BESOV SPACES ON BOUNDED SYMMETRIC DOMAINS

Miroljub Jevtić

Abstract. We define and study a class of holomorphic Besov type spaces B^p , $0 , on bounded symmetric domains <math>\Omega$. We show that the dual of holomorphic Besov space B^p , $0 , on bounded symmetric domain <math>\Omega$ can be identified with the Bloch space \mathcal{B}^{∞} .

1. Introduction

Let Ω be an irreducible symmetric domain in \mathbb{C}^n in its Harish-Chandra realization. In [11] and [13] K. Zhu defined and studied a class of holomorphic Besov-type spaces B^p on Ω for $1 \leq p \leq \infty$. In [4] analogous holomorphic Besov spaces B^p are defined for 0 and some of the results presented in [11] and [13] areextended to the case <math>0 . The main purpose of this paper is to show that $the dual of <math>B^p$, $0 , can be indentified with the Bloch space <math>\mathcal{B}^{\infty}$.

It is well known [5] that the domain Ω is uniquely determined (up to a biholomorphic mapping among standard irreducible bounded symmetric domains) by three analytic invariants; r, a and b, all of which are nonnegative integers. The invariant r is called the rank of Ω , which is of course always positive. See [5] for the definition of a and b. We shall make extensive use of the following invariant of Ω : N = a(r-1) + b + 2.

Let ν be Lebesgue measure on Ω normalized so that $\nu(\Omega) = 1$. For $0 the Bergman space <math>L^p_a(\Omega)$ is the closed subspace of $L^p(\Omega, d\nu)$ consisting of holomorphic functions. The Bergman projection P (namely, the orthogonal projection from $L^2(\Omega, d\nu)$ onto $L^2_a(\Omega)$) is an integral operator

$$Pf(z) = \int_{\Omega} K(z, w) f(w) \, d\nu(w), \qquad z \in \Omega, \quad f \in L^2(\Omega, d\nu).$$

By [3] there exists a polynomial h(z, w) in z and \bar{w} such that the Bergman kernel of Ω is given by

$$K(z,w) = h(z,w)^{-N}, \qquad z,w \in \Omega.$$

AMS Subject Classification: 32 A 37

Communicated at the 4th Symposium on Mathematical Analysis and Its Applications, Arandelovac 1997

M. Jevtič

Throughout this paper we assume α is a real number satisfying $\alpha > -1$. Let c_{α} be a positive normalizing constant such that the measure $d\nu_{\alpha}(z) = c_{\alpha}h(z,z)^{\alpha}d\nu(z)$ has total mass 1 on Ω .

Let $H(\Omega)$ be the space of all holomorphic functions in Ω . We equip $H(\Omega)$ with the topology of uniform convergence on compact sets. In [13] it is shown that the operator

$$D^{m,\alpha}: H(\Omega) \to H(\Omega), \qquad m \ge 0, \quad \alpha > -1,$$

defined by

$$D^{m,\alpha}f(z) = \lim_{r \to 1} \int_{\Omega} \frac{f(rw) d\nu_{\alpha}(w)}{h(z,w)^{N+\alpha+m}}, \quad f \in H(\Omega),$$

is continuous and invertible on $H(\Omega)$. The inverse of $D^{m,\alpha}$ admits the following integral representation:

$$D_{m,\alpha}f(z) = c_{m+\alpha} \lim_{r \to 1} \int_{\Omega} \frac{h(w,w)^{m+\alpha} f(rw) \, d\nu(w)}{h(z,w)^{N+\alpha}}, \ f \in H(\Omega), \ z \in \Omega.$$

We note that if

$$f \in L^{1,\alpha}_a(\Omega) = L^1(\Omega, d\nu_\alpha) \cap H(\Omega)$$

then

$$D^{m,\alpha}f(z) = \int_{\Omega} \frac{f(w) \, d\nu_{\alpha}(w)}{h(z,w)^{N+\alpha+m}}.$$

The above formula extends the domain of $D^{m,\alpha}$ to $L^1(\Omega, d\nu_\alpha)$. We write

 $V_{m,\alpha}f(z) = h(z,z)^m D^{m,\alpha}f(z), \text{ for } f \in L^1(\Omega, d\nu_\alpha), \quad m \ge 0, \quad \alpha > -1,$

 and

$$E_{m,\alpha}f(z) = h(z,z)^m D^{m,\alpha}f(z), \quad m \ge 0, \quad \alpha > -1, \quad \text{for} \quad f \in H(\Omega).$$

Thus, if $f \in L^{1,\alpha}_a(\Omega)$, then $E_{m,\alpha}f = V_{m,\alpha}f$.

We begin with a result from [4].

THEOREM 1.1. Let $k, m > \frac{N-1}{p}$ and $\alpha, \beta > \max\{\frac{a(r-1)}{2p} - N, -1\}$. If 0 $and <math>f \in H(\Omega)$ then $\int_{\Omega} |E_{m,\alpha}f(z)|^p d\tau(z) < \infty$ if and only if $\int_{\Omega} |E_{k,\beta}f(z)|^p d\tau(z) < \infty$, where $d\tau(z) = h(z, z)^{-N} d\nu(z)$ is the Möbious invariant measure on Ω .

Recall that the holomorphic Besov space B^p , $1 \le p \le \infty$ consists of functions in $H(\Omega)$ such that $E_{N,0}f$ is in $L^p(\Omega, d\tau)$ (see [11] and [13]). For any irreducible bounded symmetric domain Ω we have $\frac{a(r-1)}{2} - N \le -2$. Thus, a holomorphic function f in Ω belongs to B^1 if and only if $E_{m,\alpha}f$ is in $L^1(\Omega, d\tau)$ for some (any) m > N - 1 and some (any) $\alpha > -1$. This is also proved in [13], Theorem 4, by a different method.

DEFINITION 1.2. For $0 the holomorphic Besov space <math>B^p = B^p(\Omega)$ consists of holomorphic functions $f \in H(\Omega)$ such that

$$\|f\|_{B^{p}} = |f(0)| + \|E_{m,\alpha}f\|_{L^{p}(\Omega, d\tau)} < \infty,$$

for some (any) $m > \frac{N-1}{p}$ and $\alpha > \max\{\frac{a(r-1)}{2p} - N, -1\}.$

For every z in Ω let $E_r(z)$ be the closed Bergman metric ball with center z and radius r > 0, i.e.,

$$E_r(z) = \{ w : \beta(z, w) \le r \},\$$

where $\beta(\cdot, \cdot)$ is the Bergman metric on Ω .

For a complex measurable function f on B we define

$$M_{\infty,r} = \operatorname{esssup}\{ |f(w)| : w \in E_r(z) \}$$

 and

$$M_{p,r}f(z) = \left[\frac{1}{\tau(r)} \int_{E_r(z)} |f(w)|^p d\tau(w)\right]^{\frac{1}{p}}, \qquad 0$$

where $\tau(r) = \tau(E_r(z))$.

For $0 < p,q \leq \infty,$ we define $L^{p,q}_r(\Omega,d\tau)$ to be the space of all measurable functions f on Ω for which

$$\|f\|_{L^{p,q}_{r}(\Omega,d\tau)} = \|M_{p,r}f\|_{L^{q}(\Omega,d\tau)} < \infty$$

Since the definition is independent of r, 0 < r < 1, we will write $L^{p,q}(\Omega, d\tau)$ instead of $L^{p,q}_r(\Omega, d\tau)$ (see [1]).

We let P_{α} denote the orthogonal projection from $L^{2}(\Omega, d\nu_{\alpha})$ onto $L^{2,\alpha}_{a}(\Omega) = L^{2}(\Omega, d\nu_{\alpha}) \cap H(\Omega)$. It can be shown that (see [9], for instance)

$$P_{\alpha}f(z) = \int_{\Omega} \frac{f(w) \, d\nu_{\alpha}(w)}{h(z, w)^{N+\alpha}}, \quad z \in \Omega, \ f \in L^{2}(\Omega, d\nu_{\alpha}).$$

The above formula extends the domain of P_{α} to $L^{1}(\Omega, d\nu_{\alpha})$. Note that $P_{\alpha}f = D^{0,\alpha}f$ for $f \in L^{1}(\Omega, d\nu_{\alpha})$.

If $1 \le p \le \infty$ and $\alpha > -1$ then $B^p = P_{\alpha} L^p(\Omega, d\tau)$, see [13]. In [4] it is shown that the analytic Besov space B^p , 0 , can be naturally embedded as a $complemented subspace of <math>L^{1,p}(\Omega, d\tau)$ by a topological embedding

$$E_{m,\alpha}: B^p \to L^{1,p}(\Omega, d\tau).$$

It is also shown that $E_{m,\alpha} \circ P_{\alpha}$ is projection on this embedded copy and that $B^p = P_{\alpha} L^{1,p}(\Omega, d\tau).$

More precicely the following theorem is proven.

THEOREM 1.3. Let $0 . Then for any <math>\alpha > \max\{\frac{a(r-1)}{2p} - N, -1\}$,

$$P_{\alpha}: L^{1,p}(\Omega, d\tau) \to B^p$$

is a continuous linear map. Moreover if $m > \frac{N-1}{p}$ and $\alpha > \max\{\frac{a(r-1)}{2p} - N, -1\}$ then

$$E_{m,\alpha} \colon B^p \to L^{1,p}(\Omega, d\tau)$$

is a topological embedding.

M. Jevtič

Now we apply Theorem 1.3. to obtain a result about duality.

THEOREM 1.4. Let $0 , <math>m > \frac{N-1}{p}$ and $\alpha = m - N$. The integral pairing

$$\langle f,g \rangle_{\tau} = \int_{\Omega} E_{m,\alpha} f(z) \ \overline{E_{m,\alpha}g(z)} \, d\tau(z)$$

induces the following duality $(B^p)^{\star} = B^{\infty}$.

2. Duality

A linear functional λ on B^p , 0 , is said to be bounded if

$$\|\lambda\| = \sup\{|\lambda(f)| : \|f\|_{B^p} \le 1\} < \infty.$$

The dual space of B^p , denoted $(B^p)^*$, is then the space of all bounded linear functionals on B^p . In [13] it is shown that each $(L_a^{p,\alpha})^*$, $0 , can be identified with <math>B^{\infty}$ via volume integral pairing

$$\langle f, g \rangle_{\beta} = \lim_{r \to 1} \int_{\Omega} f(rz)g(z) \, d\nu_{\beta}(z), \quad \text{where} \quad \beta = \frac{N+\alpha}{p} - N$$

Our Theorem 1.4 shows that $(B^p)^*$ can also be identified with B^{∞} , but via a different integral pairing $\langle \cdot, \cdot \rangle_{\tau}$.

Proof of Theorem 1.4. First, assume that g is a function in B^{∞} . Then

$$||g||_{B^{\infty}} \ge \sup_{z \in \Omega} h(z, z)^m |D^{m, \alpha} g(z)| = \sup_{z \in \Omega} |E_{m, \alpha} g(z)|, \quad (\text{see [13]}).$$

We show that g gives rise to a bounded linear functional on B^p under the pairing $\langle \cdot, \cdot \rangle_{\tau}$. By Theorem 1.3 if $f \in B^p$ then

$$||f||_{B^p} \ge ||E_{m,\alpha}f||_{L^{1,p}(\Omega,d\tau)} \ge C ||E_{m,\alpha}f||_{L^1(\Omega,d\tau)}.$$

Thus if $f \in B^p$, then we have

$$|\langle f, g \rangle_{\tau}| \leq \sup_{z \in \Omega} |E_{m,\alpha}g(z)| \|E_{m,\alpha}f\|_{L^{1}(\Omega, d\tau)} \leq C \|f\|_{B^{p}} \|g\|_{B^{\infty}}.$$

Conversely, assume that λ is a bounded linear functional on B^p ; we show that λ arises from a function in B^{∞} . Since $E_{m,\alpha}$ is a topological embedding of B^p into $L^{1,p}(\Omega, d\tau), \ \lambda \circ E_{m,\alpha}^{-1}$ extends to a bounded linear functional on $L^1(\Omega, d\tau)$. Thus there exists a function $\varphi \in L^{\infty}(\Omega, d\tau)$ such that

$$\lambda \circ E_{m,\alpha}^{-1}(\psi) = \int_{\Omega} \psi(z)\overline{\varphi(z)} \, d\tau(z), \qquad \psi \in L^{1}(\Omega, d\tau).$$

When $f \in B^p$, $E_{m,\alpha}f \in L^{1,p}(\Omega, d\tau) \subset L^1(\Omega, d\tau)$. Therefore

$$\lambda(f) = \int_{\Omega} E_{m,\alpha} f(z) \overline{\varphi(z)} \, d\tau(z) = \int_{\Omega} V_{m,\alpha} f(z) \overline{\varphi(z)} \, d\tau(z), \quad f \in B^p.$$

232

As was noted in Introduction $E_{m,\alpha}f = V_{m,\alpha}f$ if $f \in L^{1,\alpha}_a(\Omega)$. Since $B^p \subset B^\infty$, we have that $\int_{\Omega} |f(\xi)| h(\xi,\xi)^{\alpha} d\nu(\xi) < \infty$. (See the remark following Lemma 7 in [11]). Let $h = P_{\alpha}\varphi$. Then $h \in B^\infty$ by Theorem 6 ([13])

$$E_{m,\alpha}h(z) = V_{m,\alpha}h(z) = h(z,z)^m D^{m,\alpha} P_\alpha \varphi(z) = h(z,z)^m D^{m,\alpha} (D^{0,\alpha} \varphi)(z)$$

= $h(z,z)^m D^{m,\alpha} \varphi(z) = V_{m,\alpha} \varphi(z).$

To finish the proof of Theorem 1.4 it remains to show that

$$\langle V_{m,\alpha}f, V_{m,\alpha}\varphi\rangle_{\tau} = \langle V_{m,\alpha}^2f, \varphi\rangle_{\tau}$$
 and that $c_{m+\alpha}V_{m,\alpha}^2f = c_{\alpha}V_{m,\alpha}f.$

This follows easily from Fubini's theorem and the reproducing property of P_{α} . Note that $\alpha = m - N$. We leave the details to the interested reader. Thus,

$$\lambda(f) = \int_{\Omega} V_{m,\alpha} f(z) \overline{V_{m,\alpha} g(z)} d\tau(z) = \int_{\Omega} E_{m,\alpha} f(z) \overline{E_{m,\alpha} g(z)} d\tau(z)$$

for all $f \in B^p$, where $g = c_{m+\alpha} c_{\alpha}^{-1} h \in B^{\infty}$.

REFERENCES

- D. Bekolle, C. Berger, L. Coburn, K. Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 91 (1990), 310-350.
- [2] C. Berger, L. Coburn, K. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus, Amer. J. Math. 110 (1988), 921–953.
- [3] J. Faraut, A. Koranyi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal. 88 (1990), 64-89.
- [4] M. Jevtič, Holomorphic Besov space B^p , 0 on bounded symmetric domains, (to appear)
- [5] A. Koranyi, Analytic invariants of bounded symmetric domains, Proc. Amer. Math. Soc. 19 (1968), 279-284.
- [6] S. Krantz, Function Theory of Several Complex Variables, John Wiley and Sons, 1982.
- [7] M. Mateljevič and M. Pavlovič, An extension of the Forelly-Rudin projection theorem, Proc. Edinburg Math. Soc. 36 (1993), 375-389.
- [8] J. Shapiro, Macky topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187-202.
- [9] M. Stoll, Mean value theorems for harmonic and holomorphic functions on bounded symmetric domains, J. reine angew. Math. 283 (1977), 191-198.
- [10] K. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 81 (1988), 260-278.
- [11] K. Zhu, Holomorphic Besov spaces on bounded symmetric domains, Quarterly J. Math. 46 (1995), 239-256.
- [12] K. Zhu, Bergman and Hardy spaces with small exponents, Pacific J. Math. 162 (1994), 189-199.
- [13] K. Zhu, Holomorphic Besov spaces on bounded symmetric domains, II, Indiana University Mathematical Journal 44 (1995), 1017–1031.

(received 04.09.1997.)

Faculty of Mathematics, Studentski trg 16, P.O.Box 550, 11000 Beograd, Yugoslavia *e-mail*: jevtic@matf.bg.ac.yu