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ON OPERATORS IN BOCHNER SPACES

Nina A. Yerzakova

Abstract. Estimates for the measure of noncompactness of bounded subsets of spaces of
(Bochner-) integrable functions are obtained, a new class of condensing operators is discussed,
and the solvability of a certain operator equation in a Hilbert space is proved.

In this paper we discuss a new class of condensing operators, and we prove the
solvability of a certain operator equation. An extension of some results from [8] is
obtained.

Let us recall some definitions. The measure of noncompactness S(U) = Br(U)
[1] of a bounded set U in a normed space E is defined as the supremum of all
numbers 7 > 0 such that there exists a sequence {u,} in U with ||u,, —u.|| > r for
every n # m. Given two Banach spaces G and E, a continuous operator S: G — E
is called (-condensing if

Be(SU) < Ba(U)
for every bounded U C G with noncompact closure.

There exists a large amount of literature devoted to measure of noncompactness
and condensing operators (see, for example, [1,2,4, 6-8]).

Let ©2 be a domain in R™. Let E be a regular space of y-measurable functions
on a domain 2; here regularity means that every element in E has an absolutely
continuous norm. Let Pp denote the operator of multiplication by the characteristic
function xp of a measurable subset D C Q, i.e. Ppu = xpu. For bounded U C E
put

v(U) = ve(U) = Tm sup||Poulls,
#(D)—=0 uel

for U C E.
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The measure v has been studied in [2,6]. In particular, it was shown in [6] (see
also [1]) that
BU) =2'w(U) (1)

for every p-compact (i.e., compact in measure) subset U of a separable Hilbert
space E.

Let A be a bounded interval on the real axis and E some Banach space. For
1 < p < o0, we denote by L,(0,T; E) the set of all Bochner-measurable functions
with the property that the function ¢t — |lu(t)||z belongs to L,(0,T).

For any partition A = Dy U---U D; of A into Lebesgue-measurable disjoint
subsets D;, we denote by V the set of all functions

l
a(t) = Z bixp, (t),

where xp, is the characteristic function of D; as above, and b; are elements from
E (1<i<l).

LEMMA 1. Let U CV be bounded in L,(A;E). For arbitrary ty € A, let
~ def .~ ~ e
U(ty) = {u(ty) :u e U}.

Then the function Br(U(t)) is simple, i.e.

l
Be(0(®) = Y aixn, 1),

and

~ - 1/p
e (@ < ([ @)
A
Proof. The proof of this assertion is analogous to the proof of Lemma 2.1 from
[8]. m

We denote by U some subset of L,(A; E) which allows an e-approximation,
for every € > 0, through a set

le
O @ ai(t) = Y_boxn, (1) (b € E)}.

More precisely, we require that

for almost all ¢ € A, where pg denotes the Hausdorff distance in E, the constant
k1 > 0 is independent of €, but the integer [, < co may depend on e.
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THEOREM 1. Let U be a bounded set in L,(A;E) which allows an e-
approzimation (2) for every €. Then

Br,(a;p)(U) <1Be(U)llL,(a)-

Proof. The proof of this assertion is analogous to the proof of Theorem 2.1
from [8]. m

Let H be some Hilbert space. As usual, we identify H with its conjugate space
H*. Let WhY2(A;H) = WH2(b,d; H) (A = (b,d)) for some —c0 < b < d < oo
denote the space of all functions u: A — H such that both u and u; belong to
Lo(A; H), equipped with the norm

lullwrz(asmy = Nulloasm + lullcaasm)-
By Lemma 1.11 from [3], Wh2(A; H) is embedded in C(A; H), i.e.,
lull oy < cllullwrzasm. (3)

Let W, ?(b,d; H) be the subspace of all functions u € W'2(b,d; H) such that
u(b) = u(d) = 0 (0 is zero of H). In W, *(b,d; H) we have

d 1/2
umuwdﬂ>gk<ﬂ|mwmzd0 — Rl (1)

Finally, for u,v € Wol’2(b, d; H) we put

d 1/2
|mm&o=(4|wmzﬁ) .

Some notations are in order.

Let A C (b,d) be an interval, A its closure, |A| its length, As the é-
neighbourhood of A, ua an approximation of a function v on A, us € WOI’Q(AZ;; H)
an extension of u € WH2(A; H) preserving the norm in C(A; H) for § = |A|/2,
and Uy the set of all extensions us of functions u € U C WH2(A; H).

Let L2(92) denote the Lebesgue space and W12(Q) the Sobolev space. We shall
now consider two particular cases of H, namely H; = Lo () and Hy = W12 (Q),
here (2 is a domain in R™ of finite measure but, in general, with irregular boundary.
In both cases the space W12(0,T; H;) (i = 1,2) consists of all functions (¢,z) —
u(t, x) such that u(t,.), uj(t,.) € H; for each t € A.

LEMMA 2. Let f € L1(A; Hs), and let ¥: H; — H; (i = 1,2) be an operator
satisfying the inequality

J
1T (D, <+ ll9]

Jj=1

e (5)
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for all ¢ € H;, where c; > 0, ¢; > 0, and a;; > 1 are real constants which may
depended on H;. Then there exist operators Fa ;: WY2(A; H;) — WH2(A; H;),
such that the equality

/ (Fasu)) (1), v (1)), dt = / () = W), v(6)) a, dt
A A

is true for arbitrary functions v € W&’Z(A; H;). Moreover,

J
IFa il ommy < coll flloy(am) + a AN + A2 ul Z}‘g;Hi), (6)

7j=1

J ~

1Faiullwrzasm) < coll fll,am) + @AM +[A1Y2 Y Gllulgisamy, (7)

j=1

and

Bwr2(ay) (FaiU) < e3Bryasu) (P(Us))(U € WH(A; Hy)), (8)

where the constants co, €1, ¢;, c:j, and c3 are independent of w, U, A and o.

Proof. Let us, vs € W0 ?(As; H;). The estimates

1 (ue)llLa(as;m) < |ler + Zéj sz, <
=1 La(As;Hy)
J
Qg g o, j 1/2
(a1 + ZCJ ||u| (A H;) )(2|A[) 1/2 <(a+c ZCJ ”u”Wl 2(AH;) ) (2[A]) /
j=1 (9)

can easily be deduced from assumptions (5) on ¥ and the embedding (3). Putting
fs(t) = Paf(t) we have

/. 0, vt = J s

< cllvsllwrz(asm;)
This shows that the linear functional

R () = /A (o) = (u(t)), vs (), dt

(A;H2)

(AsHg) S c(k+1)||v5||W12(A6 (A;Ha)-

is bounded in module for all vs € W&’Q(Ag;Hi). By the Riesz representa-
tion theorem, there exists a bounded (generally speaking, nonlinear) operator
Fs;: Wy *(Ag; Hy) — Wy (As; H;) such that
(Fsius,v6)1,2,0 Z/ ((Fsius)(t), (vs);(t)) o, dt
As
= [ (Fst0) = Wws ), 00},
8

< (elk + DI lpyasms) + FIY (o)l Loagm) s w2 (agsm,).
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Putting in the last equality vs = Fjs;us, we conclude that
s iusllwrzagm,y < b+ DIy am) + EIY (us)llLo(asm,)- (10)

We define an operator (Fa ;u) as approximation of Fj;us on A. Taking into con-
sideration (3), (4), (9), and (10), we obtain then (6) and (7), since

1Eniull o m,) < AllFamllwream) < ek + DI Fsausllyr2a,m,)
< Ak + 12 llyasts) + ck(k +1)[19 (us)]

La(AsiHi)
J
< Ek+ 12 Fllny(am) + ck(k+D(er+ > & ||U||gi(‘%;Hi))(2|A|)1/2
=1
’ J
< (k11 puam + b+ Dler + ¢ S & ulliet s amy) AN,
7j=1

The inequality

1Esius = Fsivsllyr2 (a0, < FIN(us) = W (vs)l|o(agim)

for arbitrary ws,vs € WOI’Q(AZ;;HZ-) is proved analogously to (10). Therefore, by
the definition of 8 and (4) we have for any subset U of W1:2(A; H;)

Bwre () (FaU) < (k+ 1By aym,) (FsiUs) < k(E+1)BLy (a0, (YUs),
as claimed. m

COROLLARY 1. Let A C Ay C (b,d), u be some fized function from
WY2(Ay; Hy), Ua its approzimation on A, and U the set of all functions u from
WY2(Ay; Hy) which coincide on A with u. Then for arbitrary w € U the approz-

imation Fa, ;u differs on interval A from Fa ;ua only by a constant depending
on u.

COROLLARY 2. Let the assumptions of Corollary 1 be satisfied. Suppose that,
for every ¢, ¢1 € Hy, we have

Y(¢+ d1) = V(o) (11)
if and only if ¢ = 0. Let

/ (@)L ()0 (1)), dt = / () — W), o(t) m, dt
A

A
and for some u € U and o€ H
/ (Fan o (u+ 6))(0),0' (0, dt = / () — W(u(t) + 6), o(t))m, dt
A A

for allv e W&’Q(A;Hl). Then ¢ = 0.
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LEmMMA 3. Let f(t,.) € Hy for all t € A, and let ¥ : H; — H; be an
operator which satisfies (7) (i = 1,2). Let Fa,: WY2(A; H;) — WY2(A; H;) be
the corresponding operators, defined in Lemma 2. Then for all u € WH2(A; Ho)
we have Fa 1(u(t,z)) = Fa 2(u(t,z)) on A.

Proof. The proof of this assertion is analogous to the proof of Lemma 3.2 from
[8]. m

We shall show now that in a particular case of Lemma 3 we are led to con-
densing operators. Let us denote by B(0,r) the closure of the set ¢ € Hs, with
|l g, < rin the norm Hj.

THEOREM 2. Let the assumption (5) be satisfied. Given ro assume that, for

each r < 1o and all functions ¢, ¢1 from B(0,r) for the operator V: Hy — H; the
next inequalities are true:

1T(0)] < |60 +ellolI% ol (12)
12 (6) — U(p) |, < k()6 — il - (13)

are true. Then there exists r > 0 sufficiently small such that, for every bounded set
U Cc WY2(A; Hy) with values in B(0,7), the inequality

Bwrza ) (FanU) < aBwrzia ) (U), (14)

holds with some 0 < a <1, i.e. Fa1 s a condensing map.

Proof. Let U be any bounded subset W12(A; Hy); in particular, U satisfies
the inequality (2). From (13) it follows that the set ¥(U) satisfies the inequality
(2), too. By [5, Theorem 4.8.4], every subset of W12(Q) is y-compact (1 being the
Lebesgue measure). Consequently, by our assumptions on ¥ and our choice of the
set U, the set U(U(tg)) = {T(u(to,.)) : u € U} is also p-compact for fixed ty € A.
Thus from (1), (2), (8), (12) and Theorem 1 we obtain

1/2

Bwrz(amy) (FaniU) < esBryaym) (¥(Us)) < c3 (/A B, (T (Us(1))) dt)
' 1/2

< \/503 (/A I/?{l {¢0 (JJ) +g||U5 (t,l‘) ||%111_1’U,5 (t,l‘) tus € Ug} dt)

1/2
S C3’I"a1_1g< /8121[1 (Ué(t)) dt) S CC3’l"a1_15(2|A|)1/2ﬂw1.2(A;H1)(U).
As

Taking r sufficiently small we arrive at the inequality (14). m

As example of an application of our results we study now the existence of
solutions u € W, *(0,T; Hy) of the ordinary operator differential equation

—ug(t) + C(u(t)) = f(t), t€(0,T), u(0)=u(T)=0, (15)
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where 0 < T' < oo and f € Ly(0,T}; Hy) are given. We say that @ € Wy*>(0,T; Hy)
is a generalized solution of (15) if

T T T
/0 (@ (6),0' (), + / (W (@E(1)), 0(t)) s, dt = / o)t (16)
for any v € W&’Z(O,T;Hl).

THEOREM 3. Let the assumptions (5), (11), (12) and (13) be satisfied. Then
the equation (15) has a generalized solution in the space Wol’2(0,T;H1) for each
f € L1(07T,H2)

Proof. Let Fa ;u be the operators defined in Lemma 2 for H; (i = 1,2). By
(7) we have

J

IFaiwllwrzqam) < coll Flloyasm) + AN + A2 Gllullyisam,, < 7o
j=1

if |lullwr2(asm,) < ro for some 0 < rg < 1, and |A] < 7 for 7 sufficiently small.
We take as A the interval (0,7) and consider the Hilbert space W12?(A; Hy) of
functions satisfying u(0,2) = 0 for all z € Q. From Lemma 3 it follows that
Fau(t,x) = Fapu(t,z) if w € WH2(A; Hs). By (6) there exist 71 < 7 and r > 0
sufficiently small such that for A = (0, 7;) we have

J
1Faiull oz my < coll flloyam) + &AM + A2 Z@‘HUH;}‘&H” <r
j=1

if ||u||C(Z;H2) < r. By Theorem 2 we may choose r > 0 such that the inequality

Bwrz(am) (FaniU) < Bwizam)(U)

is true for the operator Fa; and for every bounded not precompact subset
U c WY2(A; Hy) with values in B(0,7). This shows that Fa ; is a condensing
map with respect to the measure of noncompactness 3. Moreover, the set of all
functions u € W?(A; B(0,7)), with [|ullw1.2(a;m,) < 7o is closed, convex, nonemp-
ty and invariant with respect to Fa ;. Thus, by an analogue to Schauder’s fixed
point principle for 3-condensing maps [1], the operator Fa, 1 has a fixed point
u; € WH2(A; Hy). By Corollary 2, applied to Ay = (71/2,3/27) the set U of all
functions u € WH2(Ay; B(0,7)), |lullwr2a,;m) < 7o, which coincide on A N A,
with uy + ¢ for some ¢ € Hs depending on w, is invariant with respect to the
operator Fa, 1. Consequently, the operator Fa,; has also a fixed point uy € U
which, by Corollary 2, coincides with u; on AN A;. Now let

. _ [ w(tz), byte(0,7),
it @) = { us(t,z), byt € (7,37/2).

Then the equality (16) is true for all v € Wy "> (A; Hy) with supp v C (0,37/2), since
every function v € WOI’Q(A; H,) with suppv C (0,37/2) can be decomposed into a
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sum v; + vo, where v, € WOI’Q(A;Hl) with suppwv; C (0,7), and vy € W01’2(A;H1)
with suppwvy C (7/2,37/2). Applying this procedure a finite number of times, we

obtain the solution on the whole (0,7). m
Theorem 3 is illustrated in the next example.

ExAaMPLE. Let Hy = Lo(Q). Let ¥: Hy — H; be given by

J
(o) =0 ¢&llolli " (6 € Hy),
j=1

where ¢; > 0, and a; > 1 are real constants. Let oy = min{os,...,a s}, and
¢p = max{¢y,...,¢s}. Then the condition (12) is true. Since there exists 0 < 79 < 1
such that

[T (0)] < T&l|gll5 " 9]

if ¢ from B(0,79). It can easily be verified that (5), (11), (13) are satisfied too.

Theorem 3 ensures the the existence of a generalized solution of the boundary
value problem (15) in the Bochner space W, (0, T; Hy) for each f € Li(0,T}; Hy).

REMARK. The operator Fa,; with the function ¥, considered in Example is,
in general, not compact [8].
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