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SOME PROPERTIES OF A CLASS OF POLYNOMIALS

Gospava B. Djordjevi�c

Abstract. In the paper [2], R. Andr�e-Jeannin studied a class of polynomials Un(p; q;x).
In this paper we consider a new class of polynomials Un;m(p; q;x) and determine the coe�cients
cn;k(p; q) of these introduced polynomials. Also, we de�ne the polynomials fn;m(p; q;x), which
are the rising diagonal polynomials of Un;m(p; q;x).

1. Introduction

In the paper [2], R. Andr�e-Jeannin studied a class of polynomials Un(p; q;x).
These polynomials are given by

Un(p; q;x) = (x+ p)Un�1(p; q;x)� qUn�2(p; q;x); n � 2;

with starting polynomials U0(p; q;x) = 0 and U1(p; q;x) = 1. The particular cases
of these polynomials are: Fibonacci polynomials, Pell polynomials ([6]), Fermat
polynomials of the �rst kind ([5], [3]), Morgan-Voyce polynomials of the second kind
([1]), Chebyschev polynomials of the second kind ([5]). In this paper, we consider a
more general class of polynomialsUn;m(p; q;x), where n;m are nonnegative integers.
These polynomials are given by the following recurrence relation

Un;m(p; q;x) = (x+ p)Un�1;m(p; q;x)� qUn�m;m(p; q;x); n � m; (1.1)

with starting polynomials:

U0;m(p; q;x) = 0; Un;m(p; q;x) = (x+ p)n�1; n = 1; 2; . . . ;m� 1: (1.2)

The parameters p and q are arbitrary real numbers. Note that the polynomials
Un;3(p; q;x) are studied in [4].

Let us denote by �1, �2, . . . , �m the real or complex numbers, such that

mX
i=1

�i = p;
X
i<j

�i�j = 0; . . . ; �1�2 � � ��m = (�1)mq: (1.3)

AMS Subject Classi�cation: 33 C55
Submitted to the 4th Symposium on Mathematical Analysis and Its Applications, Aran -de-

lovac 1997.

265



266 G. -Dor -devi�c

Also, in this paper, we de�ne the polynomials fn;m(p; q;x), which are the rising
diagonal polynomials of Un;m(p; q;x).

2. Polynomials Un;m(p; q;x)

Let us write Un;m(x) instead of Un;m(p; q;x). From (1:1) and (1:2), we �nd
the �rst m+ 2 terms of the sequence fUn;m(x)g:

U0;m(x) = 0; U1;m(x) = 1; U2;m(x) = x+ p; . . . ; Um;m(x) = (x+ p)m�1;

Um+1;m(x) = (x + p)m � q:
(2.1)

From (2:1) and by induction on n, we can say that there is a sequence fcn;k(p; q)g,
n � 0, k � 0, of numbers such that

Un+1;m(x) =
X
k�0

cn;m;k(p; q)x
k; (2.2)

where cn;k(p; q) = 0 for n < k, and cn;n(p; q) = 1.

The main purpose of this section is to determinate the coe�cients cn;k(p; q).

Comparing the coe�cients of xk in two members of (2:2), by (1:1), we get

cn;k(p; q) = cn�1;k�1(p; q) + pcn�1;k(p; q)� qcn�m;k(p; q); (2.3)

for n � m, and k � 1. Now, we are going to prove the following result.

Lemma 2.1. For all k � 0, we have

(1� pt+ qtm)
�(k+1)

=
X
n�0

dn;k(p; q) t
n; (2.4)

where

dn;k(p; q) =

[n=m]X
r=0

(�1)r qr
�
k + n� (m� 1)r

k

��
n� (m� 1)r

r

�
pn�mr: (2.5)

Proof. Firstly, let us de�ne the generating function of the sequence Un;m(x)
by

f(x; t) =
X
n�0

Un+1;m(x) t
n: (2.6)

From (1:1) and (2:6), we �nd

f(x; t) = (1� (x + p)t+ qtm)
�1

: (2.7)

Hence, from (2.6) and (2.7), we get

@kf(x; t)

@xk
= k!tk (1� (x+ p)t+ qtm)

�(k+1)
=
X
n�0

U
(k)
n+1+k;m(x) t

n+k : (2.7')
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For x = 0 in (2.7'), we get

dn;k(p; q) =
1

k!
U

(k)
n+1+k;m(p; q; 0) =

1

k!
U

(k)
n+1+k;m(0; q; p):

From (2.4), we obtainX
n�0

dn;k t
n = (1� pt+ qtm)

�(k+1)

=
X
n�0

(�1)n
(k + n)!

k!n!
tn(p� qtm�1)n

=
X
n�0

tn
X
r�0

qn(k + n� (m� 1)r)!pn�mr

k!r!(n�mr)!

=
X
n�0

tn
[n=m]X
r=0

(�1)rqr
�
n+ k � (m� 1)r

k

��
n� (m� 1)r

r

�
pn�mr:

Comparing coe�cients of tn, from the last equalities, we get (2:5). This com-
pletes the proof.

Theorem 2.1. The coe�cients cn;k(p; q) are given by the following formula

cn;k(p; q) =

[(n�k)=m]X
r=0

(�1)rqr
�
n� (m� 1)r

k

��
n� k + (m� 1)r

r

�
pn�k�mr: (2.8)

Proof. Firstly, from (1.1), we deduce

Un+1;m(p; q;x) = Un+1;m(0; q;x+ p): (2.9)

Using (2.2), from (2.9) we have

cn;k(p; q) =
1

k!
U

(k)
n+1;m(p; q; 0) =

1

k!
U

(k)
n+1;m(0; q; p):

From the last equalities and (2.4), we get

cn+k;k(p; q) =
1

k!
U

(k)
n+1+k;m(p; q; 0) = dn;k(p;q): (2.9')

Then, from (2.9'), we get

cn;k(p; q) =

[(n�k)=m]X
r=0

(�1)rqr
�
n� (m� 1)r

k

��
n� k � (m� 1)r

r

�
Pn�k�mr;

which completes the proof.

Theorem 2.2. The coe�cients cn;k(p; q) satisfy the following relation

cn;k+1(p; q) =
1

k + 1

@cn;k(p; q)

@p
: (2.10)



268 G. -Dor -devi�c

Proof. Supposing that n � 1, and using (2.9), we see that

U (k)
n;m(p; q;x) = U (k)

n;m(0; q;x+ p);

where the superscript in parentheses denotes the k-th derivative with respect to x.
Using Taylor's formula and (2.2), we get

cn;k(p; q) =
1

k!
U

(k)
n+1;m(0; q; p): (2.10')

Di�erentiating (2:100) with respect to p (q is �xed), we get

@cn;k(p; q)

@p
=

1

k!
U

(k+1)
n+1;m(0; q; p) = (k + 1)cn;k+1(p; q):

Hence, we deduce that

cn;k+1(p; q) =
1

k + 1

@cn;k(p; q)

@p
;

which completes the proof.

Now we mention some particular cases:

(i) If m = 2, then (2.8) becomes (see [2])

cn;k(p; q) =

[(n�k)=2]X
r=0

(�1)rqr
�
n� r

k

��
n� k � r

r

�
pn�k�2r:

(ii) For m = 3, (see [4]), (2.8) yields

cn;k(p; q) =

[(n�k)=3]X
r=0

(�1)rqr
�
n� 2r

k

��
n� k � 2r

r

�
pn�k�3r:

Also, the last formula can be written in the following form:

cn;k(p; q) =

[(n�k)=3]X
r=0

(�1)rqr
�
n� 3r

k

��
n� 2r

r

�
pn�k�3r:

(iii) If k = 0, from (2:8), we get

cn;0(p; q) =

[n=m]X
r=0

(�1)rqr
�
n� (m� 1)r

r

�
= Un+1;m(p; q; 0):
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3. Determination of cn;k(p; q) as a polynomial in (�1;�2; . . . ;�m)

We are going to prove the following theorem.

Theorem 3.1. The coe�cients cn;k(p; q) are given by

cn;k(p; q) =
X

i1+���+im=n

�
k + i1
k

��
k + i2
k

�
� � �

�
k + im

k

�
�i11 �

i2
2 � � ��imm : (3.1)

Proof. Using (1:3) and (2:4) we get

X
n�0

dn;k(p; q) t
n = (1� pt+ qtm)�(k+1)

= (1� �1t)
�(k+1) � (1� �2t)

�(k+1) � � � (1� �mt)�(k+1) ;

so that X
n�0

dn;k(p; q) t
n =

=
X
n�0

tn
X

i1+���+im=n

�
k + i1
k

��
k + i2
k

�
� � �

�
k + im

k

�
�i11 �

i2
2 � � ��imm ;

where

dn;k(p; q) =
X

i1+���+im=n

�
k + i1
k

��
k + i2
k

�
� � �

�
k + im

k

�
�i11 �

i2
2 � � ��imm :

From (2:90) and by the last equality, we get

cn;k(p; q) = dn�k;k(p; q) =

=
X

i1+���+im=n�k

�
k + i1
k

��
k + i2
k

�
� � �

�
k + im

k

�
�i11 � � ��imm :

This completes the proof.

We mention some particular cases of (3.1):

(i) For m = 2, from (3:1) we get the well-known equality (see [2])

cn;k(p; q) =
X

i+j=n�k

�
k + i

k

��
k + j

k

�
�i1�

j
2:

(ii) For m = 3, equality (3:1) becomes

cn;k(p; q) =
X

i+j+s=n�k

�
k + i

k

��
k + j

k

��
k + s

k

�
�i1�

j
2�

s
3:
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(iii) If k = 0, by (3:1), we get

cn;0(p; q) =
X

i1+���+im=n

�i11 �
i2
2 . . .�imm = Un+1;m(p; q; 0):

4. Rising diagonal polynomials

In this section we de�ne and study the polynomials fn;m(p; q;x). These poly-
nomials are the rising diagonal polynomials of the polynomials Un;m(p; q;x). Hence,
we have

fn+1;m(p; q;x) =

[n=m]X
k=0

cn�k;k(p; q)x
k ; (4.1)

where f0;m(p; q;x) = 0.

Now, we are going to write the coe�cients cn;k(p; q) in the following form

Table 4.1.

n=k 0 1 2 . . . m� 1 m m+ 1 . . .

1 1 0 0 . . . 0 0 0 . . .

2 p 1 0 . . . 0 0 0 . . .

3 p2 2p 1 . . . 0 0 0 . . .

...
...

...
... . . .

...
...

... . . .

m� 1 pm�2 (m� 2)pm�3
�
m�2
2

�
pm�4 . . . 0 0 0 . . .

m pm�1 (m� 1)pm�2
�
m�1
2

�
pm�3 . . . 1 0 0 . . .

m+ 1 pm mpm�1
�
m
2

�
pm�2 . . . mp 1 0 . . .

...
...

...
... . . .

...
...

... . . .

If we put fn;m(x) instead of fn;m(p; q;x), then from table 4.1, we get the �rst
�ve terms of the sequence ffn;m(p; q;x)g:

f0;m(x) = 0; f1;m(x) = 1; f2;m(x) = p; f3;m(x) = p2 + x;

f4;m(x) = p3 + 2px:
(4.2)

In general, the following theorem holds:

Theorem 4.1. The polynomials fn;m(x) satisfy the following recurrence rela-

tion

fn+1;m(x) = pfn;m(x) + xfn�1;m(x)� qfn+1�m;m(x); n � m� 1: (4.3)
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Proof. From (4.2), we see that (4.3) holds for n = 4. By induction on n,
supposing that (4.3) is true for n � 4, by (4.1) and (2.3) we get

fn+1;m(x) = cn;0(p; q)� qcn�m;0(p; q) +

[n=m]X
k=1

cn�k;k(p; q)x
k

= p

[(n�1)=m]X
k=0

cn�1�k;k(p; q)x
k + x

[(n�2)=m]X
k=0

cn�2�k;k(p; q)x
k

� q

[(n�m)=m]X
k=0

cn�m�k;k(p; q)x
k

= pfn;m(x) + xfn�1;m(x) � qfn+1�m;m(x):

Now, the statement (4.3) follows immediately from the last equalities.

Remark 4.1. For m = 2 in (4.3) we have the polynomials fn(p; q;x) (see [2]).
Namely, we get the following recurrence relation

fn(x) = pfn�1(x) + (x� q)fn�2(x):
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