SOME PROPERTIES OF A CLASS OF POLYNOMIALS

Gospava B. Djordjević

Abstract

In the paper [2], R. André-Jeannin studied a class of polynomials $U_{n}(p, q ; x)$. In this paper we consider a new class of polynomials $U_{n, m}(p, q ; x)$ and determine the coefficients $c_{n, k}(p, q)$ of these introduced polynomials. Also, we define the polynomials $f_{n, m}(p, q ; x)$, which are the rising diagonal polynomials of $U_{n, m}(p, q ; x)$.

1. Introduction

In the paper [2], R. André-Jeannin studied a class of polynomials $U_{n}(p, q ; x)$. These polynomials are given by

$$
U_{n}(p, q ; x)=(x+p) U_{n-1}(p, q ; x)-q U_{n-2}(p, q ; x), \quad n \geq 2,
$$

with starting polynomials $U_{0}(p, q ; x)=0$ and $U_{1}(p, q ; x)=1$. The particular cases of these polynomials are: Fibonacci polynomials, Pell polynomials ([6]), Fermat polynomials of the first kind ([5], [3]), Morgan-Voyce polynomials of the second kind ([1]), Chebyschev polynomials of the second kind ([5]). In this paper, we consider a more general class of polynomials $U_{n, m}(p, q ; x)$, where n, m are nonnegative integers. These polynomials are given by the following recurrence relation

$$
\begin{equation*}
U_{n, m}(p, q ; x)=(x+p) U_{n-1, m}(p, q ; x)-q U_{n-m, m}(p, q ; x), \quad n \geq m, \tag{1.1}
\end{equation*}
$$

with starting polynomials:

$$
\begin{equation*}
U_{0, m}(p, q ; x)=0, \quad U_{n, m}(p, q ; x)=(x+p)^{n-1}, \quad n=1,2, \ldots, m-1 \tag{1.2}
\end{equation*}
$$

The parameters p and q are arbitrary real numbers. Note that the polynomials $U_{n, 3}(p, q ; x)$ are studied in [4].

Let us denote by $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ the real or complex numbers, such that

$$
\begin{equation*}
\sum_{i=1}^{m} \alpha_{i}=p, \quad \sum_{i<j} \alpha_{i} \alpha_{j}=0, \quad \ldots, \quad \alpha_{1} \alpha_{2} \cdots \alpha_{m}=(-1)^{m} q . \tag{1.3}
\end{equation*}
$$

[^0]Also, in this paper, we define the polynomials $f_{n, m}(p, q ; x)$, which are the rising diagonal polynomials of $U_{n, m}(p, q ; x)$.

2. Polynomials $\boldsymbol{U}_{n, m}(\boldsymbol{p}, \boldsymbol{q} ; \boldsymbol{x})$

Let us write $U_{n, m}(x)$ instead of $U_{n, m}(p, q ; x)$. From (1.1) and (1.2), we find the first $m+2$ terms of the sequence $\left\{U_{n, m}(x)\right\}$:

$$
\begin{gather*}
U_{0, m}(x)=0, U_{1, m}(x)=1, U_{2, m}(x)=x+p, \ldots, U_{m, m}(x)=(x+p)^{m-1} \tag{2.1}\\
U_{m+1, m}(x)=(x+p)^{m}-q
\end{gather*}
$$

From (2.1) and by induction on n, we can say that there is a sequence $\left\{c_{n, k}(p, q)\right\}$, $n \geq 0, k \geq 0$, of numbers such that

$$
\begin{equation*}
U_{n+1, m}(x)=\sum_{k \geq 0} c_{n, m, k}(p, q) x^{k} \tag{2.2}
\end{equation*}
$$

where $c_{n, k}(p, q)=0$ for $n<k$, and $c_{n, n}(p, q)=1$.
The main purpose of this section is to determinate the coefficients $c_{n, k}(p, q)$.
Comparing the coefficients of x^{k} in two members of (2.2), by (1.1), we get

$$
\begin{equation*}
c_{n, k}(p, q)=c_{n-1, k-1}(p, q)+p c_{n-1, k}(p, q)-q c_{n-m, k}(p, q) \tag{2.3}
\end{equation*}
$$

for $n \geq m$, and $k \geq 1$. Now, we are going to prove the following result.
Lemma 2.1. For all $k \geq 0$, we have

$$
\begin{equation*}
\left(1-p t+q t^{m}\right)^{-(k+1)}=\sum_{n \geq 0} d_{n, k}(p, q) t^{n} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{n, k}(p, q)=\sum_{r=0}^{[n / m]}(-1)^{r} q^{r}\binom{k+n-(m-1) r}{k}\binom{n-(m-1) r}{r} p^{n-m r} \tag{2.5}
\end{equation*}
$$

Proof. Firstly, let us define the generating function of the sequence $U_{n, m}(x)$ by

$$
\begin{equation*}
f(x, t)=\sum_{n \geq 0} U_{n+1, m}(x) t^{n} \tag{2.6}
\end{equation*}
$$

From (1.1) and (2.6), we find

$$
\begin{equation*}
f(x, t)=\left(1-(x+p) t+q t^{m}\right)^{-1} \tag{2.7}
\end{equation*}
$$

Hence, from (2.6) and (2.7), we get

$$
\frac{\partial^{k} f(x, t)}{\partial x^{k}}=k!t^{k}\left(1-(x+p) t+q t^{m}\right)^{-(k+1)}=\sum_{n \geq 0} U_{n+1+k, m}^{(k)}(x) t^{n+k}
$$

For $x=0$ in (2.7'), we get

$$
d_{n, k}(p, q)=\frac{1}{k!} U_{n+1+k, m}^{(k)}(p, q ; 0)=\frac{1}{k!} U_{n+1+k, m}^{(k)}(0, q ; p)
$$

From (2.4), we obtain

$$
\begin{aligned}
\sum_{n \geq 0} d_{n, k} t^{n} & =\left(1-p t+q t^{m}\right)^{-(k+1)} \\
& =\sum_{n \geq 0}(-1)^{n} \frac{(k+n)!}{k!n!} t^{n}\left(p-q t^{m-1}\right)^{n} \\
& =\sum_{n \geq 0} t^{n} \sum_{r \geq 0} \frac{q^{n}(k+n-(m-1) r)!p^{n-m r}}{k!r!(n-m r)!} \\
& =\sum_{n \geq 0} t^{n} \sum_{r=0}^{[n / m]}(-1)^{r} q^{r}\binom{n+k-(m-1) r}{k}\binom{n-(m-1) r}{r} p^{n-m r}
\end{aligned}
$$

Comparing coefficients of t^{n}, from the last equalities, we get (2.5). This completes the proof.

THEOREM 2.1. The coefficients $c_{n, k}(p, q)$ are given by the following formula

$$
\begin{equation*}
c_{n, k}(p, q)=\sum_{r=0}^{[(n-k) / m]}(-1)^{r} q^{r}\binom{n-(m-1) r}{k}\binom{n-k+(m-1) r}{r} p^{n-k-m r} \tag{2.8}
\end{equation*}
$$

Proof. Firstly, from (1.1), we deduce

$$
\begin{equation*}
U_{n+1, m}(p, q ; x)=U_{n+1, m}(0, q ; x+p) \tag{2.9}
\end{equation*}
$$

Using (2.2), from (2.9) we have

$$
c_{n, k}(p, q)=\frac{1}{k!} U_{n+1, m}^{(k)}(p, q ; 0)=\frac{1}{k!} U_{n+1, m}^{(k)}(0, q ; p)
$$

From the last equalities and (2.4), we get

$$
c_{n+k, k}(p, q)=\frac{1}{k!} U_{n+1+k, m}^{(k)}(p, q ; 0)=d_{n, k(p, q)}
$$

Then, from (2.9'), we get

$$
c_{n, k}(p, q)=\sum_{r=0}^{[(n-k) / m]}(-1)^{r} q^{r}\binom{n-(m-1) r}{k}\binom{n-k-(m-1) r}{r} P^{n-k-m r}
$$

which completes the proof.
THEOREM 2.2. The coefficients $c_{n, k}(p, q)$ satisfy the following relation

$$
\begin{equation*}
c_{n, k+1}(p, q)=\frac{1}{k+1} \frac{\partial c_{n, k}(p, q)}{\partial p} \tag{2.10}
\end{equation*}
$$

Proof. Supposing that $n \geq 1$, and using (2.9), we see that

$$
U_{n, m}^{(k)}(p, q ; x)=U_{n, m}^{(k)}(0, q ; x+p)
$$

where the superscript in parentheses denotes the k-th derivative with respect to x. Using Taylor's formula and (2.2), we get

$$
c_{n, k}(p, q)=\frac{1}{k!} U_{n+1, m}^{(k)}(0, q ; p) .
$$

Differentiating (2.10') with respect to p (q is fixed), we get

$$
\frac{\partial c_{n, k}(p, q)}{\partial p}=\frac{1}{k!} U_{n+1, m}^{(k+1)}(0, q ; p)=(k+1) c_{n, k+1}(p, q) .
$$

Hence, we deduce that

$$
c_{n, k+1}(p, q)=\frac{1}{k+1} \frac{\partial c_{n, k}(p, q)}{\partial p}
$$

which completes the proof.
Now we mention some particular cases:
(i) If $m=2$, then (2.8) becomes (see [2])

$$
c_{n, k}(p, q)=\sum_{r=0}^{[(n-k) / 2]}(-1)^{r} q^{r}\binom{n-r}{k}\binom{n-k-r}{r} p^{n-k-2 r}
$$

(ii) For $m=3$, (see [4]), (2.8) yields

$$
c_{n, k}(p, q)=\sum_{r=0}^{[(n-k) / 3]}(-1)^{r} q^{r}\binom{n-2 r}{k}\binom{n-k-2 r}{r} p^{n-k-3 r} .
$$

Also, the last formula can be written in the following form:

$$
c_{n, k}(p, q)=\sum_{r=0}^{[(n-k) / 3]}(-1)^{r} q^{r}\binom{n-3 r}{k}\binom{n-2 r}{r} p^{n-k-3 r} .
$$

(iii) If $k=0$, from (2.8), we get

$$
c_{n, 0}(p, q)=\sum_{r=0}^{[n / m]}(-1)^{r} q^{r}\binom{n-(m-1) r}{r}=U_{n+1, m}(p, q, 0) .
$$

3. Determination of $c_{n, k}(p, q)$ as a polynomial in $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$

We are going to prove the following theorem.
Theorem 3.1. The coefficients $c_{n, k}(p, q)$ are given by

$$
\begin{equation*}
c_{n, k}(p, q)=\sum_{i_{1}+\cdots+i_{m}=n}\binom{k+i_{1}}{k}\binom{k+i_{2}}{k} \cdots\binom{k+i_{m}}{k} \alpha_{1}^{i_{1}} \alpha_{2}^{i_{2}} \cdots \alpha_{m}^{i_{m}} \tag{3.1}
\end{equation*}
$$

Proof. Using (1.3) and (2.4) we get

$$
\begin{aligned}
\sum_{n \geq 0} d_{n, k}(p, q) t^{n} & =\left(1-p t+q t^{m}\right)^{-(k+1)} \\
& =\left(1-\alpha_{1} t\right)^{-(k+1)} \cdot\left(1-\alpha_{2} t\right)^{-(k+1)} \cdots\left(1-\alpha_{m} t\right)^{-(k+1)}
\end{aligned}
$$

so that

$$
\begin{aligned}
& \sum_{n \geq 0} d_{n, k}(p, q) t^{n}= \\
& =\sum_{n \geq 0} t^{n} \sum_{i_{1}+\cdots+i_{m}=n}\binom{k+i_{1}}{k}\binom{k+i_{2}}{k} \cdots\binom{k+i_{m}}{k} \alpha_{1}^{i_{1}} \alpha_{2}^{i_{2}} \cdots \alpha_{m}^{i_{m}}
\end{aligned}
$$

where

$$
d_{n, k}(p, q)=\sum_{i_{1}+\cdots+i_{m}=n}\binom{k+i_{1}}{k}\binom{k+i_{2}}{k} \cdots\binom{k+i_{m}}{k} \alpha_{1}^{i_{1}} \alpha_{2}^{i_{2}} \cdots \alpha_{m}^{i_{m}}
$$

From (2.9') and by the last equality, we get

$$
\begin{aligned}
c_{n, k}(p, q) & =d_{n-k, k}(p, q)= \\
& =\sum_{i_{1}+\cdots+i_{m}=n-k}\binom{k+i_{1}}{k}\binom{k+i_{2}}{k} \cdots\binom{k+i_{m}}{k} \alpha_{1}^{i_{1}} \cdots \alpha_{m}^{i_{m}} .
\end{aligned}
$$

This completes the proof.
We mention some particular cases of (3.1):
(i) For $m=2$, from (3.1) we get the well-known equality (see [2])

$$
c_{n, k}(p, q)=\sum_{i+j=n-k}\binom{k+i}{k}\binom{k+j}{k} \alpha_{1}^{i} \alpha_{2}^{j} .
$$

(ii) For $m=3$, equality (3.1) becomes

$$
c_{n, k}(p, q)=\sum_{i+j+s=n-k}\binom{k+i}{k}\binom{k+j}{k}\binom{k+s}{k} \alpha_{1}^{i} \alpha_{2}^{j} \alpha_{3}^{s} .
$$

(iii) If $k=0$, by (3.1), we get

$$
c_{n, 0}(p, q)=\sum_{i_{1}+\cdots+i_{m}=n} \alpha_{1}^{i_{1}} \alpha_{2}^{i_{2}} \ldots \alpha_{m}^{i_{m}}=U_{n+1, m}(p, q, 0)
$$

4. Rising diagonal polynomials

In this section we define and study the polynomials $f_{n, m}(p, q ; x)$. These polynomials are the rising diagonal polynomials of the polynomials $U_{n, m}(p, q ; x)$. Hence, we have

$$
\begin{equation*}
f_{n+1, m}(p, q ; x)=\sum_{k=0}^{[n / m]} c_{n-k, k}(p, q) x^{k} \tag{4.1}
\end{equation*}
$$

where $f_{0, m}(p, q ; x)=0$.
Now, we are going to write the coefficients $c_{n, k}(p, q)$ in the following form
Table 4.1.

n / k	0	1	2	\ldots	$m-1$	m	$m+1$	\ldots
1	1	0	0	\ldots	0	0	0	\ldots
2	p	1	0	\ldots	0	0	0	\ldots
3	p^{2}	$2 p$	1	\ldots	0	0	0	\ldots
\vdots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots	\vdots	\ldots
$m-1$	p^{m-2}	$(m-2) p^{m-3}$	$\binom{m-2}{2} p^{m-4}$	\ldots	0	0	0	\cdots
m	p^{m-1}	$(m-1) p^{m-2}$	$\binom{m-1}{2} p^{m-3}$	\ldots	1	0	0	\ldots
$m+1$	p^{m}	$m p^{m-1}$	$\binom{m}{2} p^{m-2}$	\ldots	$m p$	1	0	\ldots
\vdots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots	\vdots	\ldots

If we put $f_{n, m}(x)$ instead of $f_{n, m}(p, q ; x)$, then from table 4.1, we get the first five terms of the sequence $\left\{f_{n, m}(p, q ; x)\right\}$:

$$
\begin{align*}
f_{0, m}(x)=0, f_{1, m}(x) & =1, f_{2, m}(x)=p, f_{3, m}(x)=p^{2}+x \tag{4.2}\\
f_{4, m}(x) & =p^{3}+2 p x
\end{align*}
$$

In general, the following theorem holds:
THEOREM 4.1. The polynomials $f_{n, m}(x)$ satisfy the following recurrence relation

$$
\begin{equation*}
f_{n+1, m}(x)=p f_{n, m}(x)+x f_{n-1, m}(x)-q f_{n+1-m, m}(x), \quad n \geq m-1 \tag{4.3}
\end{equation*}
$$

Proof. From (4.2), we see that (4.3) holds for $n=4$. By induction on n, supposing that (4.3) is true for $n \geq 4$, by (4.1) and (2.3) we get

$$
\begin{aligned}
f_{n+1, m}(x)= & c_{n, 0}(p, q)-q c_{n-m, 0}(p, q)+\sum_{k=1}^{[n / m]} c_{n-k, k}(p, q) x^{k} \\
= & p \sum_{k=0}^{[(n-1) / m]} c_{n-1-k, k}(p, q) x^{k}+x \sum_{k=0}^{[(n-2) / m]} c_{n-2-k, k}(p, q) x^{k} \\
& -q \sum_{k=0}^{[(n-m) / m]} c_{n-m-k, k}(p, q) x^{k} \\
& \quad p f_{n, m}(x)+x f_{n-1, m}(x)-q f_{n+1-m, m}(x) .
\end{aligned}
$$

Now, the statement (4.3) follows immediately from the last equalities.
REmARK 4.1. For $m=2$ in (4.3) we have the polynomials $f_{n}(p, q ; x)$ (see [2]). Namely, we get the following recurrence relation

$$
f_{n}(x)=p f_{n-1}(x)+(x-q) f_{n-2}(x)
$$

REFERENCES

[1] R. André-Jeanin, A Generalization of Morgan-Voyce Polynomials, Fibonacci Quart. 32, 3 (1994), 228-232.
[2] R. André-Jeanin, A Note on a General Class of Polynomials, Fibonacci Quart. 32, 5 (1994), 445-454.
[3] G. B. Djordjević, Mixed-Fermat Convolutions, Fibonacci Quart. 31 (1993), 152-157.
[4] G. B. Djordjević, On a generalization of a class of polynomials, Fibonacci Quart. (to appear).
[5] A. F. Horadam, Chebyschev and Fermat Polynomials for Diagonal Functions, Fibonacci Quart. 19, 4 (1979), 328-333.
[6] A. F. Horadam, Br. J. M. Mahon, Pell and Pell-Lucas Polynomials, Fibonacci Quart. 23, 2 (1985), 7-20.
(received 15.08.1997.)
University of Niš, Faculty of Technology, 16000 Leskovac, Yugoslavia

[^0]: AMS Subject Classification: 33 C 55
 Submitted to the 4th Symposium on Mathematical Analysis and Its Applications, Aranđelovac 1997.

