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BAIRE'S SPACE OF PERMUTATIONS OF N

AND REARRANGEMENTS OF SERIES

Tibor �Sal�at

Abstract. In the �rst part of the paper we investigate the structure of the space (S; d) of
all sequences of positive integers with Baire's metric. In the second part we study properties of
the space (E; d) of all permutations of N in connection with rearrangements of non-absolutely
convergent series.

0. Introduction

There are several papers investigating rearrangements of non-absolutely con-
vergent series from the point of view of permutations of the set N considered as
points of a metric space (cf. [1], [3], [4], [5], [7], [8], [9], [10]). The mentioned metric
space is endowed with the Fr�echet's metric d1 in [1], [3], [4], [7], [9], [10] and with
Baire's metric d in [5]. Let us remark that these two metrics are equivalent on the
set S (and also on E) of all sequences of positive integers (of all permutations of N)
and therefore many properties of (S; d1) can be transfered from (S; d1) to (S; d) (or
from (E; d1) to (E; d)), and conversely.

Several of our considerations will be based on the following classical Riemann's
theorem on rearrangements of series with real terms (cf. [5]).

Theorem A. Let
P
1

k=1 ak be a non-absolutely convergent series with real

terms, let �1 6 t1 6 t2 6 +1. Then there exists a permutation x = (xj)
1

1 2 E
such that lim infn!1 Sn(x) = t1, lim supn!1 Sn(x) = t2, where Sn(x) =

Pn

j=1 axj
(n = 1; 2; . . . ).

Particularly, for every r 2 R there exists a permutation x = (xj)
1

1 2 E such

that
1P
j=1

axj = r: (1)
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The set of all permutations (of N) x = (xj)
1

1 with (1) will be denoted by Pr
(in agreement with [5]). The set Pr depends obviously on the sequence a1, a2, . . .
and therefore we shall write in detail Pr = Pr(a1; a2; . . . ). Put

E0 = E0(a1; a2; . . . ) =
[

r2R

Pr(a1; a2; . . . ):

Although the sets E0(a1; a2; . . . ), Pr(a1; a2; . . . ) depend on a1, a2, . . . , they have
several common properties for all a1, a2, . . . such that

P
1

k=1 ak is a non-absolutely
convergent series.

Recall the concept of metrics d1 and d (on S or E). Let x = (xj)
1

1 2 S,
y = (yj)

1

1 2 S. Then we put

d1(x; y) =
1P
k=1

1

2k
jxk � ykj

1 + jxk � ykj
:

If x = y, then d(x; y) = 0 and if x 6= y, then d(x; y) = 1=m, where m = minf j :
xj 6= xi g (cf. [1], [2], p. 185).

We shall use the concept of porosity of sets (cf. [12], [13]). Let (Y; �) be a
metric space, y 2 Y and r > 0. Then by K(y; r) denote the ball with centre y and
radius r, i.e. K(y; r) = fx 2 Y : �(x; y) < r g. Let M � Y . Put


(y; r;M) = supf t > 0 : (9z 2 Y ) [K(z; t) � K(y; r)] ^ [K(z; t) \M = ?] g;

p(y;M) = lim supr!0+ 
(y; r;M)=r, p(y;M) = lim infr!0+ 
(y; r;M)=r and if
p(y;M) = p(y;M), then set

p(y;M) = p(y;M) = p(y;M) = lim
r!0+


(y; r;M)

r
:

Obviously, each of the numbers p(y;M), p(y;M), p(y;M) belongs to the interval

[0; 1].

A set M � Y is said to be porous (c-porous) at y, provided that p(y;M) > 0
(p(y;M) > c > 0). A set M � Y is said to be �-porous (�-c-porous) at y provided
that M =

S
1

n=1Mn, Mn (n = 1; 2; . . . ) being porous (c-porous) at y.

Let Y0 � Y . A set M � Y is said to be porous, c-porous, �-porous and �-
c-porous in the set Y0 if M is porous, c-porous, �-porous and �-c-porous at every
point y 2 Y0, respectively.

If a set M is c-porous and �-c-porous at y, then obviously it is porous and
�-porous at y, respectively.

Every porous set M in Y ia a nowhere dense set in Y and therefore every
�-porous set M in Y is a set of the �rst Baire category in Y . The converse is not
true already in R (cf. [11]).

From the de�nition of numbers p(y;M), p(y;M) we get at once: IfM1 �M2 �

Y , then for each y 2 Y we have p(y;M1) > p(y;M2), p(y;M1) > p(y;M2).
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Let Y be a metric space again. A set M � Y is said to be very porous at
y 2 Y if p(y;M) > 0 and very strongly porous at y if p(y;M) = 1 (cf. [1], p. 327).
The set M is said to be very (strongly) porous in Y0 � Y if it is very (strongly)
porous at each point y 2 Y0.

Obviously, if M is very porous at y, it is porous at y, as well. Analogously, if
M is very strongly porous at y, it is 1-porous at y.

Further, a setM � Y is said to be uniformly very porous (in Y1 � Y ) provided
that there is a c > 0 such that for each y 2 Y1 we have p(y;M) > c > 0 (cf. [13],
p. 327).

In agreement with the previous terminology and in analogy with the notion of
�-porosity we introduce the following concept of uniformly very �-porous sets.

Definition. 1) A setM � Y is said to be uniformly very �-porous (in Y0 � Y )
provided that M =

S
1

n=1Mn and there is a c > 0 such that for each y 2 Y0 we
have p(y;Mn) > c > 0 (n = 1; 2; . . . ).

2) A set M � Y is said to be uniformly very strongly �-porous (in Y0 � Y )
provided that M =

S
1

n=1Mn and for each y 2 Y0 we have p(y;Mn) = 1 (n =
1; 2; . . . ).

If A � Y , then by CA we denote the complement of A, CA = Y nA.

In the �rst part of the paper we shall investigate the structure of the space
(S; d). In the second part we shall study properties of the space (E; d) in connection
with rearrangements of non-absolutely convergent series.

1. Structure of the space (S;d)

We shall study the structure of (S; d) from the point of view of its subset E
and closure E = E1 of E in S.

It is well-known (cf. [1], [5], [9], [10]) that the set E is not closed in S. Its closure
E1 = E equals to the set of all x = (xj)

1

1 2 S containing every positive integer at
most once (equivalently: E1 consists of all one-to-one sequences of positive integers).

The metric space (E; d) (subspace of (S; d)) is of the second category at each
of its points (cf. [1], [4], [5], [9], [10]). We recall the following well-known result (cf.
[1], [4], [5], [7], [9], [10]):

Theorem B. Let
P
1

k=1 ak be a non-absolutely convergent series. Denote H =
H(a1; a2; . . . ) the set of all x = (xj)

1

1 2 E such that lim infn!1 Sn(x) = �1,

lim supn!1 Sn(x) = +1 (Sn(x) =
Pn

j=1 axj , n = 1; 2; . . . ). Then the set H is a

residual set in E (i.e. E nH is a set of the �rst Baire category in E).

This result has been strengthened in [3], where it is proved that the set of all
x = (xj)

1

1 2 E with (Sn(x))
0

n = [�1;1] is residual in E ((Sn(x))
0

n denotes the
set of all limit points of the sequence (Sn(x))

1

n=1).
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It is well-known that E is a G�-set in S (cf. [1]). We shall complete this result
in the following proposition and for the completeness we shall give also the proof
of the mentioned result from [1] (see (i) in the following proposition).

Proposition 1.1. The set E � S has the following properties:

(i) The set E belongs exactly to the �rst Borel class, it is a G�-set in S.

(ii) The set E is dense in itself.

(iii) The set E is nowhere dense in S.

Proof. (i) Put (as in [1]) G(n; k) = fx = (xj)
1

1 2 S : xn = k g. If x 2 G(n; k)
then it is easy to see that K(x; 1=n) � G(n; k), so the set G(n; k) is open in S. But
then the set

E2 =

1\

k=1

1[

n=1

G(n; k) (2)

is a G�-set in S. Further we have obviously

E = E1 \ E2; (20)

E1 being closed in S. Hence by (20) the set E is a G�-set in S.

Further, E is neither closed in S (cf. [1], [5]), nor open in S (see (iii)), so the
set E belongs exactly to the �rst Borel class.

(ii) Let y 2 E, " > 0. Choose s 2 N such that 1=s < ". De�ne z = (zj)
1

1 as
follows: Put zj = yj (j = 1; 2; . . . ; s), zs+1 = ys+1+1 and construct the one-to-one
sequence zs+2, zs+3, . . . containing all positive integers di�erent from z1, . . . , zs,
zs+1. Then z = (zj)

1

1 2 E, z 2 K(y; ") and z 6= y.

(iii) Let y 2 S, " > 0. We show that there exists a ball K0 � K(y; ") such that
K0\E = ?. Then on account of a well-known criterion of nowhere density (cf. [6],
p. 37), the assertion follows.

Choose s 2 N such that 1=s < ". Put zj = yj (j = 1; 2; . . . ; s), zs+1 = zs and
zs+k = 1 (k = 2; 3; . . . ). Then z = (zj)

1

1 2 K(y; "), K(z; 1=(s+ 2)) � K(y; ") and
K(z; 1=(s+ 2)) \ E = ?.

The nowhere density of the set E in S follows also from the following result.

Theorem 1.1. The set E1 = E is very strongly porous in S.

Corollary. a) The set E1 is nowhere dense in S.

b) The set E is nowhere dense in S.

Proof of Theorem 1.1. Let q = (qj)
1

1 2 S, 0 < " < 1. Choose s 2 N such
that 1=s 6 " < 1=(s � 1) (s > 2). Construct y = (yj)

1

1 2 S in this way: Put
yi = qi (i = 1; 2; . . . ; s), ys+1 = qs, ys+j = 1 (j = 2; 3; . . . ). Then y 2 K(q; 1=s)
and K(y; 1=(s + 1)) � K(q; 1=s) � K(q; "). If z = (zj)

1

1 2 K(y; 1=(s + 1)) then
zs = zs+1, so K(y; 1=(s + 1)) \ E1 = ?. But then by the de�nition of 
(q; "; E1)
we get


(q; "; E1)

"
>
s� 1

s+ 1
:
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If "! 0+, the s!1 and so we get

p(q; E1) = lim inf
"!0+


(q; "; E1)

"
= 1:

In the representation E = E1 \ E2 of the set E (see (20)) the set E1 is very
strongly porous in S (hence it is a nowhere dense set). We now show that E2 is a
residual set in S. This follows from the following result.

Theorem 1.2. The set CE2 = S n E2 is uniformly very strongly �-porous
in S.

Proof. By (2) we have E2 =
T
1

k=1B(k), where B(k) =
S
1

n=1G(n; k). Using
de Morgan's rule we get

CE2 =

1[

k=1

CB(k); (3)

where CB(k) =
T
1

n=1fx = (xj)
1

1 2 S : xn 6= k g.

We show that p(y; CB(k)) = 1 (k = 1; 2; . . . ) for each y 2 S. Then (3) gives
the assertion.

Let k be �xed, y 2 S, 0 < " < 1. Choose an s 2 N such that 1=s 6 " <
1=(s� 1). Put zj = yj (j = 1; 2; . . . ; s) and

zs+1 = k; (4)

zs+j = 1 (j = 2; 3; . . . ). Then K(z; 1=(s+1)) � K(y; 1=s) � K(y; ") and by (4) we
have K(z; 1=(s+ 1)) \ CB(k) = ?. Hence


(y; "; CB(k))

"
>
s� 1

s+ 1
:

If "! 0+, then s!1 and so we get p(y; CB(k)) = 1.

2. Structure of the space (E;d) and rearrangements of series

If
P
1

k=1 ak is a non-absolutely convergent series then by Theorem B the set
E0 = E0(a1; a2; . . . ) is a set of the �rst category in E. We shall complete this result
by showing that E0 is a �-1-porous set at points of a large subset of S.

In the �rst place we shall investigate to which Borel classes the setE0(a1; a2; . . . )
and the sets

H+ = H+(a1; a2; . . . ) = fx 2 E : lim sup
n!1

Sn(x) = +1g;

H� = H�(a1; a2; . . . ) = fx 2 E : lim inf
n!1

Sn(x) = �1g

belong.

Theorem 2.1. For each non-absolutely convergent series
P
1

k=1 ak the set

E0 = E0(a1; a2; . . . ) is an F��-ste in E.
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Remark 2.1. The foregoing theorem does not state exactly the Borel class of
the set E0. According to a result from [10] the set E0 is dense and simultaneously
a boundary set in E. From this it is easy to see that E0 cannot belong to the
zero Borel class. The set E0 cannot be a G�-set in E, since in the opposite case it
would be residual in S (cf. [6], p. 49). But this contradicts Theorem B. One can
conjecture that E0 is an F�-set in S, but I am not able to prove or disprove this
conjecture.

Proof of Theorem 2.1. By the de�nition of the set E0 and Cuachy's test for
convergence a permutation x = (xj)

1

1 2 E belongs to E0 if and only if the following
holds:

(8k)(9m)(8j) jSm+j(x) � Sm(x)j 6
1

k
:

From this we get

E0 =

1\

k=1

1[

m=1

1\

j=1

fx 2 E : jSm+j(x)� Sm(x)j 6 1=k g: (5)

Consider that by �xed m and j the function Sm+j(x)�Sm(x) =
Pm+j

n=m+1
axn

is constant on every ball K(y; 1=(m+ j)), y 2 S. Hence it is continuous on S. The
assertion follows from (5).

It is proved in [9] that the set B = B(a1; a2; . . . ) = E n (H+ [H�) belongs to
the �rst Borel class and is an F�-set in S. We show that this result is exact.

Theorem 2.2 If
P
1

k=1 ak is a non-absolutely convergent series, then the sets

H+(a1; a2; . . . ), H
�(a1; a2; . . . ) and B(a1; a2; . . . ) belong exactly to the �rst Borel

class, the sets H+, H� are G�-sets and B is an F�-set in S.

Corollary. The set H� = H+ [ H� belongs exactly to the �rst Borel class

and it is a G�-set in S.

Proof of Theorem 2.2. By using Theorem A it is easy to see that each of the
sets H+, H�, B is dense and simultaneously boundary in S. From this we see that
none of these sets belongs to zero Borel class. Further

H+ =

1\

m=1

1[

n=1

fx 2 E : Sn(x) > m g: (6)

We show that the set A(n;m) = fx 2 E : Sn(x) > m g is open in S. Indeed, if
x 2 A(n;m) then K(x; 1=n) � A(n;m). But then from (6) we get that H+ belongs
exactly to the �rst Borel class and it is a G�-set in E.

Similarly it can be shown that H� belongs exactly to the �rst Borel class and
it is a G�-set in E. The statement related to B follows from B = E n H�, where
H� = H+ [H�.

Put B1 = B1(a1; a2; . . . ) = fx 2 E : (Sn(x))
1

1 is bounded from above g,
B2 = B2(a1; a2; . . . ) = fx 2 E : (Sn(x))

1

1 is bounded from below g. Hence
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B1 = S nH+, B2 = S nH�. Then B = B1 \B2 and E0 � B. We shall investigate
the porosity of sets B1, B2, B, E0.

Lemma 2.1. Let
P
1

k=1 ak be an arbitrary non-absolutely convergent series.

Then the set B1 = B1(a1; a2; . . . ) is �-1-porous in the set H+ = H+(a1; a2; . . . ).

Corollary. The sets B, E0 are �-1-porous in H+.

Proof of Lemma 2.1. Observe that

B1 =

1[

m=1

D(m); (7)

where D(m) =
T
1

j=1fx 2 E : Sj(x) 6 m g (m = 1; 2; . . . ).

Let y = (yj)
1

1 2 H+. Then by de�nition of H+ there exists a sequence
v1 < v2 < � � � < vk < � � � of positive integers such that limk!1 Svk (y) = +1.
Construct the ball K(y; 1=vk). Then for all su�ciently large k's (say for k > k0)
we have K(y; 1=vk) \D(m) = ?, thus 
(y; v�1k ; D(m)) = 1=vk (for k > k0). Since

v�1k ! 0 (k ! 1), we get vk
(y; v
�1

k ; D(m)) = 1. Thus p(y;D(m)) = 1 (m =
1; 2; . . . ). Lemma 2 follows from (7).

Similarly the following lemma can be proved.

Lemma 2.2. Let
P
1

k=1 ak be a non-absolutely convergent series. Then the set

B2(a1; a2; . . . ) is �-1-porous in the set H�(a1; a2; . . . ).

On account of Theorem B, using Lemma 2.1 and Lemma 2.2 we obtain the
following result.

Theorem 2.3. Let
P
1

k=1 ak be an arbitrary non-absolutely convergent series.

Then each of the sets B(a1; a2; . . . ), E0(a1; a2; . . . ) is �-1-porous in the residual set

H+(a1; a2; . . . ) \H
�(a1; a2; . . . ).

REFERENCES

[1] R. P. Agnew, On rearrangements of series, Bull. Amer. Math. Soc. 46 (1940), 797{799.

[2] P. S. Alexandrov, �Uvod do obecn�e theorie mno�zin a funkc�i, N�CSAV, Praha, 1954.

[3] J. �Cerve�nansk�y, Rearrangements of series and a topological characterization of the absolute

convergence of series, Acta Fac. Rer. Nat. Univ. Com. 34 (1979), 75-91.

[4] P. L. Ganguli, B. K. Lahiri, Some results on certain sets of series, Czechosl. Math. J. 18
(93) (1968), 589{594.

[5] I. Hozo, H. I. Miller, On Riemann's theorem about conditionally convergent series, Mat.
Vesnik 38 (1986), 279{283.

[6] C. Kuratowski, Topologie I, PWN, Warszawa, 1958.

[7] Gy. L. P�al, On a problem from the theory of series (Hungarian), Mat. Lap. 12 (1961), 38{43.

[8] M. Bhaskara Rao, K. P. S. Bhaskara Rao, B. V. Rao, Remarks on subsequences, subseries

and rearrangements, Proc. Amer. Math. Soc. 67 (1977), 293{296.

[9] H. M. Sengupta, On rearrangements of series, Proc. Amer. Math. Soc. 1 (1950), 71{75.

[10] H. M. Sengupta, Rearrangements of series, Proc. Amer. Math. Soc. 7 (1956), 347{350.



8 T. �Sal�at

[11] J. Tkadlec, Constructions of some non-�-porous sets of real line, Real Anal. Exchange 9
(1983{84), 473{482.

[12] L. Zaj�i�cek, Sets of �-porosity and sets of �-porosity (q), �Cas. p�est. mat. 101 (1976), 350{359.

[13] L. Zaj�i�cek, Porosity and �-porosity, Real Anal. Exchange 13 (1987{88), 314{350.

(received 11.06.1996.)

Comenius University, Mlynsk�a dolina, 842 15 Bratislava, Slovakia


