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SEGMENTS OF EXPONENTIAL SERIES

AND REGULARLY VARYING SEQUENCES

Slavko Simi�c

Abstract. The task of this paper is to investigate asymptotic behavior of segments of
exponential series de�ned as

T�(x) :=
P

n<�x

cn

n!
xn; � 2 R+; x!1;

where (cn)n2N belongs to the set of regularly varying sequences in Karamata sense of arbitrary
index. Precise results are obtained.

Introduction

Karamata's class R� of regularly varying functions with index � 2 R consists
of all functions a(x) representable in the form a(x) = x�l(x), where l(x) is from
the class of so-called slowly varying functions, i.e. de�ned on positive part of real

axis, positive, measurable and satisfying limx!1
l(sx)
l(x) = 1, for each s > 0.

According to [3], we could treat regularly varying sequnece (cn) of index � as
generated from some a 2 R�, i.e. cn = n�l(n), n 2 N.

After seventy years, Karamat's theory is very well developed and found appli-
cations in di�erent parts of analysis. An excellent survey of results could be found
in [1] or [5].

For this article we are motivated by papers [2] and [6]. In [2] the authors
proved, by probabilistic methods, the following

Proposition 1. If a bounded sequence (cn) behaves regularly with index ��,
� > 0, then

exp(�x)
1P
n=0

cn
n!
xn � c[x]; x!1:

In [6] we extend this proposition to the following
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Proposition 2. If expPp(x) =
P1

n=0 anx
n, where Pp(x) = bpx

p + � � � ;
bp > 0, is a polynomial with (eventually) non-negative coe�cients, then

exp(�Pp(x))
1P
n=0

cnanx
n � (pbp)

�c[xp]; x!1; c0 = 1;

for any regularly varying sequence (cn) of an arbitrary index � 2 R.

Here we are going to show similar (and even more precise) asymptotic relations
take place for segments of exponential series cited above.

Results

At the beginning we shall formulate a rather global proposition, showing how
the structure of a given power series segment in
uence the behaviour of another
one which involves regularly varying sequences. Namely, let us de�ne

S(�; x) :=
P

n6�n(x)

anx
n; an > 0; n 2 N;

where n(x) increases to in�nity with x, and an operator T acting on S:

TS(�; x) :=
P

n6�n(x)

cnanx
n; n 2 N;

where (cn)n2N is a regularly varying sequence of index � 2 R.

Theorem A. If there exist f; g1; g2 : R
+ ! R+, b1 : (0; 1)! R+, b2 : (1;1)!

R+, and

lim
x!1

lnn(x)

gi(x)
= 0; i = 1; 2; (A1)

such that

S(�; x)

f(x)
=

�
O(e�b1(�)g1(x)); 0 < � < 1;

A+O(e�b2(�)g2(x)); � > 1;
x!1; A 2 R+; (A2)

then
TS(�; x)

f(x)
=

�
o(c[n(x)]); 0 < � < 1;

Ac[n(x)](1 + o(1)); � > 1;
x!1:

Proof. We shall use the following well-known properties of regularly varying
functions ([5], pp. 19, 20; [1], p. 52):

For � > 0,

S1 : sup
t6y

t�L(t) = y�L(y)(1 + o(1)); inf
t>y

t�L(t) = y�L(y)(1 + o(1)); y !1;

S2 : inf
t6y

t��L(t) = y��L(y)(1 + o(1)); sup
t>y

t��L(t) = y��L(y)(1 + o(1)); y !1;

S3 : c[�y] � c[�[y]] � ��c[y]; y !1; � 2 R+; � 2 R:
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In the sequel we consider a sequence (cn) generated by some regularly varying
function x�L(x), � 2 R, i.e.

cn = n�L(n); n 2 N; c0 = 1; c[y] = [y]�L([y]):

Let � and � (� 2 R, 0 < � < 1) be �xed numbers; then

TS(�; x)

c[n(x)]f(x)
=

1

f(x)

P
n6�n(x)

�
n

[n(x)]

���1�
nL(n)

[n(x)]L([n(x)])

�
anx

n

6
1

f(x)
sup

n6�n(x)

�
n

[n(x)]

���1

sup
n6�n(x)

nL(n)

[n(x)]L([n(x)])

P
n6�n(x)

anx
n

=
1

f(x)
O([n(x)]j�j+1)O

�
[�n(x)]L([�n(x)])

[n(x)]L([n(x)])

�
O(e�b1(�)g1(x))

= O(n(x)j�j+1e�b1(�)g1(x)) = O(exp(�b1(�)g1(x))
�
1 +O

�
lnn(x)

g1(x)

��

= o(1); x!1
Hence, the �rst assertion of Theorem A is proved.

For the second one, let � and " (� > 1, 0 < " < min(1=2; �� 1)) be �xed. We
get

TS(�; x)

c[n(x)]f(x)

=
1

c[n(x)]f(x)

� X
n6(1�")n(x)

+
X

(1�")n(x)<n6(1+")n(x)

+
X

(1+")n(x)<n6�n(x)

�
ancnx

n

= T1 + T2 + T3:

According to the former argument (� = 1� " < 1),

T1 = o(1); x!1: (A3)

Analogously,

T3 6
1

f(x)
sup

n6�n(x)

�
cn

c[n(x)]

� X
(1+")n(x)<n6�n(x)

anx
n

=
1

f(x)
O(n(x)j�j+1)(S(�; x) � S(1 + "; x))

= O(n(x)j�j+1)O(exp(�g2(x)min(b2(1 + "); b2(�)))) = o(1); x!1:
(A4)

To estimate T2, suppose for the moment that index � of (cn) is positive. Then,
since 0 < " < 1=2, using properties S1 and S3, we obtain:

sup
n6(1+")n(x)

cn = c[(1+")n(x)](1 + o(1)) = c[n(x)](1 + ")�(1 + o(1))

= c[n(x)](1 + "O(1) + o(1)); x!1;

inf
n>(1�")n(x)

cn = c[(1�")n(x)](1 + o(1)) = c[n(x)](1� ")�(1 + o(1))

= c[n(x)](1 + "O(1) + o(1)); x!1:
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Therefore,

T2 6
1

f(x)cn(x)
sup

n6(1+")n(x)

cn
X

(1�")n(x)<n6(1+")n(x)

anx
n

=
1

f(x)
(1 + "O(1) + o(1))(S(1 + "; x)� S(1� "; x))

= (1 + "O(1) + o(1))(A+ o(1)) = A+ "O(1) + o(1); x!1;
(A5)

and, similarly,

T2 >
1

f(x)c[n(x)]
inf

n>(1�")n(x)
cn � (S(1 + "; x)� S(1� "; x))

= A+ "O(1) + o(1); x!1: (A6)

Since the constants in O(1) do not depend on " and " can be arbitrarily small,
from (A5) and (A6) we conclude that T2 � A, x ! 1; this, together with (A3)
and (A4), gives the proof of Theorem A for � > 0.

For � < 0 we deduce the proof similarly, using properties S2 and S3.

If � = 0, note that (nL(n)) is of index 1, hence

T2 =
1

f(x)L([n(x)])

X
(1�")n(x)<n6(1+")n(x)

1

n
� nL(n)anxn

6
1

[(1� ")n(x)] + 1
[(1 + ")n(x)](A + o(1));

and

T2 >
1

[(1 + ")n(x)]
[(1� ")n(x)](A + o(1));

which shows that in this case also T2 � A, x!1, and the proof is over.

Investigation of possible relationship between S(�; x), n(x) and f(x) satisfying
conditions of Theorem A is the subject of our next article. Here we just show that
the class of such functions is not empty, i.e. applying results of Theorem A we prove
the following

Theorem B1. For any regularly varying sequence (cn)n2N, c0 = 1, of arbi-
trary index � 2 R,

e�x
P

n6�x

cn
xn

n!
�

8><
>:

o(c[x]); 0 < � < 1;
1
2c[x]; � = 1;

c[x]; � > 1;

x!1:

In the neighbourhood of � = 1 we prove more precisely:
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Theorem B2.

e�x
X

n6x+h(x)

cn
xn

n!
�
�
1

2
+

1p
�
Erf(b=

p
2)

�
c[x]; x!1;

where h(x) := b
p
x(1 + o(1)), x!1; b 2 R; Erf y :=

R y
0
e�t

2

dt.

Proof. According to the premises from Theorem A, the proof of cited theorems

depends on asymptotic behaviour of the sum
P

k6n
xk

k! , n = n(x)!1. Therefore,
we derive its integral representation which is more easy to estimate.

S(n; x) :=
P
k6n

xk

k!
=

xn+1

n!

P
k6n

�
n

k

�
k!

xk+1
=

xn+1

n!

P
k6n

�
n

k

�Z 1

0

e�xttk dt;

i.e.

S(n; x) =
xn+1

n!

Z 1

0

e�xt(1 + t)n dt: (B0)

For n = [�x] we obtain

e�x
xn+1

n!
� xp

2�n
en lnx�n lnn+n�x =

xp
2�n

e�x(
n
x ln

n
x+1�n

x ); x!1: (B1)

But

�� 1

x
=

�x� 1

x
<

n

x
=

[�x]

x
6

�x

x
= �;

i.e. n
x = �� �

x , � 2 [0; 1). Therefore,

n

x
ln

n

x
+ 1� n

x
= � ln�+ 1� �� �

x
ln�+ 0

�
1

x2

�
; x!1;

i.e. ((B1))

e�x
xn+1

n!
= O(

p
x e�(� ln�+1��)x); n = [�x]; � 2 R+; x!1: (B2)

Since ln(1 + t) < t, t 2 R+, for 0 < � < 1, n = [�x], we get
Z 1

0

e�xt(1 + t)n dt <

Z 1

0

e�(x�n) dt =
1

x� n
� 1

x(1� �)
; x!1:

Along with (B2) this gives the estimate

e�xS([�x]; x) = e�x
P

k6�x

xk

k!
= O(e�(� ln�+1��)x); � 2 (0; 1); x!1: (B3)

For l > 1, change of variable 1 + t 7! t gives

Z 1

0

e�xt(1 + t)n dt = ex
Z 1

1

e�xttn dt = ex
�Z 1

0

�
Z 1

0

�
e�xttn dt = ex(I1 + I2);
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and, obviously, I1 =
n!

xn+1
, jI2j = O

�
e�x

x

�
, which, together with (B0) and (B2)

gives

e�xS([�x]; x) = 1 +O(e�x(� ln�+1��)); � 2 (1;1); x!1: (B4)

Note that b(�) := � ln � � � + 1 is non-negative and convex on � 2 (0;+1),
b(0+) = 1, b(1) = 0, b(�) > 0 for � 6= 1, and

b(�) >

� 1
2 (1� �)2; � 2 (0; 1);

1
2 ln

2 �; � 2 (1;+1):

Comparing (B3) and (B4) with assertions from Theorem A, we see that conditions
(A1), (A2) are satis�ed with

f(x) = ex; n(x) = g1(x) = g2(x) = x; b1(�) =
(1� �)2

2
; b2(�) =

ln2 �

2
; A = 1;

from which follows the validity of the �rst and the third assertion from Theorem B1.

To prove Theorem B2, chnage variable in (B0): 1 + t 7! n
x (1 +

tp
n
). We get:

e�xS(n; x) =
p
n

x
� x

n+1

n!
� e�x

Z 1

p
n( x

n
�1)

e�n+x
�n
x

�n
e
�pn t+n ln(1+ tp

n
)
dt

=

p
n

n!
nne�n

�Z 1

0

+

Z 0

p
n( x

n
�1)

)e
�(
p
n t�n ln(1+ tp

n
))
dt: (B5)

Denote the �rst integral in (B5) by J1 and the second by J2 and let

g(n; t) :=
p
n t� n ln

�
1 +

tp
n

�
; t > 0; n 2 N:

From the facts:

I: g(n; t) is monotone increasing on n.

Proof. 0 6
R 1+t=pn
1

1
2s (
p
s� 1p

s
)2 ds = 1

2 (s� 1
s )� ln sj1+t=

p
n

1 = g0n(n; t);

II: limn!1 g(n; t) = t2

2 , t 2 R+;

III: For n = [x+ h(x)] follows
p
n( xn � 1)! �b, x!1;

using Lebesgue's theorem of dominated convergence, we have:

J1 !
Z 1

0

e�t
2=2 dt =

r
�

2
; (B6)

J2 !
Z 0

�b
e�t

2=2 dt =
p
2

Z b=
p
2

0

e�t
2

dt =
p
2 Erf(b=

p
2): (B7)

Since p
n

n!
� nne�n ! 1p

2�
; n!1;

from (B5), (B6), (B7) and Theorem A, the assertion of Theorem B2 follows.

Putting b = 0 we obtain the sedond proposition from Theorem B1.
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