SIMPLE SUFFICIENT CONDITIONS FOR UNIVALENCE

Milutin Obradović

Abstract

For a function $f(z)=z+a_{2} z^{2}+\cdots$, analytic in the unit disc, we find $\lambda>0$ such that $\left|f^{\prime \prime}(z)\right| \leqslant \lambda$ implies starlikeness (Mocanu's problem [2]) or convexity. The given results are sharp.

As usual, let A denote the class of functions f which are analytic in the unit disc $U=\{z:|z|<1\}$, normalized by $f(0)=f^{\prime}(0)-1=0$. Let $S^{*} \subset A$ be the class of starlike functions in U defined by the condition

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad z \in U
$$

and let $K \subset A$ be the class of convex functions defined by the condition

$$
\operatorname{Re}\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right\}>0, \quad z \in U
$$

Let f and g be analytic in U. We say that f is subordinate to g, written $f(x) \prec g(z)$ or $f \prec g$, if there exists a function ω analytic in U which satisfies $\omega(0)=0,|\omega(z)|<1$ and $f(z)=g(\omega(z))$. If g is univalent in U, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(U) \subset g(U)$.

In his paper [2] Mocanu considered the problem of finding $\lambda>0$ such that the condition $\left|f^{\prime \prime}(z)\right| \leqslant \lambda, z \in U$, implies $f \in S^{*}$. He found that $\lambda=2 / 3$ is sufficient for that problem. Later, Ponnusamy and Singh found a better constant $\lambda=2 / \sqrt{5}$. In the next theorem we give a more precise result.

Theorem 1. If $f \in A$ and $\left|f^{\prime \prime}(z)\right| \leqslant 1, z \in U$, then $f \in S^{*}$. The result is sharp.

[^0]For sharpness we may consider the function $f(z)=z+\frac{1+\varepsilon}{2} z^{2}, \varepsilon>0$. For this function we have $\left|f^{\prime \prime}(z)\right|=1+\varepsilon>1$, but $f^{\prime}(z)=1+(1+\varepsilon) z$ vanishes at the point $z=-1 /(1+\varepsilon) \in U$; that means f is not univalent in U.

For the proof of Theorem 1 (and others) we need the following two lemmas.
Lemma A. If f, g are analytic in $U, g^{\prime}(0) \neq 0$, and g is convex (univalent) in U, then

$$
f \prec g \Longrightarrow \frac{1}{z} \int_{0}^{z} f(t) d t \prec \frac{1}{z} \int_{0}^{z} g(t) d t .
$$

Lemma B. If $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k}, z \in U$, and g is convex (univalent) in U, then

$$
z f^{\prime}(z) \prec z g^{\prime}(z) \Longrightarrow f \prec g
$$

A more general result than the one in Lemma A one can find in [1]. Lemma B is due to [4].

Proof of Theorem 1. We can write the condition of the theoem as

$$
\begin{equation*}
z f^{\prime \prime}(z) \prec z \tag{1}
\end{equation*}
$$

By Lemma A, from (1) we obtain $f^{\prime}(z)-\frac{f(z)}{z} \prec \frac{1}{2} z$. We can arrange the last relation in the following two ways:

$$
\begin{equation*}
z\left(\frac{f(z)}{z}\right)^{\prime} \prec z\left(1+\frac{z}{2}\right)^{\prime} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{f(z)}{z}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \frac{1}{2} z . \tag{3}
\end{equation*}
$$

From (2), by Lemma B we have $\frac{f(z)}{z} \prec 1+\frac{z}{2}$, which implies $\frac{1}{2}<\left|\frac{f(z)}{z}\right|<\frac{3}{2}$, $z \in U$. From the last relation and (3) we get

$$
\frac{1}{2}\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leqslant\left|\frac{f(z)}{z}\right|\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\frac{1}{2}, \quad z \in U
$$

which finally gives $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1, z \in U$, i.e. $f \in S^{*}$.
We can prove that the condition in Theorem 1 may be weaker if we have some additional condition as the following theorem shows.

Theorem 2 . Let $f \in A$ and let $\left|f^{\prime \prime}(z)\right| \leqslant a,\left|\frac{f(z)}{z}\right| \geqslant \frac{a}{2}$, for some $0 \leqslant a \leqslant 2$
and for every $z \in U$. Then $f \in S^{*}$.

Proof. As in the proof of Theorem 1 we have that

$$
\begin{equation*}
\frac{f(z)}{z}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \frac{a}{2} z . \tag{4}
\end{equation*}
$$

Suppose that $\operatorname{Re}\left\{\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right\}=0$ for some $z_{0},\left|z_{0}\right|<1$, i.e. let $\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}=i x$ (x is real). Then for such z_{0} we obtain that

$$
\left|\frac{f\left(z_{0}\right)}{z_{0}}\left(\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}-1\right)\right|=\left|\frac{f\left(z_{0}\right)}{z_{0}}\right||i x-1| \geqslant\left|\frac{f\left(z_{0}\right)}{z_{0}}\right| \geqslant \frac{a}{2}
$$

which is a contradiction to (4). It means that $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, z \in U$, i.e. $f \in$
S^{*}.■
Example. For the function $f(z)=z+\frac{3}{40} z^{5}$ we have $f^{\prime \prime}(z)=\frac{3}{2} z^{3}$, which implies $\left|f^{\prime \prime}(z)\right|<3 / 2, z \in U$, while $|f(z) / z| \geqslant 1-\frac{3}{40}|z|^{4}>37 / 40>3 / 4, z \in U$. By theorem 2 it means that $f \in S^{*}$.

REmARk. If $a=1$ in Theorem 2, then the condition $|f(z) / z| \geqslant 1 / 2, z \in U$, is satisfied (see the proof of Theorem 1), and the statement of Theorem 1 easily follows, but we cannot conclude that $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1, z \in U$, as in Theorem 1.

Finally, we give the convexity condition for the same kind of problem.
Theorem 3. If $f \in A$ and $\left|f^{\prime \prime}(z)\right| \leqslant 1 / 2, z \in U$, then $f \in K$. The result is sharp.

Proof. Since by the condition of the theorem

$$
\begin{equation*}
z f^{\prime \prime}(z) \prec \frac{1}{2} z \tag{5}
\end{equation*}
$$

then, by applying Lemma B, we obtain

$$
\begin{equation*}
f^{\prime}(z) \prec 1+\frac{1}{2} z . \tag{6}
\end{equation*}
$$

If we put $\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1=p(z)$, then from (5) we have

$$
\begin{equation*}
(p(z)-1) f^{\prime}(z) \prec \frac{1}{2} z \tag{7}
\end{equation*}
$$

and we want to show that $\operatorname{Re}\{p(z)\}>0, z \in U$. If not, then suppose that there exists a $z_{0},\left|z_{0}\right|<1$, such that $p\left(z_{0}\right)=i x$, where x is real. Hence by $(6):\left|f^{\prime}\left(z_{0}\right)\right|>$ $1 / 2$, then we have

$$
\left|\left(p\left(z_{0}\right)-1\right) f^{\prime}\left(z_{0}\right)\right|^{2}-\frac{1}{4}=|i x-1|^{2}\left|f^{\prime}\left(z_{0}\right)\right|^{2}-\frac{1}{4}>\frac{1}{4}\left(x^{2}+1\right)-\frac{1}{4}=\frac{1}{4} x^{2} \geqslant 0
$$

which is a contradiction to (7). Therefore, $\operatorname{Re}\{p(z)\}>0, z \in U$, i.e. f is a convex function.

If we consider the function $f(z)=z+\frac{1+\varepsilon}{4} z^{2}, 0<\varepsilon<1$, then we have that $\left|f^{\prime \prime}(z)\right|=\frac{1+\varepsilon}{2}>\frac{1}{2}$, but $\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1=\frac{1+(1+\varepsilon) z}{1+\frac{1+\varepsilon}{2} z}$ becomes negative for z real close to -1 , implying that f is not convex. -

REFERENCES

[1] S. S. Miller and P. T. Mocanu, Subordination-preserving integral operators, Trans. Amer. Math. Soc. 283, 2 (1984), 605-615.
[2] P. T. Mocanu, Two simple sufficient conditions for starlikeness, Mathematica (Cluj) 34 (57) (1992), 175-181.
[3] S. Ponnusamy and V. Singh, Criteria for strongly starlike functions, Complex Variables: Theory and Appl., to appear.
[4] T. J. Suffridge, Some remarks on convex maps of the unit disc, Duke Math. J. 37 (1970), 775-777.
(received 01.08.1997.)
Department of Mathematics, Faculty of Technology and Metallurgy, 4 Karnegijeva Str., 11000 Belgrade, Yugoslavia

E-mail: obrad@elab.tmf.bg.ac.yu

[^0]: AMS Subject Classification: 30 C 45
 Keywords and phrases: Starlike, convex, subordinate.
 This work was supported by Grant No. 04M03 of MNTRS through Math. Institute SANU.
 Communicated at the 4th Symposium on Mathematical Analysis and Its Applications, Aranđelovac 1997.

