BEST POSSIBLE BOUNDS AND MONOTONICITY OF SEGMENTS OF HARMONIC SERIES (II)

Slavko Simić

Abstract

We give an answer to a hypothesis formulated in one of our earlier papers, concerning boundaries and estimates of some segments of harmonic series.

In our previous article [4] we established some monotonicity criteria for the sequences $s\left(a_{n}, b_{n}\right)$ of the type

$$
s\left(a_{n}, b_{n}\right):=\frac{1}{a_{n}}+\frac{1}{a_{n}+1}+\frac{1}{a_{n}+2}+\cdots+\frac{1}{b_{n}},
$$

where $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are increasing sequences of positive integers and $a_{n}<b_{n}$, $n \in \mathbf{N}$.

Let $A_{n}:=\left(a_{n}-1 / 2\right)^{2}+1 / 12, B_{n}:=\left(b_{n}+1 / 2\right)^{2}+1 / 12, n \in \mathbf{N}$. Our results from [4] are contained in the following propositions:

Proposition A. If the sequence $\left(A_{n} / B_{n}\right)$ is nonincreasing for $n \in\left[n_{1}, n_{2}\right]$, then $s\left(a_{n}, b_{n}\right)$ is strictly decreasing for $n \in\left[n_{1}, n_{2}\right], n_{1}, n_{2} \in \mathbf{N}$.

Proposition B. If the sequence $\left(\frac{B_{n}-1 / 12}{A_{n}-1 / 12}\right)$, i.e. $\left(\frac{b_{n}+1 / 2}{a_{n}-1 / 2}\right)$ is nondecreasing, then $s\left(a_{n}, b_{n}\right)$ is strictly increasing for the same $n \in\left[n_{1}, n_{2}\right]$.

Proposition C. If

$$
\frac{B_{n+1}}{A_{n+1}}-\frac{B_{n}}{A_{n}}>\frac{B_{n+1}-B_{n}}{45 a_{n}^{2} A_{n} A_{n+1}}, \quad n \in\left[n_{1}, n_{2}\right)
$$

then the sequence $s\left(a_{n}, b_{n}\right)$ is strictly increasing for $n \in\left[n_{1}, n_{2}\right]$.
There are numerous problems concerning boundaries and estimates of some segments of harmonic series (i.e. $s\left(a_{n}, b_{n}\right)$) for given integer sequences $\left(a_{n}\right),\left(b_{n}\right)$; see for example [1], [2].

AMS Subject Classification: 26 D 15
Keywords and phrases: Harmonic series

Since the best possible bounds for $s\left(a_{n}, b_{n}\right)$ are represented by this sequence itself, we can define (as in [2]) the best lower bound of $s\left(a_{n}, b_{n}\right)$ by $s_{*}=\inf _{n} s\left(a_{n}, b_{n}\right)$, and the best possible upper bound by $s^{*}=\sup _{n} s\left(a_{n}, b_{n}\right)$; so these bounds do not depend on $n \in \mathbf{N}$.

Obviously, the question of the best possible bounds is in close connection with monotonicity of the sequence $s\left(a_{n}, b_{n}\right)$ and Propositions A-C, cited above, give an efficient tool for solving this problem for wide class of segments of harmonic series.

In [3] we considered the question of the best possible bounds for sequences $\left(a_{n}\right),\left(b_{n}\right)$ being of the form of arithmetic progression, i.e.

$$
s_{n}(p, q, A, B):=s(n p+A, n q+B)=\frac{1}{n p+A}+\frac{1}{n p+A+1}+\cdots+\frac{1}{n q+B}
$$

where p, q, A, B are fixed integers and $q>p>0, B \geqslant A-1 \geqslant 0$. There we formulated a generalization of results from [2] and [3] in the following

Hypothesis 1. Let $m:=p(2 B+1)-q(2 A-1)$. Then the sequence $s_{n}(p, q, A, B)$ is:
(a) strictly increasing if $m \leqslant 0$; hence the best possible bounds are

$$
\begin{aligned}
& s_{*}(p, q, A, B)=\inf _{n} s_{n}(p, q, A, B)=s_{1}(p, q, A, B) \\
& s^{*}(p, q, A, B)=\sup _{n} s_{n}(p, q, A, B)=\lim _{n} s_{n}(p, q, A, B)=\ln (q / p)
\end{aligned}
$$

(b) strictly decreasing in the case that $m>0$, so

$$
s_{*}(p, q, A, B)=\ln (q / p) ; \quad s^{*}(p, q, A, B)=s_{1}(p, q, A, B)
$$

In the same article we proved the validity of the cited hypothesis for the cases $A=1, B=0, p, q \in \mathbf{N}$, and $A=1, B=1, p, q \in \mathbf{N}$. We also showed that $s_{n}(p, q, A, B)$ is monotonous for sufficiently large n under conditions on p, q, A, B, m as defined.

But closer examination shows that part (b) of the hypothesis is not valid, i.e. condition $m>0$ is necessary but not sufficient for $s_{n}(p, q, A, B)$ to be strictly decreasing for each $n, n \in \mathbf{N}$. This can be illustrated by the following example.

Let $p=A=1, q=2 B$; then $m=p(2 B+1)-q(2 A-1)=1>0$, but

$$
\begin{aligned}
s_{n+1}(1,2 B, 1, B)- & s_{n}(1,2 B, 1, B)=\sum_{s=n+2}^{B(2 n+3)} \frac{1}{s}-\sum_{s=n+1}^{B(2 n+1)} \frac{1}{s}=\sum_{s=B(2 n+1)+1}^{B(2 n+3)} \frac{1}{s}-\frac{1}{n+1} \\
& >\int_{B(2 n+1)+1}^{B(2 n+3)+1} \frac{d t}{t}-\frac{1}{n+1}=\ln \left(1+\frac{1}{n+\frac{1}{2}+\frac{1}{2 B}}\right)-\frac{1}{n+1}>0
\end{aligned}
$$

for B large enough and fixed n, since the inequality $\ln \left(1+\frac{1}{n+\frac{1}{2}}\right)>\frac{1}{n+1}$ is
satisfied for each $n, n \in \mathbf{N}$.

In this paper we will give definite solution of cited Hypothesis using Propositions A-C, i.e. we will show that part (a) is correct and, under conditions of part (b), we will determine $n_{0}=n_{0}(m, p, q, A)$ such that for $n \leqslant n_{0}$ the sequence $s_{n}(p, q, A, B)$ is strictly increasing and for $n \geqslant n_{0}$ otherwise. From this, the best possible bounds follow immediately.

An interesting consequence of this proposition is the establishment of the best possible bounds for a generalized sequence $s_{f(n)}(p, q, A, B)$:

$$
s_{f(n)}(p, q, A, B):=\frac{1}{p f(n)+A}+\frac{1}{p f(n)+A+1}+\cdots+\frac{1}{q f(n)+B}
$$

where $f: \mathbf{N} \rightarrow \mathbf{N}$ ia any increasing integer function.
An answer to cited Hypothesis 1 (which includes all cases considered in [3]) is given in the next

Theorem D. Let A, B, p, q be fixed integers satisfying $B \geqslant A-1 \geqslant 0$, $q>p \geqslant 1$, and define

$$
\begin{gathered}
m:=p(2 B+1)-q(2 A-1) ; \quad c:=\frac{q}{6 m p}-\frac{2 A-1}{2 p} ; \quad C_{1}:=\left[c-\frac{1}{3}, c+\frac{1}{3}\right] \\
C_{2}:=\left(c+\frac{1}{3}, c+\frac{2}{3}\right) ; \quad r \in C_{1} \cup C_{2} \text { is an integer and } t:=\max (1, r)
\end{gathered}
$$

Considering the sequence $s_{n}(p, q, A, B)$ defined as above, we have:
Proposition D1. If $m \leqslant 0$, the sequence $s_{n}(p, q, A, B)$ is strictly increasing for each $n, n \in \mathbf{N}$; hence the best possible bounds are:

$$
\begin{aligned}
& s_{*}(p, q, A, B):=\inf _{n} s_{n}(p, q, A, B)=s_{1}(p, q, A, B)=\sum_{s=p+A}^{q+B} \frac{1}{s} \\
& s^{*}(p, q, A, B):=\sup _{n} s_{n}(p, q, A, B)=\lim _{n} s_{n}(p, q, A, B)=\ln (q / p)
\end{aligned}
$$

Proof. Checking validity of conditions of cited Proposition B (for $a_{n}=p n+A$; $\left.b_{n}=q n+B\right)$, we obtain that $m \leqslant 0$ is equivalent to

$$
\frac{n q+B+1 / 2}{n p+A-1 / 2} \geqslant \frac{(n+1) q+B+1 / 2}{(n+1) p+A-1 / 2}
$$

i.e. $\left(\frac{b_{n}+1 / 2}{a_{n}-1 / 2}\right)$ is nondecreasing. Therefore $s_{n}(p, q, A, B)$ is strictly increasing and conclusions of Proposition D1 follow.

Proposition D2. In the case $m>0$, the sequence $s_{n}(p, q, A, B)$ has the maximal term with index n_{0} in the sense that it strictly increases for $n \in\left[1, n_{0}\right]$ and strictly decreases for $n \geqslant n_{0}$. Index n_{0} is determined by: (i) $n_{0}=t$ if $r \in S_{1}$; (ii) $n_{0}=t$ or $n_{0}=t+1$ if $r \in S_{2}$.

Proof. Let $m>0$ and suppose $n_{0} \geqslant 2$. Considering case (i), for $n \in\left[1, n_{0}\right)$ we have $c-(n+1 / 2) \geqslant c-\left(n_{0}-1 / 2\right) \geqslant 1 / 6$, that is

$$
6 m p(c-(n+1 / 2)) \geqslant m p>\frac{3 m(2 A-1)+3 m p(2 n+1)}{3,75(n p+A)^{2}-1}
$$

wherefrom $22,5(n p+A)^{2} m p(c-(n+1 / 2))>q$, i.e.

$$
45(n p+A)^{2} m p q\left(c-\left(n+\frac{1}{2}\right)\right)\left(n+\frac{1}{2}+\frac{2 B+1}{2 q}\right)>q((2 n+1) q+2 B+1)
$$

i.e.

$$
\begin{aligned}
45(n p+A)^{2} m p q\left((c - (n + \frac { 1 } { 2 })) \left(n+\frac{1}{2}+\frac{2 B+1}{2 q}+\right.\right. & \left.\left.\frac{p}{6 m q}\right)+\frac{1}{4}-\frac{1}{36 m^{2}}\right) \\
& >q((2 n+1) q+2 B+1)
\end{aligned}
$$

This is (with $a_{n}=p n+A, b_{n}=q n+B$) exactly

$$
45 a_{n}^{2}\left(B_{n+1} A_{n}-B_{n} A_{n+1}\right)>B_{n+1}-B_{n}
$$

so we have proved the validity of the conditions of Proposition C. Hence, $s_{n}(p, q, A, B)$ is strictly increasing for $n \in\left[1, n_{0}\right]$.

Otherwise, for $m>0$ and $n \geqslant n_{0}$ we have

$$
\begin{aligned}
B_{n} A_{n+1}- & B_{n+1} A_{n}=\left(\left(n q+B+\frac{1}{2}\right)^{2}+\frac{1}{12}\right)\left(\left((n+1) p+A-\frac{1}{2}\right)^{2}+\frac{1}{12}\right)- \\
& -\left(\left((n+1) q+B+\frac{1}{2}\right)^{2}+\frac{1}{12}\right)\left(\left(n p+A-\frac{1}{2}\right)^{2}+\frac{1}{12}\right) \\
= & m p q\left(\left(n+\frac{1}{2}-c\right)\left(n+\frac{1}{2}+\frac{2 B+1}{2 q}+\frac{p}{6 m q}\right)-\frac{1}{4}+\frac{1}{36 m^{2}}\right) \\
\geqslant & m p q\left(\left(n_{0}+\frac{1}{2}-c\right)\left(n_{0}+\frac{1}{2}+\frac{2 B+1}{2 q}+\frac{p}{6 m q}\right)-\frac{1}{4}+\frac{1}{36 m^{2}}\right)>0
\end{aligned}
$$

since $n_{0}+\frac{1}{2}-c \begin{cases}>1 / 2 ; & c<1, \\ \geqslant 1 / 6 ; & c \geqslant 1 .\end{cases}$
Hence, under the conditions of Proposition A, the sequence $s_{n}(p, q, A, B)$ is strictly decreasing for $n \geqslant n_{0}$. It follows that, in this case:

$$
s^{*}(p, q, A, B)=s_{n_{0}}(p, q, A, B) ; \quad s_{*}(p, q, A, B)=\min \left(s_{1}(p, q, A, B), \ln (q / p)\right)
$$

What is the exact value of this minimum stays ambiguous and depends how large is the ratio p / A (as could be seen using inequalities from [4]).

The proof of the case (ii) goes on similar lines, so we omit it here.
Now we expose a generalized form of Theorem D.

Theorem E. Let $f: \mathbf{N} \rightarrow \mathbf{N}$ be any strictly increasing integer function. Define:

$$
S_{f(n)}=S_{f(n)}(p, q, A, B):=\frac{1}{p f(n)+A}+\frac{1}{p f(n)+A+1}+\cdots+\frac{1}{q f(n)+B},
$$

with $p, q, A, B, m, c, r, t, n_{0}$ same as in Theorem D. Let

$$
S_{*}=S_{*}(p, q, A, B):=\inf _{n} S_{f(n)}, \quad S^{*}=S^{*}(p, q, A, B):=\sup _{n} S_{f(n)}
$$

Proposition E1. If $m<0$ then the sequence $S_{f(n)}$ is strictly increasing for each $n, n \in \mathbf{N}$; hence, $S_{*}=S_{f(1)} ; S^{*}=S_{f(\infty)}=\ln (q / p)$.

Proposition E2. If $m>0,\left(S_{f(n)}\right)$ is strictly increasing for $n \in\left[1, k_{0}\right]$, where $k_{0}:=\max \left(1, \max _{k}\left(f(k) \leqslant n_{0}\right)\right)$. So, in this case $S_{*}=S_{f(1)} ; S^{*}=S_{f\left(k_{0}\right)}$.

Proposition E3. If $m>0,\left(S_{f(n)}\right)$ is strictly decreasing for $n \geqslant k_{1}$, where $k_{1}:=\min _{k}\left(f(k) \geqslant n_{0}\right)$; hence: $S_{*}=S_{f(\infty)}=\ln (q / p) ; S^{*}=S_{f\left(k_{1}\right)}$.

Proof of Theorem E is obvious and immediately follows from Theorem D. For example, validity of Proposition E1 could be proved like this:

Let $f(i)=k_{i}, i \in \mathbf{N}$. Since $f(\cdot)$ is strictly increasing on \mathbf{N}, so is the sequence $\left(k_{i}\right)$. According to Proposition D1, for $m \leqslant 0, s_{n}(p, q, A, B)$ is strictly increasing for each $n, n \in \mathbf{N}$. We conclude that $s_{k_{1}}(\cdot)<s_{k_{2}}(\cdot)<\cdots<s_{k_{n}}(\cdot)<\cdots$, i.e. $S_{f(1)}<S_{f(2)}<\cdots<S_{f(n)}<\cdots$.

Propositions E2,3 could be proved in a similar manner.
For an illustration, we take sequences $\left(a_{n}\right),\left(b_{n}\right)$ in the form of geometrical progression, i.e. $a_{n}=p a^{n}, b_{n}=q a^{n} ; p<q, a>1 ; p, q, a \in \mathbf{N}$.

Proposition F. The sequence

$$
s\left(p a^{n}, q a^{n}\right):=\frac{1}{p a^{n}}+\frac{1}{p a^{n}+1}+\frac{1}{p a^{n}+2}+\cdots+\frac{1}{q a^{n}}
$$

is strictly decreasing for each $n, n \in \mathbf{N}$. Hence, $s_{*}=\lim _{n} s(\cdot)=\ln (q / p) ; s^{*}=$ $s(p a, q a)$.

Proof. Put in Theorem E: $A=p, B=q, f(n)=a^{n}-1$; then: $m:=$ $p(2 B+1)-q(2 A-1)=p+q>0 ; c<0 ; n_{0}=1$; so, from Proposition E3 it follows that the considered sequence is strictly decreasing for each $n, n \in \mathbf{N}$, and conclusion follows.

For the sake of completeness we note a possibility to prove (using Proposition A), that the sequence $\left(s\left(p a^{n}, q b^{n}\right)\right) ; a<b, p a \leqslant q b ; a, b, p, q \in \mathbf{N}$; is strictly increasing for each $n, n \in \mathbf{N}$. Hence, in this case $s_{*}=s(p a, q b) ; s^{*}=+\infty$.

REFERENCES

[1] Problem 108, Mat. vesnik 4 (19) (1967).
[2] Adamović, D. and Tasković, M., Monotony and the best possible bounds of some sequences of sums, Publ. Elek. fak. Beograd, 247-275 (1969).
[3] Simić, S., Proof of a hypothesis on some segments of harmonic series and a new hypothesis, Mat. Vesnik 5 (16)(31) (1979).
[4] Simić, S., Monotonicity of segments of harmonic series (I), Mat. vesnik 38 (1986)
(received 22.10.1996.)
Baba Višnjina 34, 11000 Beograd, Yugoslavia

