JULIA POINTS AND STRONG ANALYTIC NORMALITY

Novo Labudović

Abstract. In this paper we prove that, if a function f holomorphic on the open unit disk belongs to the class JB^* , then f has no Julia points.

1. Introduction

In the Theory of cluster sets, many questions are in connection with the investigation of the behavior of some classes of functions in a neighborhood of a boundary point of a domain in \mathbf{C} . In this paper, we investigate a problem of this type concerning the Julia points.

Let **D** denote the open unit disk of the complex plane **C**. Denote by $h(\alpha, \theta)$ the chord of the disk **D** which join a point $z \in \mathbf{D}$ with $\exp(i\theta)$, and which makes an angle α , $-\pi/2 < \alpha < \pi/2$ with the diameter Λ^{θ} . $h(\alpha, \theta)$ is called the Julia chord for a function f holomorphic in **D**, if in every angular domain of **D** whose bisector is the chord $h(\alpha, \theta)$, f takes every value in **C**, with at most one exception, infinitely often. The point $\exp(i\theta)$ is said to be the Julia point for a function f if every chord of the form $h(\alpha, \theta), -\pi/2 < \alpha < \pi/2$, is a Julia chord for f.

Collingwood and Piranian [1] studied functions meromorphic on \mathbf{D} , with bounded spherical length. Recall that a function f meromorphic on \mathbf{D} is a function with bounded spherical length if there holds

$$\sup_{0 \leqslant r < 1} \int_0^{2\pi} \frac{\left| f'(r \exp(i\theta)) \right|}{1 + \left| f(r \exp(i\theta)) \right|^2} r \, d\theta < +\infty.$$

Collingwood and Piranian showed in [1] that there is a holomorphic function on \mathbf{D} with bounded spherical length, and with finitely many Julia points. Further, W. Hayman proved in [2] that there exist functions holomorphic on \mathbf{D} with bounded spherical length, and with infinitely many Julia points. Collingwood and Piranian proposed the conjecture that a normal holomorphic function with bounded spherical

AMS Subject Classification: 30 D 45

Communicated at the 4th Symposium on Mathematical Analysis and Its Applications, Arandelovac 1997.

N. Labudović

length contains no Julia points. This conjecture was proved by Hayman in [2]. In this paper we prove that a function belonging to the class JB^* has no Julia points.

2. Preliminary notations, definitions and results

Let $\Gamma_{\mathbf{D}}$ denote the group of all conformal automorphisms of the disk **D**. For any fixed $0 \leq \theta < \pi$, define the hyperbolic subgroup T_H^{θ} of Γ_D as

$$T_{H}^{\theta} = \left\{ S_{H}^{\theta} : S_{H}^{\theta}(z) = \frac{z + a \exp(i\theta)}{1 + a \exp(-i\theta)}, a \in (-1, 1) \right\}.$$

The pseudohyperbolic disk $\Delta(\omega, r)$ is defined by

$$\Delta(\omega, r) = \left\{ z \in \mathbf{D} : \left| \frac{z - \omega}{1 - \bar{\omega} z} \right| < r \right\}, \omega \in \mathbf{D}.$$

A family F of holomorphic functions in \mathbf{D} is said to be strong analytic normal in \mathbf{D} if every sequence $(f_n) \subset F$ contains a subsequence (f_{n_k}) such that $(f_{n_k}(z) - f_{n_k}(0))$ converges uniformly on each compact subset of \mathbf{D} to a holomorphic function f. For a fixed $0 \leq \theta < \pi$, denote by JB^* the class of holomorphic functions on \mathbf{D} which are strongly analytic normal in \mathbf{D} with respect to the hyperbolic subgroup T_H^{θ} of the group $\Gamma_{\mathbf{D}}$.

LEMMA. Suppose $f \in JB_H^{\theta}$ for a fixed $0 \leq \theta < \pi$. Then $\exp(i\theta)$ and $\exp(-i\theta)$ are not Julia points for a function f.

Proof. Suppose first that $\exp(i\theta)$ is a Julia point for f. Then there exists a sequence $\{z_n\} \subset \Delta_H^{\theta}(r) = \bigcup_{a \in (-1,1)} \Delta(a \exp(i\theta), r)$, such that $\lim_{n \to \infty} z_n = \exp(i\theta)$ and $\lim_{n \to +\infty} f(z_n) = \infty$. It follows that a function f is not bounded on $\Delta_H^{\theta}(r)$. This contradicts the fact that $f \in JB_H^{\theta}$. Analogously, the assumption that $-\exp(i\theta)$ is a Julia point gives a contradiction, which proves our lemma.

Put $JB^* = \bigcap_{0 \leq \theta < \pi} JB^{\theta}_{H}$. Then $JB^* \subset JB^{\theta}_{H}$ for each $0 \leq \theta < \pi$. The function $f(z) = (1 - z \exp(i\theta_1)^{-1}$ with $\theta_1 \neq \theta$, shows that $JB^* \subset JB^{\theta}_{H}$ for each $0 \leq \theta < \pi$.

It is not difficult to see that $H^{\infty} \subset JB^*$, and this inclusion relation is proper. For the function $g_1(z) = \tan (z - \exp(i\theta_1) + \pi/2)$ with $0 \leq \theta < \pi/2$, it is easy to verify that $g_1 \in JB^*$, but $g_1 \notin H^{\infty}$. Note that there does not exist an inclusion relation between the class JB^* and the class B of Bloch's functions. Namely, $f(z) = (1-z)^{-1} \in B$, but $f \notin JB^*$. On the other hand, the above function $g_1 \in JB^*$, but $g_1 \notin B$.

3. The main result

THEOREM. A function f belonging to the class JB^* contains no Julia points.

Proof. The assertion of the Theorem follows immediately from the above Lemma and the definition of the class JB^* .

REMARKS. Observe that the above theorem gives a positive answer for the class JB^* to a question proposed by Collingwood and Piranian [1]. This question

is related with a characterization of classes of holomorphic functions which does not have Julia points on $\Gamma_{\mathbf{D}}$. We point out that the above theorem cannot be obtained from the results of Hayman [2], which prove the conjecture of Collingwood and Piranian [1]. This shows that the function g_1 which is holomorphic on \mathbf{D} and belongs to the class JB^* is not normal, and hence g_1 does not belong to the class investigated by Hayman [2]. Namely, the class investigated by Hayman, and for which the conjecture by Collingwood and Piranian is proposed, consists of normal holomorphic functions on \mathbf{D} with bounded spherical length.

REFERENCES

- Collingwood and G. Piranian, Tsuji functions with segment of Julia, Math. Z. 84 3 (1964), 246-253.
- [2] W. K. Hayman, Tsuji functions with infinitely many Julia points, Nagoya Math. J. 29 (1967), 185-196.

(received 01.08.1997, in revised form 02.04.1998.)

University of Montenegro, Faculty of Mathematical and Natural Sciences, P. O. Box 211, 81000 Podgorica, Montenegro, Yugoslavia