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GENERAL REPRESENTATIONS OF PSEUDOINVERSES

Dragan S. -Dor -devi�c and Predrag S. Stanimirovi�c

Abstract. In this paper we investigate general representations of various classes of gener-
alized inverses for bounded operators over Hilbert and Banach spaces. These representations are
expressed by means of the full-rank decomposition of bounded operators and adequately selected
operators.

1. Introduction

Let X1 and X2 denote arbitrary Banach spaces and B(X1;X2) denote the set of
all bounded operators from X1 into X2. For an arbitrary operator A 2 B(X1;X2),
we use N (A) to denote its kernel, and R(A) to denote its image.

For A 2 B(X1;X2) we say that an operator X 2 B(X2;X1) is a generalized
inverse of A, provided that some of the following equations are satis�ed:

(1) AXA = A; (2) XAX = X

If X satis�es the equation (1), then X is called a g-inverse of A. If X satis�es the
equations (1) and (2), then it is called a re
exive g-inverse of A.

It is well-known that an operator A 2 B(X1;X2) has a g-inverse if and only if
R(A) is closed, and N (A) and R(A), respectively, are complemented subspaces of
X1 and X2.

The notion of the full-rank decomposition for complex matrices is well-known
and frequently used. Recall the de�nition of the full rank factorization for a bound-
ed operator acting on Banach spaces from [2] and [3]:

Let A 2 B(X1;X2). If there exist: a Banach space X3 and operators Q 2
B(X1;X3) and P 2 B(X3;X2), such that P is left invertible, Q is right invertible
and

A = PQ; (1.1)

then we say that (1.1) is the full-rank decomposition of A.
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It is well-known that an operator A 2 B(X1;X2) has the full-rank decompo-
sition, if and only if A is g-invertible. In this case X3 is isomorphic to R(A), and
R(A) = R(P ) [3].

We say that A 2 B(X ) has the Drazin inverse, if there exists an operator
AD 2 B(X ), such that AD satis�es the equation (2) and the equations

(1k) Ak+1AD = Ak; (5) ADA = AAD ;

for some non-negative integer k. Let us mention that the Drazin inverse, if it exists,
is unique. The smallest k in the previous de�nition is called the index of A and
denoted by ind(A). In the case ind(A) = 1 the Drazin inverse is known as the
group inverse of A, denoted by A#.

Recall that asc(A) (respectively des(A)), the ascent (respectively descent) of A,
is the smallest non-negative integer n, such that N (An) = N (An+1) (respectively
R(An) = R(An+1)). If no such n exists, then asc(A) = 1 (respectively des(A) =
1) [4]. It is well-known that A has the Drazin inverse, if and only1 if the ascent
and descent of A are �nite (hence, equal to ind(A)) [3], [4].

In the case when H1 and H2 are Hilbert spaces, it is well-known that an
operator A 2 B(H1;H2) has a g-inverse if and only if R(A) is closed. Among the
equations (1), (2) we also consider the following equations in X :

(3) (AX)� = AX; (4) (XA)� = XA:

For a subset S of the set f1; 2; 3; 4g, the set of operators obeying the conditions
contained in S is denoted by AfSg. An operator in AfSg is called an S-inverse of
A and is denoted by A(S). If R(A) is closed, the set Af1; 2; 3; 4g consists of a single
element, the Moore-Penrose inverse of A, denoted by Ay.

We also consider the following equations, which de�ne the weighted Moore-
Penrose inverse:

(3M) (MAX)� =MAX (4N) (NXA)� = NXA;

(3M 0) (AX)�M =MAX (4N 0) (XA)�N = NXA;

where M 2 B(H2), N 2 B(H1) are positive or invertible. Any solution of the

equations (1), (2), (3M) and (4N), when it exists, will be denoted by Ay
M;N . Sim-

ilarly, any solution of the equations (1), (2), (3M') and (4N'), when it exists, will

be denoted by Ay
M 0;N 0 .

We investigate general representations and conditions for the existence of gen-
eralized inverses of bounded linear operatos on Hilbert spaces, arising from the
factorization (1.1). As a related result we investigate some representations of a

generalized inverse A
(2)
T;S . Obtained representations are generalizations of the anal-

ogous results available in the literature for marices. We also introduce a general
representation and conditions for thye existence of the Drazin inverse of a bound-
ed operator on a Banach space. There representatons are based on the full-rank
decomposition of Al, where l � ind(A). Such an approach in representation of the
Drazin inverse is not employed before even for complex matrices.
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2. Results

Firstly, we investigate general representations of f1; 2g-inverses, f1; 2; 3g,
f1; 2; 4g-inverses, the Moore-Penrose and the weighted Moore-Penrose for opera-
tors in arbitrary Hilbert spaces.

We shall frequently use the following observation. If S 2 B(H1;H2) is on-
to, then SS� is invertible and Sy is the right inverse of S. Analogously, if
T 2 B(H1;H2) is one-to-one with closed range, then T �T is invertible and T y

is the left inverse of T .

In the beginning, we state an analogy of the well-known result from [10, pp.
20, 28].

Lemma 2.1. If A = PQ is the full-rank decomposition of A 2 B(H1;H2)
according to (1:1), then:

(a) Any right inverse of Q can be represented in the following form: Q�1
r =

W1(QW1)
�1, for an arbitrary operator W1 2 B(H3;H1) such that QW1 is

invertible.

(b) Any left inverse of P can be represented in the following form: P�1
l =

(W2P )
�1W2, for an arbitrary operator W2 2 B(H2;H3) such that W2P is

invertible.

(c) Any re
exive generalized inverse X of A has the form X = Q�1
r P�1

l for an

arbitrary right inverse Q�1
r of Q and an arbitrary left inverse P�1

l of P .

In the literature there are known general representations for various classes of
generalized inverses, for the set of complex matrices. The general representation of
f1; 2g inverses for matrices is investigated in [9] and [10, pp. 20, 28]. The general
representations of f1; 2; 3g and f1; 2; 4g inverses for matrices are investigated in [9].
In [6] there is given a general representation and conditions for the existence of
the group inverse for a given complex matrix. The general representation of the
Moore-Penrose inverse is given in [2[, for arbitrary Hilbert spaces.

In the following theorem we give general representations of f1; 2g, f1; 2; 3g
and f1; 2; 4g inverses for an arbitrary bounded operator on Hilbert spaces. As
a consequence we obtain the known representation of the Moore-Penrose inverse
from [2].

Theorem 2.1. Let A = PQ be a full-rank decomposition of A 2 B(H1;H2)
according to (1:1). Then:

(a) X 2 Af1; 2g if and only if there exist operators W1 2 B(H3;H1) and W2 2
B(H2;H3), such that QW1 and W2P are invertible in B(H3). In such a case,
X possesses the following general representation

X =W1(QW1)
�1(W2P )

�1W2 (2.1)

(b) X 2 Af1; 2; 3g if and only if there exists an operator W1 2 B(H3;H1), such
that QW1 is invertible in B(H3). In the case when it exists, a general repre-
sentation for X is as follows:

X =W1(QW1)
�1(P �P )�1P �: (2.2)
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(c) X 2 Af1; 2; 4g if and only if there exists an operator W2 2 B(H2;H3), such
that W2P is invertible in B(H3). In this case

X = Q�(QQ�)�1(W2P )
�1W2:

(d) Ay = QyP y = Q�(QQ�)�1(P �P )�1P � = Q�(P �AQ�)�1P �.

Proof. (a) Follows from Lemma 2.1.

(b) If X has the form (2:2), then it is easy to verify X 2 Af1; 2; 3g. We
need to prove that the form (2:2) holds for all f1; 2; 3g inverses of A. Indeed,
if X 2 Af1; 2; 3g, then X = Q�1

r P�1
l , and from the equation (3) it follows

that (PP�1
l )� = PP�1

l . Thus P �PP�1
l = P �. Operator P �P is invertible,

so that P�1
l = (P �P )�1P �. The right inverse of Q retains the general form

Q�1
r =W1(QW1)

�1 from Lemma 2.1. Consequently,

X =W1(QW1)
�1(P �P )�1P �:

The proof of the statement (c) is similar as the proof of (b). Also, (d) follows
from (b) and (c). For the part (d) see also [2].

Now, we shall consider the weighted Moore-Penrose inverse under the various
hypothesis. The weighted Moore-Penrose inverse is investigated in [1], [7] and [10]
for the set of complex matrices and in [8] for matrices over an integral domain. If

M and N are positive, then Ay
M;N and Ay

M 0;N 0 always exist [1], [10], and A
y
M;N =

A
y
M 0;N 0 . In [8] and [7] it is derived a representation and conditions for the existence

of Ay
M;N and A

y
M 0;N 0 , respectively, under the more general assumptions that the

matrices M and N are invertible (not necessary positive).

Theorem 2.2. Let A = PQ be a full-rank decomposition of A according to
(1:1). Then:

(a) If M 2 B(H2) and N 2 B(H1) are invertible operators, then A
y
M;N exists if

and only if P �MP and QN�1Q� are invertible selfadjoint operators. In that
case

A
y
M;N = N�1Q�(QN�1Q�)�1(P �MP )�1P �M�

= N�1Q�(Q(QN�1)�)�1((MP )�P )�1(MP )�:
(2.3)

(b) Let M 2 B(H2) and N 2 B(H1) be invertible operators, such that QN�1Q�

is left invertible and P �MP right invertible. Then Ay
M 0;N 0 exists if and only if

QN�1Q� and P �MP are invertible and

E = N�1Q�(QN�1Q�)�1 = (QN�1)�(Q(QN�1)�)�1;

F = (P �MP )�1P �M = ((MP )�P )�1(MP )�:
(2.4)

In this case is Ay
M 0;N 0 = Q�1

r P�1
l , where Q�1

r = E and P�1
l = F .

(c) If M 2 B(H2) and N 2 B(H1) are positive and invertible operators, then

A
y
M;N = A

y
M 0;N 0 = (QN�1)�(Q(QN�1)�)�1((MP )�P )�1(MP )�

= N�1Q�(QN�1Q�)�1(P �MP )�1P �M:
(2.5)
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Proof. (a) If M and N are invertible operators and A
y
M;N exists, using the

principles from [8], from (3M) and (4N) we get

P �MPP�1
l = P �M�; Q�1

r Q(N�1)�Q� = N�1Q�; (2.6)

P �MP = P �M�P; QN�1Q� = Q(N�1)�Q�: (2.7)

From (2.7) we conclude that P �MP and QN�1Q� are selfadjoint operators. We
now prove that P �MP = P �M�P and QN�1Q� = Q(N�1)�Q� are invertible.
Indeed, from (1) and (3M) we get the following equation (see [8]):

(QXM�1X�Q�)(P �M�P ) = I:

This means that P �M�P is left invertible. Also, since P �M�P is selfadjoint, we
conclude that P �M�P is invertible. Similarly, (1) and (4N) imply the following

(QN�1Q�)(P �X�N�XP ) = I;

which means that QN�1Q� is right invertible, so it is also invertible.

Using invertibility of QN�1Q� and P �M�P , from (2:6) it follows

P�1
l = (P �M�P )�1(MP )�; Q�1

r = N�1Q�(Q(N�1)�Q�)�1: (2.8)

Now, the representations (2:3) follows from A
y
M;N = Q�1

r P�1
l , (2:8) and (2:7).

(b) Suppose that M 2 B(H2) and N 2 B(H1) are invertible operators,

such that QN�1Q� is left invertible and P �MP right invertible and A
y
M 0;N 0

exists. From the equations (1) and (3M 0) in the same way as in [7] we get
(QXM�1X�Q�)(P �MP ) = I , which means that P �MP is left invertible. Sim-
ilarly, from (1) and (4N 0) we obtain (QN�1Q�)(P �X�NXP ) = I , which implies
the right invertibility of QN�1Q�. According to the assumptions, we conclude that
P �MP and QN�1Q� are invertible. The identities (2:4) can be proved using the
method from [7].

On the other hand, if P �MP and QN�1Q� are invertible and (2:4) holds, one
can verify that Q�1

r P�1
l (where Q�1

r = E and

P�1
l = F ) satis�es the equations which de�ne Ay

M 0;N 0 .

(c) Firstly, we prove that Q(QN�1)� and (MP )�P are positive and invertible
in B(H3). If x 2 H3 and kxk = 1, then

(Q(QN�1)�x; x) = (N�1Q�x;Q�x) > 0:

Suppose that inf
kxk=1

(Q(QN�1)�x; x) = 0. Then there exists a sequence of unit

vectors (xn)n in H3, such that lim
n
(N�1Q�xn; Q

�xn) = 0. Since N�1 is positive

and invertible, it follows that there exists a subsequence (xnk )k of (xn)n, such that
lim
k
Q�xnk = 0. Now, it follows that Q� is not one-to-one with closed range, so

Q is not onto. We get the contradiction, so Q(QN�1)� is positive and invertible
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in B(H3). Analogously, we can prove that (MP )�P is positive and invertible in
B(H3).

The rest of the proof follows from parts (a) and (b).

Now, we consider f2g-generalized inverses with prescribed range and kernel.
Fundamental results for matrices can be found in [1] and [5].

Let A 2 B(H1;H2) and X 2 B(H2;H1) be a f2g-inverse of A, such that
R(X) = T is a closed subspace of H1 and N (X) = S is a closed subspace of H2.

Then we write X = A
(2)
T;S . For given closed subspaces T of H1 and S of H2, it is

a natural question when A
(2)
T;S exists? The answer in the case of arbitrary Hilbert

spaces is given in the following theorem.

We state the following elementary result.

Lemma 2.2. Let A 2 B(H1;H2), T and S be closed subspaces of H1 and H2

respectively. Then the following statements are equivalent:

(a) A has a f2g-inverse X 2 B(H2;H1) such that R(X) = T and N (X) = S;

(b) A : T ! A(T ) is invertible and A(T )� S = H2.

In the case when (a) or (b) holds, X is unique and is denoted by A
(2)
T;S .

Now, we generalize the result from [5].

Theorem 2.3. Suppose that A, T and S satisfy the condition (a) or (b) from
Lemma 2.2 and let Y 2 B(H2;H1) be such that R(Y ) = T and N (Y ) = S. If there
exists a Hilbert space H3 and a left invertible operator E 2 B(H3;H1) such that
R(E) = T , then

W = E�Y AE 2 B(H3)

is invertible in B(H3) and

A
(2)
T;S = EW�1E�Y:

Proof. Notice that E : H3 ! T is invertible, A : T ! AT is inverible and
Y : AT ! T is invertible. Since N (E�)? = R(E) = T , it follows that E� : T !
H3 is invertible, so W is invertible. Now, it is easy to verify that EW�1E�Y

is a f2g-inverse of A. Also, N (Y ) = S, W�1E�Y : AT ! H3 is invertible and
R(EW�1E�Y ) = R(E) = T , N (EW�1E�Y ) = S, so

A
(2)
T;S = EW�1E�Y:

Theorem 2.4. Let A : H1 ! H2 and X : H2 ! H1. Then X 2 Af2g if and
only if there exist Hilbert spaces H3, H4, H5 and operators

C 2 B(H4;H1); D 2 B(H2;H3); W1 2 B(H5;H4); W2 2 B(H3;H5);

such that DAC is g-invertible and W2DACW1 is invertible. In this case:

X = CW1(W2DACW1)
�1W2D: (2.9)



General representation of pseudoinverses 75

Proof. If X possesses the form (2:9), it is not di�cult to verify X 2 Af2g. On
the other hand, using the method from [10], it is easy to verify that X 2 Af2g if
and only if there exist operators C and D, such that

X = C(DAC)(1;2)D; C 2 B(H4;H1); D 2 B(H2;H3):

According to part (a) of Theorem 2.1, X 2 Af2g if and only if there exist operators
W1 and W2, such that W2DACW1 is invertible, and X possesses the form (2:9).

We introduce a general representation of the Drazin inverse based on an arbi-
trary full-rank factorization of Al, l � k = asc(A) = des(A). The following theorem
is a natural generalization of a Cline's result from [6], introduced for complex ma-
trices. We shall assume that A is not a nilpotent operator, i.e. AD 6= 0.

Theorem 2.5. Let X be a Banach space. If A 2 B(X ), l � k = asc(A) =
des(A) <1 and Al = PAlQAl is the full-rank decomposition of Al, then

AD = PAl(QAlAPAl)�1QAl :

Proof. If asc(A) = des(A) = k < 1, then it is well-known that N (Al) =
N (Ak) and R(Al) = R(Ak) for all l � k,

X = X1 �X2; (2.10)

where X1 = N (Al) and X2 = R(Al), A(Xi) � Xi for i = 1; 2, A1 = AjX1 is nilpotent
and A2 = AjX2 is invertible (A is not nilpotent) [3], [4]. We can write

A =

�
A1 0
0 A2

�
; AD =

�
0 0
0 A�1

2

�

with respect to the decomposition (2.10) ([3], [4]). Since N (Al) and R(Al) are
complementary and closed subspaces of X , it follows that Al is g-invertible, so
there exists the full-rank decomposition Al = PAlQAl , where PAl 2 B(Z ;X ) is left
invertible and QAl 2 B(X ;Z) is right invertible, for some Banach space Z . By the
isomorphism theorem [3], we can take that Z = X2. We conclude that PAl and
QAl have the following representations with respect to (2.10):

PAl =

�
M
~P

�
and QAl = [N ~Q ] ;

where ~P; ~Q 2 B(X2), M 2 B(X2;X1), N 2 B(X1;X2). Now, PAl is left invertible
andQAl is right invertible, so PAl andQAl are g-invertible operators,N (PAl) = f0g
and R(QAl) = X2. It follows that R(PAl) = R(Al) = X2 and N (QAl) = N (Al) =
X1, so M = 0, N = 0 and

PAl =

�
0
~P

�
and QAl = [ 0 ~Q ] :

It is easy to verify that ~P is left invertible and ~Q is right invertible in B(X2). But�
0 0
0 Al2

�
= Al = PAlQAl =

�
0 0
0 ~P ~Q

�
;

so Al2 = ~P ~Q. Since Al2 is invertible, it follows that ~P and ~Q are invertible in B(X2).
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Now, QAlAPAl = ~QA2
~P is invertible in B(X2), so

AD =

�
0 0
0 A�1

2

�
=

�
0 0
0 ~P ( ~QA2

~P )�1 ~Q

�
= PAl(QAlAPAl)�1Q:

As a corollary, we get the following result.

Corollary 2.1. If X is a Banach space, A 2 B(X ) and asc(A) = des(A) =
k <1 and Al = PAlQAl is an arbitrary full-rank decomposition of Al, l � k, then

(a) (AD)l = PAl(QAlAlPAl)�1QAl = PAl(QAlPAl)�2PAl ;

(b) AAD = PAl(QAlPAl)�1QAl ;

(c) If X is a Hilbert space, then (AD)y = (QAl)yQAlAPAl(PAl)y:

Proof. (a) Follows from (AD)l = (Al)# and Theorem 2.5.

(b) According to Theorem 2.5 it follows that QAlPAl = ~Q ~P , so an easy com-
putation shows that

PAl(QAlPAl)�1QAl =

�
0 0
0 I

�
= AAD:

(c) Follows from Theorem 2.1 (d) and Theorem 2.5.
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