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EXTREME VALUES OF THE SEQUENCES OF INDEPENDENT

RANDOM VARIABLES WITH MIXED DISTRIBUTIONS

Pavle Mladenovi�c

Abstract. In this paper we consider some examples of the sequences of independent random
variables with the same mixed distribution. In these cases we determine the type of extreme value
distribution and the normalizing constants.

1. Introduction

Let (Xn) be a sequence of independent random variables with the common
distribution function F . If for some constants an > 0 and bn

P

�
max
16j6n

Xj 6
x

an
+ bn

�
!d G(x); (1.1)

where G is non-degenerated distribution function, then the function G belongs
to one of three classes of the maximum stable distributions, and the functions in
these classes have the following forms (maybe after linear transformation of the
argument):

Type I. G1(x) = exp(�e�x), �1 < x < +1;

Type II. G2(x) =

�
0; if x 6 0;

exp(�x��); if x > 0;
for some � > 0;

Type III. G3(x) =

�
exp(�(�x)�); if x 6 0;

1; if x > 0:
for some � > 0.

These three types of distributions are called the extreme values distributions.
If for some distribution functions F and G the relation (1.1) holds true, then we
say that the common distribution function F of the random variables X1, X2,
X3, . . . belongs to the domain of attraction of the function G. We shall use the
notation Mn = maxfX1; . . . ; Xng. The constants an > 0 and bn from the relation
(1.1) are called the normalizing constants. Note that for an > 0, the inequality
Mn 6 x=an + bn is equivalent to an(Mn � bn) 6 x.
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2. Necessary and su�cient conditions for convergence

to the extreme value distributions

If for some distribution function F there exists a domain of attraction, then it
is determined by the asymptotic behaviour of the tail 1� F (x), as x! +1. The
following useful theorem 1.5.1 from [1] holds true:

THEOREM 1. [1] Let (Xn) be a sequence of independent random variables with

the common distribution function F (x), �1 < x < +1, (un) a sequence of real

numbers, 0 6 � 6 +1 and Mn = maxfX1; X2; . . . ; Xng. Then, the equality

lim
n!1

PfMn 6 ung = e�� ;

holds true if and only if limn!1 n(1� F (un)) = � .

Necessary and su�cient conditions for the function F to belong to some domain
of attraction can also be formulated as in the following theorem 1.6.2 from [1]:

THEOREM 2. [1] Let (Xn) be a sequence of independent random variables with

the common distribution function F , and xF = supfxjF (x) < 1g. Necessary and

su�cient conditions for the function F to belong to the domain of attraction of

possible types are given by:

Type I. There exists a strictly positive function g(t) de�ned on the set (�1; xF ),

such that for every real number x the equality lim
t"xF

1� F (t+ xg(t))

1� F (t)
= e�x holds

true.

Type II. xF = +1 and lim
t!1

1� F (tx)

1� F (t)
= x��, for some � > 0 and all x > 0.

Type III. xF < +1 and lim
h#0

1� F (xF � hx)

1� F (xF � h)
= x�, for some � > 0 and all x > 0.

3. Mixed distributions

Let X1 and X2 be random variables with distribution functions F1(x) and
F2(x), respectively, and

X =

�
X1 with probability p;

X2 with probability q;

where p+ q = 1. The distribution function of the random variable X is given by

F (x) = PfX 6 xg = pPfX1 6 xg+ qPfX2 6 xg
= pF1(x) + qF2(x):

The distribution of probability determined by the distribution function F is called
the mixture of the distributions determined by the functions F1 and F2.
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We shall consider some examples of sequences of independent random variables
with common mixed distribution. In these cases we are going to determine the type
of extreme value distribution and the normalizing constants.

3.1. Mixture of normal distributions. Let (Xn) be a sequence of independent
random variables with normal N (0; 1) distribution and Mn = maxfX1; . . . ; Xng.
As is well known, the limiting distribution of the maximum Mn is given by

Pfan(Mn � bn) 6 xg ! e�e
�x

; n!1; (3.1)

where the normalizing constants an and bn are

an =
p
2 lnn; bn =

p
2 lnn� 1

2

ln lnn+ ln 4�p
2 lnn

: (3.2)

Corollary. Let (Yn) be a sequence of independent random variables with
normal N (m;�2) distribution. Then, we have Xn = (Yn � m)=� 2 N (0; 1). If

Mn = maxfX1; . . . ; Xng and fMn = maxfY1; . . . ; Yng, then

Pfan(Mn � bn) 6 xg = P

�
an

�fMn �m

�
� bn

�
6 x

�
= Pfean(fMn �ebn) 6 xg ! exp(�e�x); n!1;

where the constants ean and ebn are given by:

ean =
an
�

=

p
2 lnn

�
;

ebn = m+ �bn = m+ �
p
2 lnn� �

ln lnn+ ln 4�

2
p
2 lnn

:

THEOREM 3. Let (Zn) be a sequence of independent random variables such that

Zn 2
� N (m1; �

2
1); with probability p;

N (m2; �
2
2); with probability q;

for all n;

where p+ q = 1. Let us denote M�
n = maxfZ1; . . . ; Zng. If

(a) �1 > �2, m1;m2 2 R or (b) �1 = �2 and m1 > m2,

then for every real number x the equality

lim
n!1

Pfa�n(M�
n � b�n) 6 xg = e�e

�x

(3.3)

holds true, where the constants a�n and b�n are given by

a�n =

p
2 lnn

�1
; b�n = m1 + �1

p
2 lnn� �1

2
p
2 lnn

�
ln lnn+ ln

4�

p2

�
: (3.4)
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REMARK. Since M�
n in distribution is the same as fMnp, then all normalizing

constants with a�n=eanp ! 1 and a�n(
ebnp � b�n) ! 0 will work. The maximum M�

n

asymptotically comes from F1.

Proof of Theorem 3. Let '(x) = (2�)�1=2e�x
2=2 and �(x) =

R x
�1

'(t) dt. We
shall use the following asymptotic relation

1��(x) � x�1'(x); x!1: (3.5)

If Xi 2 N (mi; �
2
i ), i = 1; 2, then distribution function of the random variable Xi

can be represented in the form

Fi(x) = PfXi 6 xg = P

�
X1 �m1

�1
6
x�m1

�1

�
= �

�
x�m1

�1

�
; i = 1; 2:

Distribution function of the random variable Zn has the form F (x) = pF1(x) +
qF2(x). Using this representation of F (x) we obtain

1� F (t) = p

�
1��

�
t�m1

�1

��
+ q

�
1��

�
t�m2

�2

��

� p�1
t�m1

'

�
t�m1

�1

�
+

q�2
t�m2

'

�
t�m2

�2

�

=
1p
2�

�
p�1

t�m1
exp

�
�1

2

�
t�m1

�1

�2�
+

q�2
t�m2

exp

�
�1

2

�
t�m2

�2

�2��

=
1p
2�

p�1
t�m1

exp

�
�1

2

�
t�m1

�1

�2�
(1 + o(1)); t!1;

1� F (t+ xg(t))

1� F (t)
= exp

�
� (t�m1 + xg(t))2 � (t�m1)

2

2�21

�
(t�m1)(1 + o(1))

t�m1 + xg(t)

= exp

�
�xg(t)(t�m1)

�21

�
exp

�
�x

2g2(t)

2�21

�
(t�m1)(1 + o(1))

t�m1 + xg(t)
:

For g(t) = �1=(t�m1), we get

1� F (t+ xg(t))

1� F (t)
= e�x exp

�
� x2�21
2(t�m1)2

�
1

1 + x�21(t�m1)�2
(1 + o(1))

! e�x; as t! +1:

Using theorem 1 we conclude that the distribution function F (x) belongs to the
domain of attraction of type I, i.e. there exist constants a�n and b�n, such that the
following equality holds true:

lim
n!1

P

�
M�

n 6
x

a�n
+ b�n

�
= e�e

�x

:

The constants a�n and b�n can be determined as follows: let us �rst determine
the constant un, such that 1� F (un) � 1

ne
�x as n!1 i.e.

1� pF1(un)� qF2(un) � 1

n
e�x; n!1:
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Using the equalities F1(un) = �((un � m1)=�1) and F2(un) = �((un � m2)=�2)
and asymptotic relation (3.5), we obtain

1� pF1(un)� qF2(un) = p

�
1� �(

un �m1

�1

��
+ q

�
1� �(

un �m2

�2

��

� p�1
un �m1

'

�
un �m1

�1

�
+

q�2
un �m2

'

�
un �m2

�2

�

� 1

n
e�x; as n!1:

Let us denote: vn = (un �m1)=�1 and wn = (un �m2)=�2. For large values of n
the inequality vn < wn holds true, and

p
'(vn)

vn
+ q

'(wn)

wn
=

1p
2�

�
p

vn
e�v

2

n
=2 +

q

wn
e�w

2

n
=2

�

=
1p
2�

p

vn
e�v

2

n
=2

�
1 +

vn
p

q

wn
e�(w

2

n
�v2

n
)=2

�
:

Let �n = w2n � v2n = (un �m1)
2=�21 � (un �m2)

2=�22 . If �1 > �2 > 0, then

�n =

�
1

�22
� 1

�21

�
u2n +Aun +B ! +1; as n!1:

If �1 = �2 = � and m1 > m2, then �n = [2un(m1 �m2) +m2
2 �m2

1]=�
2 ! +1,

as n!1. In both cases we have the following asymptotic equality

p
'(vn)

vn
+ q

'(wn)

wn
=

1p
2�

p

vn
e�v

2

n
=2(1 + o(1)); as n!1:

Hence, the constant un should be determined from the conditions un = �1vn +m1

and

p
'(vn)

vn
� 1

n
e�x; as n!1: (3.6)

Asymptotic relation (3.6) can be transformed in the following way:

1

pn
e�x � vn

'(vn)
! 1;

� lnn� ln p� x+ ln vn � ln'(vn)! 0;

� lnn� ln p� x+ ln vn +
1

2
ln 2� +

v2n
2
! 0: (3.7)

It follows from (3.7) that v2n=(2 lnn)! 1 as n!1, and

ln vn =
1

2
(ln 2 + ln lnn) + o(1): (3.8)

The relation (3.7) can also be writen in the form

v2n
2

= x+ lnn+ ln p� 1

2
ln 2� � ln vn + o(1): (3.9)
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Now let us substitute the value of ln vn from (3.8) into (3.9). We obtain

v2n
2

= x+ lnn+ ln p� 1

2
ln 2� � 1

2
ln 2� 1

2
ln lnn+ o(1)

= x+ lnn+ ln p� 1

2
ln 4� � 1

2
ln lnn+ o(1);

v2n = 2 lnn

�
1 +

x+ ln p� 1
2 ln 4� � 1

2 ln lnn

lnn
+ o

�
1

lnn

��
:

Note that ln p� 1
2 ln 4� = � 1

2 ln
4�
p2 . Using the formula

p
1 + x = 1 + 1

2x+ o(x) as
x! 0, we get

vn =
p
2 lnn

�
1 +

x+ ln p� 1
2 ln 4� � 1

2 ln lnn

2 lnn
+ o

�
1

lnn

��

=
p
2 lnn

�
1 +

1

2 lnn

�
x� 1

2
ln

4�

p2
� 1

2
ln lnn

�
+ o

�
1

lnn

��
:

Since un = m1 + �1vn, it follows that

un =
�1xp
2 lnn

+m1 + �1
p
2 lnn� �1

2
p
2 lnn

�
ln lnn+ ln

4�

p2

�
+ o

�
1p
lnn

�
:

On the other hand un � x

a�n
+ b�n, as n!1. Consequently it is easy to obtain the

normalizing constants a�n and b�n in the form (3.4).

3.2. Mixture of Cauchy distributions. Let (Xn) be a sequence of indepen-
dent random variables with the Cauchy distribution K(1; 0), determined by the
distribution function

F (x) =
1

2
+

1

�
arctgx:

Let us denote Mn = maxfX1; . . . ; Xng. For x > 0 we have

1� F (tx)

1� F (t)
=

�
2 � arctg(tx)
�
2 � arctg t

! 1

x
; t!1: (3.10)

Indeed, on substituting arctg t = �=2� #, we obtain t = tg(�=2� #) = ctg#,

lim
t!1

�
�

2
� arctg t

�
� t = lim

#!0
# ctg # = 1:

Similarly, lim
t!1

�
�

2
� arctg(tx)

�
tx = 1, and (3.10) follows easily. In this case, the

distribution function F belongs to the domain of attraction of the function G2(x),
and we have the type II of limiting distribution. The normalizing constants are
an = 1=
n and bn = 0, where the constant 
n can be determined from the equality

1� F (
n) =
1

2
� 1

�
arctg 
n =

1

n
:
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Hence, 
n = tg
�
�
2 � �

n

�
= ctg �

n . For every x > 0 we have:

lim
n!1

P

�
Mn � tg �

n
6 x

�
= e�x

�1

:

Corollary. Let (Yn) be a sequence of independent random variables with
the Cauchy distribution K(�; 0), which is determined by the distribution function

F (x) =
1

2
+

1

�
arctg

x

�
. Let us denote fMn = maxfY1; . . . ; Yng and Yn=� = Xn.

Then, fMn = �Mn. It is easy to see that the random variables Yn=� has K(1; 0)

distribution. Since the inequality Mn tg
�
n 6 x is equivalent to 1

�
fMn tg

�
n 6 x, it

follows that the normalizing constants in this case are given by ean = 1
� tg

�
n andebn = 0. For these values of normalizing constants and every x > 0 we have

lim
n!1

P

�
1

�
fMn � tg �

n
6 x

�
= e�x

�1

:

THEOREM 4. Let K(�i; 0) be the class of random variables with the distribution

function Fi(x) =
1
2 +

1
� arctg

x
�i
, i = 1; 2. Let (Zn) be a sequence of independent

random variables such that for every n,

Zn 2
�
K(�1; 0); with probability p;

K(�2; 0); with probability q;

where p+ q = 1, and M�
n = maxfZ1; . . . ; Zng. Then, for all x > 0 we have

lim
n!1

P

�
�

n(p�1 + q�2)
M�

n 6 x

�
= e�x

�1

: (3.11)

REMARK. For Cauchy variables with di�erent scale parameters, M�
n will come

from either of the two parent distributions, which explains why the extremal distri-
bution is also a mixture. More speci�cally, for pure Cauchy variables, �Mn=n�! U

with FU (x) = e�x
�1

. In a sample of size n from the mixture of two Cauchy distri-
butions one observes approximately np and nq variables of the two types, and hence

M�
n � max(M

(1)
np ;M

(2)
nq ) in distribution. Since FU is a max-stable distribution, this

explains the result.

Proof of Theorem 4. The distribution function of the random variable Zn is

F (x) =
1

2
+
p

�
arctg

x

�1
+
q

�
arctg

x

�2
:

It is easy to prove that lim
t!1

t

�
�

2
� arctg(at)

�
=

1

a
for a > 0. Consequently, for
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every x > 0 we obtain the following relations:

1� F (tx)

1� F (t)
=

1

2
� p

�
arctg

tx

�1
� q

�
arctg

tx

�2
1

2
� p

�
arctg

t

�1
� q

�
arctg

t

�2

=

pt

�
�

2
� arctg

tx

�1

�
+ qt

�
�

2
� arctg

tx

�2

�

pt

�
�

2
� arctg

t

�1

�
+ qt

�
�

2
� arctg

t

�2

�

! p�1=x+ q�2=x

p�1 + q�2
=

1

x
; as t!1:

It follows from theorem 2 that the function F belongs to the domain of attraction of
the function G2, i.e. in this case we have the type II of extreme value distribution.
The normalizing constants are a�n = 1=
n and b�n = 0, where 1�F (
n) = 1=n. This
equation can be transformed equivalently as follows:

1

2
� p

�
arctg


n
�1

� q

�
arctg


n
�2

=
1

n
;


np

�
�

2
� arctg


n
�1

�
+ 
nq

�
�

2
� arctg


n
�2

�
=
�

n

n:

From the last equality we obtain p�1+ q�2 � �

n

n ! 0, as 
n !1. Consequently,

we have 
n � n(p�1 + q�2)

�
and a�n =

1


n
� �

n(p�1 + q�2)
. Now it is easy to derive

the equality (3.11).

3.3. Mixture of uniform and truncated ecponential distribution. Let (Xn) be
a sequence of independent random variables with the uniform U [0; c] distribution.
The distribution function of the random variable Xn is given by F1(x) = x=c,
0 6 x 6 c. For n > � > 0 it follows from the equality 1 � F1(un) = �=n that
un = c(1 � �=n). Using theorem 1 we obtain PfMn 6 c(1 � �=n)g ! e�� as
n ! 1. For x < 0 and � = �x we obtain Pfnc (Mn � c) 6 xg ! ex, as n ! 1.
Hence, in this case we have the extreme value distribution of type III, where � = 1.
The normalizing constants are an = n

c and bn = c.

Let (Yn) be a sequence of independent random variables with the same trun-
cated exponential distribution E(�; c). This distribution is determined by the dis-
tribution function F2 which is given by F2(x) = 0 for x 6 0, F2(x) = 1 for x > c
and

F2(x) =
1� e��x

1� e��c
; if 0 6 x 6 c:

For x < 0 and � = �x, it follows from theorem 1 that

lim
n!1

P

�
Mn 6 c+

x(e�c � 1)

�n
+ o

�
1

n

��
= ex:

In this case we also obtain the limiting distribution of type III. The normalizing
constants are given by ean = �n(e�c � 1)�1 and bn = c.
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THEOREM 5. Let U [0; c] be the class of random variables with the uniform

distribution on the interval [0; c] and E(�; c) the class of random variables with the

truncated exponential distribution. Let (Zn) be a sequence of independent random

variables such that for every n,

Zn 2
�
U [0; c]; with probability p;

E(�; c); with probability q;

where p + q = 1. If M�
n = maxfZ1; . . . ; Zng, then for every x < 0 the following

equality holds true:

lim
n!1

P

�
M�

n 6 c+
x

n

�
p

c
+

�q

e�c � 1

��1�
= ex: (3.12)

Proof. The distribution function of the random variable Zn is given by

F (x) =
px

c
+ q

1� e��x

1� e��c
; if 0 6 x 6 c:

It is easy to prove that for every x > 0 the equality

lim
h#0

1� F (c� hx)

1� F (c� x)
= x;

holds true. Using theorem 2 we conclude that the function F belongs to the domain
of attraction of the function G3. The normalizing constants are b�n = c and a�n =
n=k, where k should be determined. Using theorem 1 we obtain that for x < 0 the
condition PfMn 6 c+ xk=ng ! ex as n!1, can be writen in the form:

1� F

�
c+

kx

n

�
� �x

n
; n!1;

1� p

c

�
c+

kx

n

�
� q(1� e��ce��kx=n)

1� e��c
� �x

n
; n!1;

1� p� pkx

cn
� q

1� e��c

�
1� e��c + e��c

�kx

n
+ o

�
1

n

��
� �x

n
; n!1:

Now, we obtain that �pkx
cn

� e��cq�kx

n(1� e��c)
� �x

n
as n ! 1. Consequently, the

constant k is given by k =

�
p

c
+

�q

e�c � 1

��1
, and the equality (3.12) holds true.
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