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ON UNIFORM CONVERGENCE OF SPECTRAL EXPANSIONS AND
THEIR DERIVATIVES ARISING BY SELF-ADJOINT EXTENSIONS

OF AN ONE-DIMENSIONAL SCHR�ODINGER OPERATOR

Neboj�sa L. La�zeti�c

Abstract. In this paper we consider the problem of global uniform convergence of spectral

expansions and their derivatives,
P

1
n=1

fnu
(j)
n (x) (j = 0; 1; . . . ), generated by non-negative self-

adjoint extensions of the operator L(u)(x) = �u00(x) + q(x)u(x) with discrete spectrum, for

functions from the classW (1)
2 (G), where G is a �nite interval of the real axis. Two theorems giving

conditions on functions q(x), f(x) which are su�cient for the absolute and uniform convergence

on G of the mentioned series, are proved. Also, some convergence rate estimates are obtained.

1. Introduction

1.1. On the problem. Let G = (a; b) be a �nite interval of the real ax-
is R. Consider an arbitrary non-negative self-adjoint extension L of the formal
Schr�odinger operator

L(u)(x) = �u00(x) + q(x)u(x) (1)

with a real-valued non-negative potential q(x) 2 L1(G), de�ned by the self-adjoint
boundary conditions

�10u(a) + �11u
0(a) + �10u(b) + �11u

0(b) = 0;

�20u(a) + �21u
0(a) + �20u(b) + �21u

0(b) = 0:
(2)

(By this we mean a self-adjoint extension L of the corresponding symmetric oper-
ator L0 in the sense of [2, x18]; the spectrum of such extension is discrete. Recall
that the operator L is de�ned in the following way. Let D(L) be the set of func-
tions g(x) 2 L2(G) such that functions g(x); g0(x) are absolutely continuous on G,
L(g)(x) 2 L2(G), and g(x) satis�es the boundary conditions (2). If g(x) 2 D(L),
then L(g)(x)

def
= L(g)(x).) Denote by fun(x)g11 the orthonormal (and complete
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98 N. La�zeti�c

in L2(G)) system of eigenfunctions of the extension L, and by f�ng11 the corre-
sponding system of non-negative eigenvalues enumerated in nondecreasing order.
(By de�nition, un(x) 2 D(L) and satis�es the di�erential equation

�u00n(x) + q(x)un(x) = �nun(x) (3)

almost everywhere on (a; b).)

Let f(x) 2 L1(G) and let � be an arbitrary positive number. We can form the
partial sum of order � of the expansion of f(x) in terms of the system fun(x)g11 :

��(x; f)
def
=

X
p
�n<�

fnun(x);

where fn
def
=

R b
a f(x)un(x) dx are the Fourier coe�cients of f(x) relative to the

system.

In this paper the classical problem of the absolute and uniform convergence

on G of the functions �
(j)
� (x; f) (j = 0; 1; . . . ), as � ! +1, is studied. We prove

two theorems giving conditions on functions q(x), f(x) which are su�cient for
the absolute and uniform convergence on G of the corresponding series. Also, we
give some uniform, with respect to x 2 G, asymptotic estimates of the di�erences

f (j)(x) � �
(j)
� (x; f), as �! +1.

1.2. Main results. We say that f(x) 2 W
(k)
p (G) (1 6 p < +1, k 2 N)

if f(x) 2 C(k�2)(G), f (k�1)(x) is an absolutely continuous function on [a; b] and
f (k)(x) 2 Lp(G). Also, f(x) 2 Lp(G) belongs to H

�
p (G) (0 < � 6 1) if there is a

constant D(f) > 0 such that

kf(x+ t)� f(x)kLp(Gjtj) 6 D(f) � jtj�
for every t 2 (a� b; b� a), where Gjtj = (a+ jtj; b� jtj).

Let f : [a; b] ! R be a continuous function such that f(a) = 0 = f(b). If
��(x; f) converges uniformly on [a; b], as �! +1, then f(x) = lim�!+1 ��(x; f)

on G and, therefore,

��(a; f) = o(1); ��(b; f) = o(1); �! +1: (4)

So equalities (4) give necessary conditions for the uniform convergence of ��(x; f)

on G. The following propositions describe some su�cient conditions for that con-
vergence.

Theorem 1. (a) Let q(x) 2 Lp(G) (1 < p 6 2), q(x) > 0, f(x) 2 W
(1)
2 (G),

and f(a) = 0 = f(b). Suppose that there exists a constant �0 > 0 such that

(8� > �0) �1=2 �maxfj��(a; f)j; j��(b; f)jg 6 D(f; q); (5)

where D(f; q)
def
= max

�
�1f

2
1

�
8AC0C1

R b
a jf(x)j dx

��1
; �

1=2
1 jf1j(8C1)

�1
	
; A;C0; C1

are constants from Propositions 1 and 2. Then for every x 2 G the equality

f(x) =

1X
n=1

fnun(x) (6)

holds, and the series converges absolutely and uniformly on G.
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Also, the following estimate is valid :

max
x2G

��f(x)� ��(x; f)
�� = O

�
1

�1=2

�
: (7)

(b) Suppose q(x) 2 W
(1)
2 (G), q(x) > 0, f(x) 2 W

(3)
2 (G), f(x) satis�es the

boundary conditions (2), and L(f)(a) = 0 = L(f)(b). If there is a constant �1 > 0
such that

(8� > �1)�
1=2 �maxfj��(a;L(f))j; j��(b;L(f))jg 6 D(L(f); q); (8)

where D(L(f); q) is de�ned analogously to D(f; q), then the equalities

f (j)(x) =

1X
n=1

fnu
(j)
n (x); 0 6 j 6 2; (9)

are valid on G, and the series converge absolutely and uniformly on G.

Moreover, the following estimates hold :

max
x2G

��f (j)(x) � �(j)� (x; f)
�� = O

�
1

�5=2�j

�
; 0 6 j 6 2: (10)

In the case of a special but important class of boundary conditions (2), it
turned out that conditions (5) and (8) can be weakened essentially. Namely, the
following is valid.

Theorem 2. Let us suppose that

�11�21 � �21�11 6= 0: (11)

Then: (a) Proposition (a) of Theorem 1 is still valid, if condition (5) is relaxed by

��(a; f) = O(1); ��(b; f) = O(1): (12)

(b) Proposition (b) of Theorem 1 holds, if condition (8) is replaced by

��(a;L(f)) = O(1); ��(b;L(f)) = O(1): (12�)

Remark 1. In the case of an arbitrary self-adjoint extension L of the operator
(1), the following results were established in papers [6] and [8]:

Let q(x) 2 L2(G), f(x) 2 W
(2)
2 (G). If f(x) satis�es the boundary conditions

(2), then the equalities

f (j)(x) =

1X
n=1

fnu
(j)
n (x); 0 6 j 6 1;

are valid on G, and the series converge absolutely and uniformly on G. Moreover,
the following estimates hold:

max
x2G

��f (j)(x)� �(j)� (x; f)
�� = o

�
1

�3=2�j

�
; 0 6 j 6 1:
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Remark 2. In the case of an arbitrary self-adjoint extension L of the oper-
ator (1), the problem we stady was considered in papers [6] and [8] for the most

important subclasses of W
(1)
2 (G). By a method di�ering from the one used in this

paper, we proved in paper [6] that the series (6) converge absolutely and uniformly
on G (and equality (6) holds) under the assumptions

(a) q(x) 2 Lp(G) (1 < p 6 2), f(x) 2 W (1)
1 (G), f(a) = 0 = f(b) and f 0(x) is a

bounded, piecewise monotone function on its domain D(f 0) � G or f 0(x) 2 BV (G),
and that the same is true for the series (9) if

(b) q(x) 2 AC(G), f(x) 2 W (3)
1 (G) and satis�es the boundary conditions (2),

L(f)(a) = 0 = L(f)(b), and L(f)0(x) is a bounded, piecewise monotone function
on its domain D(L(f)0) � G or L(f)0(x) 2 BV (G).

Here AC(G) denotes the class of absolutely continuous functions on the closed
intervalG = [a; b], and BV (G) is the class of functions having the bounded variation
on this interval. Let us note that a real valued function g, de�ned on a setD(g) � G,
is called piecewise monotone on D(g) if there is a set fx0; x1; . . . ; xn(g)g � G such
that a = x0 < x1 < � � � < xn(g) = b and functions g jD(g)\[xi�1;xi]

are monotone for

every i = 1; . . . ; n(g).

In paper [8] the above results were completed by the estimate

max
x2G

��f(x)� ��(x; f)
�� = O

�
1

�

�
; (13)

which holds in the case of assumptions (a), and by the estimates

max
x2G

��f (j)(x)� �(j)� (x; f)
�� = O

�
1

�3�j

�
; 0 6 j 6 2;

which are valid in the case of assumptions (b).

In paper [8] we also proved the following propositions.

(c) Let q(x) 2 Lp(G) (1 < p 6 2), f(x) 2 W
(1)
1 (G) and f 0(x) 2 L1(G) \

H�
1 (G), 0 < � 6 1. If f(a) = 0 = f(b), then series (6) converges absolutely and

uniformly on G and the following estimate holds:

max
x2G

��f(x)� ��(x; f)
�� = O

�
1

��

�
+ o

�
1

�1=2

�
: (14)

(d) Suppose q(x) 2 W
(1)
2 (G), f(x) 2 W

(3)
2 (G) and L(f)0(x) belongs to the

class L1(G) \ H�
1 (G), 0 < � 6 1. If f(x) satis�es the boundary conditions (2)

and L(f)(a) = 0 = L(f)(b), then the equalities (9) hold on G, the series being
absolutely and uniformly convergent on G, and the estimates

max
x2G

��f (j)(x) � �(j)� (x; f)
�� = O

�
1

�2�j+�

�
+ o

�
1

�2�j+1=2

�

are valid, where 0 6 j 6 2.
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Remark 3. Considering the classes of functions de�ned by conditions (5) or
(8), we can say the following. Condition (5) is satis�ed if, especially,

��(a; f) = o

�
1

�1=2

�
; ��(b; f) = o

�
1

�1=2

�
:

Therefore, it results from the estimate (13) that functions described by (a) in
the preceding remark belong to the �rst class. Also, if f(x) belongs to the class
de�ned in (c), where � > 1=2, then by virtue of estimate (14) this function satis�es
condition (5).

As far as condition (8) concerned, the functions f(x) described in (b) or (d)
(with � > 1=2 in the latter case) satisfy this condition. Namely, in these cases it is
possible to apply estimate (13) or (14) respectively to the function L(f)(x).

Remark 4. It is possible to obtain results concerning the absolute and uniform

convergence on G of higher derivatives �
(j)
� (x; f), where j > 3. We omit here the

corresponding theorem, but note that this program was realised in [8, Theorem 2]
for classes of functions mentioned in Remark 2.

Remark 5. Let the boundary conditions (2) have one of the following three
forms:

1) u(a) = 0 = u(b); 2) u0(a) = 0 = u0(b); 3) u(a) = u(b); u0(a) = u0(b):

Then conditions (5) and (8) can be omitted (see section 4.3).

Note that, in the case 1), proposition (a) of Theorem 1 was �rst established in
[1, Lemma 7].

Our approach to the problem considered is based only on uniform and exact
(with respect to order) estimates for the moduli of eigenfunctions and their deriva-
tives (see Propositions 1{2 bellow). The results obtained may have a theoretical
interest on their own. From the point of view of \applications", Theorem 1 and
results stated in Remark 1 may allow us to prove the existence and uniqueness of
classical solutions to a large class of \self-adjoint" mixed boundary problems for
one-dimensional hyperbolic or parabolic equations of second order. In the hyper-
bolic case, for example, these problems have the form:

@2u

@t2
(x; t) � @2u

@x2
(x; t) + q(x)u(x; t) = f(x; t); (x; t) 2 G� (0; T );

u(x; 0) = '(x); u0t(x; 0) =  (x); x 2 G;
�10u(a; t) + �11u

0
x(a; t) + �10u(b; t) + �11u

0
x(b; t) = 0;

�20u(a; t) + �21u
0
x(a; t) + �20u(b; t) + �21u

0
x(b; t) = 0; t 2 [0; T ];

where T > 0 is an arbitrary number. Note that, following this line, in papers [5]{
[7] we have established the existence and uniqueness of classical solutions to the
mentioned boundary problems for classes of functions cited in propositions (a) and
(b) from Remark 2.
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1.3. Auxiliary propositions. In proofs of the theorems we essentially use
known estimates concerning the eigenvalues and eigenfunctions (and their deriva-
tives) of the operator (1), which have been obtained by several authors.

Let fun(x)g11 be the orthonormal system of eigenfunctions arising by an ar-

bitrary non-negative self-adjoint extension L of the operator (1) with a potential
q(x) 2 L1(G), and let f�ng11 be the corresponding system of non-negative eigen-
values enumerated in nondecreasing order. Then the following propositions hold.

Proposition 1 ([3]). (a) If q(x) 2 L1(G), then there exists a constant C0 > 0,
independent of n 2 N, such that

max
x2G

jun(x)j 6 C0; n 2 N: (15)

(b) If q(x) 2 Lp(G)(p > 1), then there exists a constant A > 0 such thatX
t6
p
�n6t+1

1 6 A (16)

for every t > 0, where A does not depend on t.

Proposition 2 ([4]). (a) If q(x) 2 L1(G), then there exist constants �0 =
�0(G) > 0 and C1 > 0, not depending on n 2 N, such that

max
x2G

ju0n(x)j 6
�
C1

p
�n if �n > �0;

C1 if 0 6 �n 6 �0:
(17)

(b) Suppose q(x) 2 C(k�2)(G) (k > 2). Then un(x) 2 C(k)(G), and there exist
constants Cj > 0(2 6 j 6 k), independent of n 2 N, such that

max
x2G

ju(j)n (x)j 6
(
Cj�

j=2
n if �n > �0;

Cj if 0 6 �n 6 �0:
(18)

Note that the constants A;Ci (i = 0; 1; . . . ) depend on G and q(x). For the sake of
simplicity the estimates (17){(18) will be used supposing that �0 = 1.

Estimates (15){(18) allow us to prove the following assertions, which play the
central role in proving Theorems 1 and 2.

Proposition 3. (a) Suppose q(x) 2 Lp(G) (1 < p 6 2), q(x) > 0, f(x) 2
W

(1)
2 (G), f(a) = 0 = f(b), and condition (5) is satis�ed. Then there exists a

number n0 2 N such that for every n > n0 the following inequality holds:
nX

k=1

�kf
2
k 6 2 �

Z b

a

�
(f 0(x))2 + q(x)f2(x)

�
dx: (19)

(b) Let q(x) 2 L2(G), f(x) 2 W
(2)
2 (G), and f(x) satisfy the boundary condi-

tions (2). Then for every n 2 N the following inequality holds:

nX
k=1

�2kf
2
k 6

Z b

a

�L(f)(x)�2 dx: (20)
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(c) Suppose q(x) 2 W
(1)
2 (G), q(x) > 0, f(x) 2 W

(3)
2 (G) and satis�es the

boundary conditions (2), L(f)(a) = 0 = L(f)(b), and condition (8) is satis�ed.
Then there is a number n1 2 N such that for every n > n1 the following inequality
holds:

nX
k=1

�3kf
2
k 6 2 �

Z b

a

��L(f)0(x)�2 + q(x)
�L(f)(x)�2� dx: (21)

2. Proof of proposition 3

2.1. Proposition 3(a). Proposition 3 (and a part of its proof) is modeled
according to Lemma 3 from paper [1].

Let the functions q(x), f(x) satisfy conditions imposed in Proposition 3(a).
Suppose �n 6= 0. Using di�erential equation (3) and the integration by parts, we
obtain the equalities

�n �
Z b

a

f(x)un(x) dx =

Z b

a

f(x)
��u00n(x) + q(x)un(x)

�
dx

= �u0n(x)f(x)
��b
a
+

Z b

a

�
u0n(x)f

0(x) + q(x)un(x)f(x)
�
dx; (22)

wherefrom it follows, by f(a) = f(b) = 0, thatZ b

a

�
u0n(x)f

0(x) + q(x)un(x)f(x)
�
dx = �nfn: (23)

Replacing f(x) by um(x) in (22), one can obtain the equality

�n �
Z b

a

um(x)un(x) dx

= �u0n(b)um(b) + u0n(a)um(a) +
Z b

a

�
u0n(x)u

0
m(x) + q(x)un(x)un(x)

�
dx;

and then, by the orthonormallity of the system fun(x)g11 , that the following equal-
ities hold:Z b

a

�
u0n(x)u

0
m(x) + q(x)un(x)um(x)

�
dx

=

�
u0n(b)un(b)� u0n(a)un(a) + �n if m = n;

u0n(b)um(b)� u0n(a)um(a) if m 6= n:
(24)

Let us now introduce the integral

0 6 In(q; f;G)

def
=

Z b

a

��
f 0(x) �

nX
k=1

fku
0
k(x)

�2

+ q(x)

�
f(x)�

nX
k=1

fkuk(x)

�2�
dx;
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where n 2 N is an arbitrary number. After the obvious transformations the integral
can obtain the following form:

In(q; f;G) =

Z b

a

�
(f 0(x))2 + q(x)f2(x)

�
dx�

� 2 �
nX

k=1

�Z b

a

�
u0k(x)f

0(x) + q(x)uk(x)f(x)
�
dx

�
� fk+

+

Z b

a

�� nX
k=1

fku
0
k(x)

�2

+ q(x)

� nX
k=1

fkuk(x)

�2�
dx:

Using equality (23), we have

In(q; f;G) =

Z b

a

�
(f 0(x))2 + q(x)f2(x)

�
dx� 2 �

nX
k=1

�kf
2
k+

+

Z b

a

�� nX
k=1

fku
0
k(x)

�2

+ q(x)

� nX
k=1

fkuk(x)

�2�
dx

=

Z b

a

�
(f 0(x))2 + q(x)f2(x)

�
dx� 2 �

nX
k=1

�kf
2
k+

+

nX
k=1

f2k �
Z b

a

�
u0k(x)u

0
k(x) + q(x)uk(x)uk(x)

�
dx+

+ 2 �
n�1X
k=1

nX
k<j

fkfj �
Z b

a

�
u0k(x)u

0
j(x) + q(x)uk(x)uj(x)

�
dx:

It remains to apply equalities (24) to the last two integrals:

In(q; f;G) =

Z b

a

�
(f 0(x))2 + q(x)f2(x)

�
dx �

nX
k=1

�kf
2
k+

+

nX
k=1

f2k
�
u0k(b)uk(b)� u0k(a)uk(a)

�
dx+

+ 2 �
n�1X
k=1

nX
k<j

fkfj
�
u0k(b)uj(b)� u0k(a)uj(a)

�
dx:

We know that uk(x); uj(x) 2 D(L) and L is a self-adjoint operator. So we have
that

�u0k(x)uj(x)
��b
a
+ uk(x)u

0
j(x)

��b
a
= 0; or

u0k(b)uj(b)� u0k(a)uj(a) = uk(b)u
0
j(b)� uk(a)u

0
j(a):
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By the force of this equality, In(q; f;G) can be transformed further:

In(q; f;G) =

Z b

a

�
(f 0(x))2 + q(x)f2(x)

�
dx �

nX
k=1

�kf
2
k+

+

� nX
k=1

fku
0
k(b)

�� nX
k=1

fkuk(b)

�
�
� nX
k=1

fku
0
k(a)

�� nX
k=1

fkuk(a)

�
:

Therefore, having in mind the non-negativity of In(q; f;G), we obtain the
following inequality:

nX
k=1

�kf
2
k 6

Z b

a

�
(f 0(x))2 + q(x)f2(x)

�
dx+

+

� nX
k=1

fku
0
k(b)

�� nX
k=1

fkuk(b)

�
�
� nX
k=1

fku
0
k(a)

�� nX
k=1

fkuk(a)

�
: (25)

Let us estimate the above products of two sums. If j 2 N is such that 1 6 j < n,
�k 6 1 for 1 6 k 6 j, and �k > 1 for j < k 6 n (we suppose that n is big enough),
then by estimates (15){(17) and the Cauchy-Schwartz inequality we can obtain����

nX
k=1

fku
0
k(b)

���� 6
jX

k=1

jfku0k(b)j+
nX

k=j+1

jfku0k(b)j

6 AC0C1 �
Z b

a

jf(x)j dx + C1 �
nX

k=j+1

p
�kjfkj

6 D1 + C1 �
nX

k=1

p
�k jfkj 6 D1 + C1

� nX
k=1

�kf
2
k

�1=2

� n1=2;

where D1 has an obvious meaning. Further we have� nX
k=1

�kf
2
k

�1=2

=

nX
k=1

�kf
2
k �
� nX
k=1

�kf
2
k

��1=2

6
1

�
1=2
1 jf1j

�
nX

k=1

�kf
2
k :

(We can suppose, with no loss of generality, that �1jf1j 6= 0.) Therefore, we can
conclude that the following estimate holds:����

� nX
k=1

fku
0
k(b)

�� nX
k=1

fkuk(b)

�����
6 D1j�n(b; f)j+ C1

�
1=2
1 jf1j

� nX
k=1

�kf
2
k

�
� n1=2j�n(b; f)j; (26)

where �n(x; f)
def
=
Pn

k=1 fkuk(x). Analogously, we have the estimate����
� nX
k=1

fku
0
k(a)

�� nX
k=1

fkuk(a)

�����
6 D1j�n(a; f)j+ C1

�
1=2
1 jf1j

� nX
k=1

�kf
2
k

�
� n1=2j�n(a; f)j: (27)
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Now, we have to use assumption (5). It can be restated in the equivalent form:
there is a number n0 2 N such that for each entire number n > n0 we have

n1=2 �maxfj�n(a; f)j; j�n(b; f)jg 6 D(f; q):

Therefore, for every n > n0 the following estimates hold:

D1 �max fj�n(a; f)j; j�n(b; f)jg < �1f
2
1

8
<

1

8

nX
k=1

�kf
2
k ;

C1

�
1=2
1 jf1j

� n1=2 �max fj�n(a; f)j; j�n(b; f)jg < 1

8
:

(28)

Finally, from (25){(28) it results that for every n > n0 the estimate (19) is
valid:

nX
k=1

�kf
2
k 6 2 �

Z b

a

�
(f 0(x))2 + q(x)f2(x)

�
dx:

Proof of Proposition 3(a) is completed.

2.2. Proposition 3(b). This proposition is concerned with results formulated
in Remark 1, and it is not needed in proofs of our theorems. But for the sake of
completeness of the exposition we have stated the proposition and will give now its
proof.

In this case, the conditions imposed on functions q(x), f(x) imply that
L(f)(x) 2 L2(G), so f(x) belongs to the domain of the operator L considered.
Also, we can use the integration by parts and transforme the integral appearing on
the right-hand side of the second equality (22):

�nfn = �u0n(x)f(x)
��b
a
+ un(x)f

0(x)
��b
a
+

Z b

a

��f 00(x) + q(x)f(x)
�
un(x) dx:

But�u0n(x)f(x)
��b
a
+un(x)f

0(x)
��b
a
= 0 because of the self-adjointness of L. Therefore

we have the equalities

�nfn =

Z b

a

L(f)(x)un(x) dx = L(f)n: (29)

Now, by the Bessel inequality, for every n 2 N the following holds:

nX
k=1

L(f)2n 6
Z b

a

�L(f)(x)�2 dx:
But this means, by virtue of equalities (29), that inequality (20) is valid.

2.3. Proposition 3(c). Let the functions q(x) and f(x) satisfy conditions
imposed in the proposition. Then for function L(f)(x) all the assumptions from
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Proposition 3(a) are ful�lled. So we can apply the inequality (19): there is a number
n1 2 N such that for each entire number n > n1 the inequality

nX
k=1

�kL(f)2k 6 2 �
Z b

a

��L(f)0(x)�2 + q(x)
�L(f)(x)�2� dx (30)

holds. Now, let us recall the equalities (29): replacing L(f)k by �kfk in (30), we
obtain the inequality (21).

Proof of Proposition 3 is completed.

3. Proof of Theorem 1

3.1. Proposition (a). Let us establish �rst that the series (6) converges
absolutely and uniformly on G. If n0 2 N is the number from Proposition 3(a) and
j 2 N is such that �k 6 1 for 1 6 k 6 j, and �n > 1 for each k > j, then we can
suppose, with no loss of generality, that j < n0. Now, let n > n0 be an arbitrary
entire number. By estimates (15){(16) and inequality (19), for every x 2 G we
have

nX
k=1

jfkuk(x)j =
jX

k=1

jfkuk(x)j+
nX

k=j+1

jfkuk(x)j

6 AC2
0 �
Z b

a

jf(x)j dx + C0 �
nX

k=j+1

jfkj

6 D2 + C0

� nX
k=j+1

�kf
2
k

�1=2� nX
k=j+1

1

�k

�1=2

6 D2 + C0

�
2

Z b

a

�
(f 0(x))2 + q(x)f2(x)

�
dx

�1=2� 1X
i=1

� X
i<
p
�k6i+1

1

�k

��1=2

6 D2 +D3A
1=2

� 1X
i=1

1

i2

�1=2

;

whereform the absolute and uniform convergence of series (6) on G follows.

The equality (6) results from the continuity of f(x) and the completeness of
the system fun(x)g11 in L2(G).

It remains to prove estimate (7). Having equality (6) established, for any x 2 G
and � > 2 we can write

f(x)� ��(x; f) =
X

p
�k>�

fkuk(x): (31)

Let n(�) 2 N be the smallest number such that � 6
p
�n(�), and let n >

maxfn0; n(�)g be an arbitrary entire number. Then, by estimates (15){(16) and
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inequality (19), as above we have

nX
k=n(�)

jfkuk(x)j 6 C0

� nX
k=n(�)

�kf
2
k

�1=2� nX
k=n(�)

1

�k

�1=2

6 D3

� 1X
k=n(�)

1

�k

�1=2

6 D3

� 1X
i=[�]

� X
i6
p
�k<i+1

1

�k

��1=2

6 D3A
1=2

� 1X
i=[�]

1

i2

�1=2

6 D3A
1=2

�Z +1

[�]�1

dt

t2

�1=2

6 D3(2A)
1=2 � 1

�1=2
;

wherefrom it follows that the estimate���� Xp
�k>�

fkuk(x)

���� = O

�
1

�1=2

�
(32)

holds uniformly with respect to x 2 G. Therefore, by virtue of (31){(32), we
conclude that estimate (7) is valid.

3.2. Proposition (b). We already have a model for the proof of this propo-
sition. So, let n1 2 N be the number from Proposition 3(c), and let 1 6 j < n0 be
de�ned as in the preceding section. Suppose n > n1 and x 2 G are arbitrary. Then
for each r 2 f0; 1; 2g we have
nX

k=1

jfku(r)k (x)j =
jX

k=1

jfku(r)k (x)j +
nX

k=j+1

jfku(r)k (x)j

6 AC0Cr �
Z b

a

jf(x)j dx + Cr �
nX

k=j+1

�
r=2
k jfkj

6 D4 + Cr

� nX
k=j+1

�3kf
2
k

�1=2� nX
k=j+1

1

�3�rk

�1=2

6 D4+

+ Cr

�
2

Z b

a

��L(f)0(x)�2 + q(x)
�L(f)(x)�2� dx�1=2� 1X

i=1

� X
i<
p
�k6i+1

1

�3�rk

��1=2

6 D4 +D5A
1=2

� 1X
i=1

1

i2(3�r)

�1=2

;

where the constants D4; D5 have an obvious meaning. Hence, we see that the
series (9) converge absolutely and uniformly on G. Now, the equalities (9) can
be established by the classical theorem on di�erentiability of uniformly convergent
functional series.

Let us prove estimates (10). By equalities (9), we can write

f (r)(x)� �(r)� (x; f) =
X

p
�k>�

fku
(r)
k (x); (33)
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for all x 2 G and 0 6 r 6 2. Let � > 2 be �xed, and let n(�) 2 N be de�ned as in
the preceding section. So if x 2 G and n > maxfn1; n(�)g are arbitrary, then we
have

nX
k=n(�)

jfku(r)k (x)j 6 Cr

nX
k=n(�)

�
r=2
k jfkj 6 Cr

� nX
k=n(�)

�3kf
2
k

�1=2� nX
k=n(�)

1

�3�rk

�1=2

6 D5

� 1X
i=[�]

� X
i6
p
�k<i+1

1

�3�rk

��1=2
6 D5A

1=2

� 1X
i=[�]

1

i6�2r

�1=2

6 D5A
1=2

�Z +1

[�]�1

dt

t6�2r

�1=2

6 D6 � 1

�(5�2r)=2
:

(Here we used estimates (15){(18) and inequality (21).) From the above inequalities
and (33) it results that estimates (10) hold.

Proof of Theorem 1 is completed.

4. Proof of Theorem 2

4.1. On Proposition 3. The central point in the proof of Theorem 2 is based
on the following observation: Under assumption (11), Propositions 3(a) and 3(c)
can be appropriately modi�ed, if conditions (5) and (8) are replaced by conditions
(12) and (12�) respectively.

Proposition 3 (a) will be considered �rst. Let the coe�cients �ij ; �ij from
boundary conditions (2) satisfy (11):

�11�21 � �21�11 6= 0:

Then it is possible to solve equations (2) with respect to u0n(a) and u
0
n(b):

u0n(a) = R1a(�ij ; �ij)un(a) +R1b(�ij ; �ij)un(b);

u0n(b) = R2a(�ij ; �ij)un(a) +R2b(�ij ; �ij)un(b);
(34)

where the constants R do not depend on n. Using equalities (34), we can rewrite
inequality (25) in the following form:

nX
k=1

�kf
2
k 6

Z b

a

�
(f 0(x))2 + q(x)f2(x)

�
dx+R2b(�)�2n(b; f)+

+ (R2a(�)�R1b(�))�n(a; f)�n(b; f)�R1a(�)�2n(a; f): (35)

Let the constants from (12) be denoted by D(a; f) and D(b; f). Therefore, there
exists a number n2 2 N such that for each entire number n > n2 the estimate��R2b(�)�2n(b; f) + (R2a(�)�R1b(�))�n(a; f)�n(b; f)�R1a(�)�2n(a; f)

��
6 maxfjRka(�)j; jRkb(�)j j k = 1; 2g � �D(a; f) +D(b; f)

�2
holds. This estimate and (35) show how the estimate (19) should be modi�ed.
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The corresponding form of Proposition 3(c) can be \derived" from the modi�ed
Proposition 3(a) in the manner it was done in section 2.3.

4.2. On the proof of assertions (a) and (b). The necessary modi�cations
of Propositions 3(a) and 3(c) being established, the proof of Theorem 2 has the
same structure as the proof of Theorem 1. Actually, there is no essential di�erence
between them, so we can omit the details.

4.3. On Remark 5. This remark is based on the following fact: If the
boundary conditions (2) have one of the forms 1){3), then instead of inequality
(25) the inequality

nX
k=1

�kf
2
k 6

Z b

a

�
(f 0(x))2 + q(x)f2(x)

�
dx

holds for every n 2 N. Hence, in this case, the corresponding Propositions 3(a) and
3(c) are valid, which implies that assertions of Theorem 1 hold.

Note that results presented in this paper were reported on the Seminar for
functional analysis and operator theory, at the Faculty of Mathematics, on June
9th, 1998.
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