IS

performs globally better than I1, it has less performance than I for large values
of �.

9. Conclusion

We have proposed a conditional con�dence interval for the parameter �1 of an
exponential distribution. The interval is based on a decision following a pre-test on
equality of two exponential parameters �1 and �2. Formulas for the expected length
and probability coverage are derived. A shrinkage version of the interval is also de-
veloped. Furthermore, numerical studies on the accuracy of the estimators are also
performed. Simulations results showed that, roughly, when � = �2=�1 > :75, the
conditional interval obtained with a pre-test signi�cance level around :0001 per-
forms better than the other estimators. However for small values of � the coverage
probability of the conditional interval is very small and therefore it is better to use
one of the other estimators in such situations. Consequently, one has to rely on a
prior knowledge about the parameter �, whenever this is possible, to make a better
decision. Finally, it is worth noting that Chiou and Han [4,5] have considered con-
ditional interval estimation based on one sample in the two-parameter exponential
model. In Chiou and Han [4] the conditional interval estimation of the exponential
scale parameter � following rejection of a preliminary test is investigated. The in-
ference is based on a two censored type II sample of size r from a two-parameter
exponential distribution. After rejection of a two sided preliminary test with signi�-
cance level � for the null hypothesisH0 : � = �o, a conditional and an unconditional
intervals with a same con�dence level are constructed. The � level critical region
K of the preliminary test is given by K = fT : 2T=�0 < ��=2 or 2T=�0 > �1��=2g
where T is the total test time. The conditional probability density function of T
given T 2 K is an excised gamma distribution with the boundary points at the
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critical values of the preliminary test. This conditional distribution depends on �
and 	 = �=�0. When 	 ! 0 or 1 or when � ! 1, the conditional distribution
of T converges to the unconditional distribution of T . The conditional con�dence
interval is constructed following the procedure set forth by Meeks and D'Agostino
[11] while the unconditional one is the usual con�dence interval for an exponen-
tial scale parameter with unknown location parameter. The bisection method has
been used to compute the bounds of the conditional interval. The actual coverage
probability that is provided at the �xed nominal level of the unconditional interval
is computed using the conditional probability distribution of T since this interval
is de�ned only after rejection of H0. A Table giving the ratio of the length of
a conditional 90 percent con�dence interval to the length of an unconditional 90

percent con�dence interval as function of 	̂ = �̂=�0 in the case r = 8 and � = :10 is
presented. Another table displaying the coverage probability of 90 percent nominal
unconditional con�dence intervals in the cases r = 8, � = 0:05; 0:10; 0:20; 0:40 and
	 = 0:1(0:1)4:0 is also given. It has been remarked that the conditional interval

is shorter than the unconditional interval within a region of 	̂ near �2�=2=2(r � 1)

and �21��=2=2(r�1) and that the ratio of lengths increases signi�cantly as 	̂ moves

away from these bounds. This ratio reaches the value 1 from above when 	̂ be-
comes very small or very large. This result agrees with the fact that the conditional
distribution of T given T 2 K and the unconditional distribution of T gets clos-
er to each other as 	̂ increases to 1 or decreases to 0. On the other hand, the
conditional coverage probability of the unconditional interval exceeds the nominal
level over much of the region of 	 but it is much smaller than the nominal level for
values of 	 around 1 unless � is very large. This also agrees with the fact that the
unconditional distribution of T and the corresponding unconditional distribution
resemble each other when 	 ! 0 or 1 or when � ! 1. It is then recommended
to use the unconditional interval following the rejection of H0 only if one has a
prior knowledge that 	 is not close to one and the direct use of the unconditional
interval following rejection without this knowledge is arguable.

In Chiou and Han [5] a conditional interval estimation of the location param-
eter � in the exponential model with two parameters is considered. The estimation
is based on a random sample of size n and the construction of the con�dence in-
tervals follows the rejection of a two sided preliminary test of the null H0 : � = �0.
The � critical region of the test H0 : � = �0 against Ha : � 6= �0 is given by
K = fX(1) : 2n(X(1)��0)=� < �2�=2 or 2n(X(1)��0)=� > �21��=2g and depends up-

on the �rst order statistic X(1). The conditional con�dence interval is constructed
following the procedure set forth by Meeks and D'Agostino [11] and the uncondi-
tional one is the usual con�dence interval for the exponential location parameter.
The actual coverage probability of the unconditional interval is computed using
the conditional probability distribution of X(1) given that X(1) 2 K. The cases
of known scale parameter and unknown scale parameter are separately considered.
Tables for the ratio of the length of the two intervals and for the conditional cov-
erage probability of the unconditional interval in the case of known and unknown
scale parameters are provided. A performed numerical study has shown that length
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of the conditional con�dence interval is shorter than that of the unconditional in-
terval over the region x0 = 2n(X(1) � �0)=� < �2�=2 and within a small region near

x0 = 2n(X(1)� �0)=� > �21��=2 and that the ratio of lengths increases as x0 moves

from the interval bounded by these values. On the other hand, the conditional
coverage probability of the unconditional interval maintains a high level over much
of the region of 	 = 2n(� � �0)=� but for a considerable set of values of 	 around
zero the conditional coverage is far less than the nominal level unless � is large.
Therefore it has been concluded that if one has prior knowledge that 	 is not far
away from zero, then the conditional con�dence interval following rejection of H0

may be preferable to the unconditional one.

In this paper we have considered conditional and unconditional intervals esti-
mations of the scale parameter, in one-parameter exponential model, following a
preliminary test on equality of two exponential scale parameters. It is worth noting
that the scale parameter is the most important one in practice. The inference pro-
cedure that we used is the one initiated by Bancroft [3] and it is quite di�erent from
the conditional estimation following rejection of the preliminary hypothesis used by
Chiou and Han [4,5] although they are closely related. This di�erence is pointed
out in the introduction sections of Chiou and Han [4,5]. In our case, the average
length and the probability coverage of the unconditional con�dence interval do not
depend on the signi�cance level and the result of the preliminary test. Only, the
conditional interval which is a mixture of the unconditional interval based on the
main sample and the unconditional interval based on the pooled sample depends
on the preliminary test signi�cance level and its rejection or non-rejection. As in
the �nding of Chiou and Han [4,5], none of these two intervals totally outperforms
the other in the whole parametric space. Therefore, the always use of unconditional
con�dence intervals independently of the preliminary test result may lead to less
accurate estimations.

The numerical studies have been carried out with Mathematica [16] and Gauss
(Version 3.2.42).
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Appendix

A. Numerical Application

Table 1. Coverage probabilities, expected lengths and
reduction rates in the case n1 = n2 = 25
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B. Figures
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