BESOV SPACES ON BOUNDED SYMMETRIC DOMAINS

Miroljub Jevtić

Abstract

We define and study a class of holomorphic Besov type spaces $B^{p}, 0<p<1$, on bounded symmetric domains Ω. We show that the dual of holomorphic Besov space $B^{p}, 0<p<1$, on bounded symmetric domain Ω can be identified with the Bloch space \mathcal{B}^{∞}.

1. Introduction

Let Ω be an irreducible symmetric domain in C^{n} in its Harish-Chandra realization. In [11] and [13] K. Zhu defined and studied a class of holomorphic Besov-type spaces B^{p} on Ω for $1 \leq p \leq \infty$. In [4] analogous holomorphic Besov spaces B^{p} are defined for $0<p<1$ and some of the results presented in [11] and [13] are extended to the case $0<p<1$. The main purpose of this paper is to show that the dual of $B^{p}, 0<p<1$, can be indentified with the Bloch space \mathcal{B}^{∞}.

It is well known [5] that the domain Ω is uniquely determined (up to a biholomorphic mapping among standard irreducible bounded symmetric domains) by three analytic invariants; r, a and b, all of which are nonnegative integers. The invariant r is called the rank of Ω, which is of course always positive. See [5] for the definition of a and b. We shall make extensive use of the following invariant of $\Omega: N=a(r-1)+b+2$.

Let ν be Lebesgue measure on Ω normalized so that $\nu(\Omega)=1$. For $0<$ $p<\infty$ the Bergman space $L_{a}^{p}(\Omega)$ is the closed subspace of $L^{p}(\Omega, d \nu)$ consisting of holomorphic functions. The Bergman projection P (namely, the orthogonal projection from $L^{2}(\Omega, d \nu)$ onto $\left.L_{a}^{2}(\Omega)\right)$ is an integral operator

$$
\operatorname{Pf}(z)=\int_{\Omega} K(z, w) f(w) d \nu(w), \quad z \in \Omega, \quad f \in L^{2}(\Omega, d \nu)
$$

By [3] there exists a polynomial $h(z, w)$ in z and \bar{w} such that the Bergman kernel of Ω is given by

$$
K(z, w)=h(z, w)^{-N}, \quad z, w \in \Omega
$$

[^0]Throughout this paper we assume α is a real number satisfying $\alpha>-1$. Let c_{α} be a positive normalizing constant such that the measure $d \nu_{\alpha}(z)=c_{\alpha} h(z, z)^{\alpha} d \nu(z)$ has total mass 1 on Ω.

Let $H(\Omega)$ be the space of all holomorphic functions in Ω. We equip $H(\Omega)$ with the topology of uniform convergence on compact sets. In [13] it is shown that the operator

$$
D^{m, \alpha}: H(\Omega) \rightarrow H(\Omega), \quad m \geq 0, \quad \alpha>-1
$$

defined by

$$
D^{m, \alpha} f(z)=\lim _{r \rightarrow 1} \int_{\Omega} \frac{f(r w) d \nu_{\alpha}(w)}{h(z, w)^{N+\alpha+m}}, \quad f \in H(\Omega)
$$

is continuous and invertible on $H(\Omega)$. The inverse of $D^{m, \alpha}$ admits the following integral representation:

$$
D_{m, \alpha} f(z)=c_{m+\alpha} \lim _{r \rightarrow 1} \int_{\Omega} \frac{h(w, w)^{m+\alpha} f(r w) d \nu(w)}{h(z, w)^{N+\alpha}}, f \in H(\Omega), z \in \Omega
$$

We note that if

$$
f \in L_{a}^{1, \alpha}(\Omega)=L^{1}\left(\Omega, d \nu_{\alpha}\right) \cap H(\Omega)
$$

then

$$
D^{m, \alpha} f(z)=\int_{\Omega} \frac{f(w) d \nu_{\alpha}(w)}{h(z, w)^{N+\alpha+m}}
$$

The above formula extends the domain of $D^{m, \alpha}$ to $L^{1}\left(\Omega, d \nu_{\alpha}\right)$. We write

$$
V_{m, \alpha} f(z)=h(z, z)^{m} D^{m, \alpha} f(z), \text { for } f \in L^{1}\left(\Omega, d \nu_{\alpha}\right), \quad m \geq 0, \quad \alpha>-1
$$

and

$$
E_{m, \alpha} f(z)=h(z, z)^{m} D^{m, \alpha} f(z), \quad m \geq 0, \quad \alpha>-1, \quad \text { for } \quad f \in H(\Omega)
$$

Thus, if $f \in L_{a}^{1, \alpha}(\Omega)$, then $E_{m, \alpha} f=V_{m, \alpha} f$.
We begin with a result from [4].
Theorem 1.1. Let $k, m>\frac{N-1}{p}$ and $\alpha, \beta>\max \left\{\frac{a(r-1)}{2 p}-N,-1\right\}$. If $0<p \leq 1$ and $f \in H(\Omega)$ then $\int_{\Omega}\left|E_{m, \alpha} f(z)\right|^{p} d \tau(z)<\infty$ if and only if $\int_{\Omega}\left|E_{k, \beta} f(z)\right|^{p} d \tau(z)<$ ∞, where $d \tau(z)=h(z, z)^{-N} d \nu(z)$ is the Möbious invariant measure on Ω.

Recall that the holomorphic Besov space $B^{p}, 1 \leq p \leq \infty$ consists of functions in $H(\Omega)$ such that $E_{N, 0} f$ is in $L^{p}(\Omega, d \tau)$ (see [11] and [13]). For any irreducible bounded symmetric domain Ω we have $\frac{a(r-1)}{2}-N \leq-2$. Thus, a holomorphic function f in Ω belongs to B^{1} if and only if $E_{m, \alpha} f$ is in $L^{1}(\Omega, d \tau)$ for some (any) $m>N-1$ and some (any) $\alpha>-1$. This is also proved in [13], Theorem 4, by a different method.

Definition 1.2. For $0<p \leq 1$ the holomorphic Besov space $B^{p}=B^{p}(\Omega)$ consists of holomorphic functions $f \in H(\Omega)$ such that

$$
\|f\|_{B^{p}}=|f(0)|+\left\|E_{m, \alpha} f\right\|_{L^{p}(\Omega, d \tau)}<\infty
$$

for some (any) $m>\frac{N-1}{p}$ and $\alpha>\max \left\{\frac{a(r-1)}{2 p}-N,-1\right\}$.

For every z in Ω let $E_{r}(z)$ be the closed Bergman metric ball with center z and radius $r>0$, i.e.,

$$
E_{r}(z)=\{w: \beta(z, w) \leq r\}
$$

where $\beta(\cdot, \cdot)$ is the Bergman metric on Ω.
For a complex measurable function f on B we define

$$
M_{\infty, r}=\operatorname{esssup}\left\{|f(w)|: w \in E_{r}(z)\right\}
$$

and

$$
M_{p, r} f(z)=\left[\frac{1}{\tau(r)} \int_{E_{r}(z)}|f(w)|^{p} d \tau(w)\right]^{\frac{1}{p}}, \quad 0<p<\infty
$$

where $\tau(r)=\tau\left(E_{r}(z)\right)$.
For $0<p, q \leq \infty$, we define $L_{r}^{p, q}(\Omega, d \tau)$ to be the space of all measurable functions f on Ω for which

$$
\|f\|_{L_{r}^{p, q}(\Omega, d \tau)}=\left\|M_{p, r} f\right\|_{L^{q}(\Omega, d \tau)}<\infty
$$

Since the definition is independent of $r, 0<r<1$, we will write $L^{p, q}(\Omega, d \tau)$ instead of $L_{r}^{p, q}(\Omega, d \tau)$ (see [1]).

We let P_{α} denote the orthogonal projection from $L^{2}\left(\Omega, d \nu_{\alpha}\right)$ onto $L_{a}^{2, \alpha}(\Omega)=$ $L^{2}\left(\Omega, d \nu_{\alpha}\right) \cap H(\Omega)$. It can be shown that (see [9], for instance)

$$
P_{\alpha} f(z)=\int_{\Omega} \frac{f(w) d \nu_{\alpha}(w)}{h(z, w)^{N+\alpha}}, \quad z \in \Omega, f \in L^{2}\left(\Omega, d \nu_{\alpha}\right)
$$

The above formula extends the domain of P_{α} to $L^{1}\left(\Omega, d \nu_{\alpha}\right)$. Note that $P_{\alpha} f=D^{0, \alpha} f$ for $f \in L^{1}\left(\Omega, d \nu_{\alpha}\right)$.

If $1 \leq p \leq \infty$ and $\alpha>-1$ then $B^{p}=P_{\alpha} L^{p}(\Omega, d \tau)$, see [13]. In [4] it is shown that the analytic Besov space $B^{p}, 0<p<1$, can be naturally embedded as a complemented subspace of $L^{1, p}(\Omega, d \tau)$ by a topological embedding

$$
E_{m, \alpha}: B^{p} \rightarrow L^{1, p}(\Omega, d \tau)
$$

It is also shown that $E_{m, \alpha} \circ P_{\alpha}$ is projection on this embedded copy and that $B^{p}=P_{\alpha} L^{1, p}(\Omega, d \tau)$.

More precicely the following theorem is proven.
Theorem 1.3. Let $0<p<1$. Then for any $\alpha>\max \left\{\frac{a(r-1)}{2 p}-N,-1\right\}$,

$$
P_{\alpha}: L^{1, p}(\Omega, d \tau) \rightarrow B^{p}
$$

is a continuous linear map. Moreover if $m>\frac{N-1}{p}$ and $\alpha>\max \left\{\frac{a(r-1)}{2 p}-N,-1\right\}$ then

$$
E_{m, \alpha}: B^{p} \rightarrow L^{1, p}(\Omega, d \tau)
$$

is a topological embedding.

Now we apply Theorem 1.3. to obtain a result about duality.
THEOREM 1.4. Let $0<p<1, m>\frac{N-1}{p}$ and $\alpha=m-N$. The integral pairing

$$
\langle f, g\rangle_{\tau}=\int_{\Omega} E_{m, \alpha} f(z) \overline{E_{m, \alpha} g(z)} d \tau(z)
$$

induces the following duality $\left(B^{p}\right)^{\star}=B^{\infty}$.

2. Duality

A linear functional λ on $B^{p}, 0<p<1$, is said to be bounded if

$$
\|\lambda\|=\sup \left\{|\lambda(f)|:\|f\|_{B^{p}} \leq 1\right\}<\infty
$$

The dual space of B^{p}, denoted $\left(B^{p}\right)^{\star}$, is then the space of all bounded linear functionals on B^{p}. In [13] it is shown that each $\left(L_{a}^{p, \alpha}\right)^{\star}, 0<p \leq 1$, can be identified with B^{∞} via volume integral pairing

$$
\langle f, g\rangle_{\beta}=\lim _{r \rightarrow 1} \int_{\Omega} f(r z) g(z) d \nu_{\beta}(z), \quad \text { where } \quad \beta=\frac{N+\alpha}{p}-N
$$

Our Theorem 1.4 shows that $\left(B^{p}\right)^{\star}$ can also be identified with B^{∞}, but via a different integral pairing $\langle\cdot, \cdot\rangle_{\tau}$.

Proof of Theorem 1.4. First, assume that g is a function in B^{∞}. Then

$$
\|g\|_{B^{\infty}} \geq \sup _{z \in \Omega} h(z, z)^{m}\left|D^{m, \alpha} g(z)\right|=\sup _{z \in \Omega}\left|E_{m, \alpha} g(z)\right|, \quad \text { (see [13]). }
$$

We show that g gives rise to a bounded linear functional on B^{p} under the pairing $\langle\cdot, \cdot\rangle_{\tau}$. By Theorem 1.3 if $f \in B^{p}$ then

$$
\|f\|_{B^{p}} \geq\left\|E_{m, \alpha} f\right\|_{L^{1, p}(\Omega, d \tau)} \geq C\left\|E_{m, \alpha} f\right\|_{L^{1}(\Omega, d \tau)}
$$

Thus if $f \in B^{p}$, then we have

$$
\left|\langle f, g\rangle_{\tau}\right| \leq \sup _{z \in \Omega}\left|E_{m, \alpha} g(z)\right|\left\|E_{m, \alpha} f\right\|_{L^{1}(\Omega, d \tau)} \leq C\|f\|_{B^{p}}\|g\|_{B^{\infty}}
$$

Conversely, assume that λ is a bounded linear functional on B^{p}; we show that λ arises from a function in B^{∞}. Since $E_{m, \alpha}$ is a topological embedding of B^{p} into $L^{1, p}(\Omega, d \tau), \lambda \circ E_{m, \alpha}^{-1}$ extends to a bounded linear functional on $L^{1}(\Omega, d \tau)$. Thus there exists a function $\varphi \in L^{\infty}(\Omega, d \tau)$ such that

$$
\lambda \circ E_{m, \alpha}^{-1}(\psi)=\int_{\Omega} \psi(z) \overline{\varphi(z)} d \tau(z), \quad \psi \in L^{1}(\Omega, d \tau)
$$

When $f \in B^{p}, E_{m, \alpha} f \in L^{1, p}(\Omega, d \tau) \subset L^{1}(\Omega, d \tau)$. Therefore

$$
\lambda(f)=\int_{\Omega} E_{m, \alpha} f(z) \overline{\varphi(z)} d \tau(z)=\int_{\Omega} V_{m, \alpha} f(z) \overline{\varphi(z)} d \tau(z), \quad f \in B^{p}
$$

As was noted in Introduction $E_{m, \alpha} f=V_{m, \alpha} f$ if $f \in L_{a}^{1, \alpha}(\Omega)$. Since $B^{p} \subset B^{\infty}$, we have that $\int_{\Omega}|f(\xi)| h(\xi, \xi)^{\alpha} d \nu(\xi)<\infty$. (See the remark following Lemma 7 in [11]). Let $h=P_{\alpha} \varphi$. Then $h \in B^{\infty}$ by Theorem 6 ([13])

$$
\begin{aligned}
E_{m, \alpha} h(z) & =V_{m, \alpha} h(z)=h(z, z)^{m} D^{m, \alpha} P_{\alpha} \varphi(z)=h(z, z)^{m} D^{m, \alpha}\left(D^{0, \alpha} \varphi\right)(z) \\
& =h(z, z)^{m} D^{m, \alpha} \varphi(z)=V_{m, \alpha} \varphi(z)
\end{aligned}
$$

To finish the proof of Theorem 1.4 it remains to show that

$$
\left\langle V_{m, \alpha} f, V_{m, \alpha} \varphi\right\rangle_{\tau}=\left\langle V_{m, \alpha}^{2} f, \varphi\right\rangle_{\tau} \quad \text { and that } c_{m+\alpha} V_{m, \alpha}^{2} f=c_{\alpha} V_{m, \alpha} f .
$$

This follows easily from Fubini's theorem and the reproducing property of P_{α}. Note that $\alpha=m-N$. We leave the details to the interested reader. Thus,

$$
\lambda(f)=\int_{\Omega} V_{m, \alpha} f(z) \overline{V_{m, \alpha} g(z)} d \tau(z)=\int_{\Omega} E_{m, \alpha} f(z) \overline{E_{m, \alpha} g(z)} d \tau(z)
$$

for all $f \in B^{p}$, where $g=c_{m+\alpha} c_{\alpha}^{-1} h \in B^{\infty}$.

REFERENCES

[1] D. Bekolle, C. Berger, L. Coburn, K. Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 91 (1990), 310-350.
[2] C. Berger, L. Coburn, K. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus, Amer. J. Math. 110 (1988), 921-953.
[3] J. Faraut, A. Koranyi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal. 88 (1990), 64-89.
[4] M. Jevtic̀, Holomorphic Besov space $B^{p}, 0<p<1$ on bounded symmetric domains, (to appear)
[5] A. Koranyi, Analytic invariants of bounded symmetric domains, Proc. Amer. Math. Soc. 19 (1968), 279-284.
[6] S. Krantz, Function Theory of Several Complex Variables, John Wiley and Sons, 1982.
[7] M. Mateljevic̀ and M. Pavlovic̀, An extension of the Forelly-Rudin projection theorem, Proc. Edinburg Math. Soc. 36 (1993), 375-389.
[8] J. Shapiro, Macky topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187-202.
[9] M. Stoll, Mean value theorems for harmonic and holomorphic functions on bounded symmetric domains, J. reine angew. Math. 283 (1977), 191-198.
[10] K. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 81 (1988), 260-278.
[11] K. Zhu, Holomorphic Besov spaces on bounded symmetric domains, Quarterly J. Math. 46 (1995), 239-256.
[12] K. Zhu, Bergman and Hardy spaces with small exponents, Pacific J. Math. 162 (1994), 189-199.
[13] K. Zhu, Holomorphic Besov spaces on bounded symmetric domains, II, Indiana University Mathematical Journal 44 (1995), 1017-1031.
(received 04.09.1997.)
Faculty of Mathematics, Studentski trg 16, P.O.Box 550, 11000 Beograd, Yugoslavia
e-mail: jevtic@matf.bg.ac.yu

[^0]: AMS Subject Classification: 32 A 37
 Communicated at the 4th Symposium on Mathematical Analysis and Its Applications, Aranđelovac 1997

