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MULTIPLIERS OF MIXED-NORM SEQUENCE SPACES
AND MEASURES OF NONCOMPACTNESS. II

Ivan Jovanovié¢ and Vladimir Rakocevié

Abstract. Let [?'7, 0 < p, ¢ < oo, be the mixed norm sequence space, and T : ["* — [*"
the operator defined by the multiplier Th(a) = {A\.a,}, A = {\.} € I*, a = {a,} € ["*. In this
paper, we investigate the Hausdorff measure of noncompactness of the operator T in the cases
when 0 < r,u,s,v < oo, and prove necessary and sufficient conditions for T\ to be compact. The
paper is a continuation of [8] where we considered the cases 1 < r,u,s,v < co.

1. Introduction and preliminaries

A complex sequence {\,} is of class "9, 0 < p,q < o0, if

i ( > |An|P>Q/p < o0, (1.1)

m=0 “nel(m)
where 1(0) = {0} and I(m) = {n € N:2m~! < n < 2™}, for m > 0. In the case
where p or ¢ is infinite, replace the corresponding sum by a supremum.
It is known that {?*9 with norm

||A||=(§)( ) |An|p)w)l/q, (1< pog <), (12)

m=0 “nel(m)

is a Banach space. Note that [»? = [P, and that if p or ¢ is infinite then the
corresponding sum should be replaced by a supremum; thus

1/p
||A||=sup( ) |An|p) (1 <p<oo,q=m). (1.3)

m nel(m)
Define

0o q/p
||A||=Z( ) w) . (L<p<oo, g<1), (1.4)

nEI(m)

m=0
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Il = i (n:}lp |An |> (p=o00,q¢<1). (1.5)
" o

=5 3 ( I P) <aso, (16)

Il = (fj( |An|p)w)w, (<lp<g<s) (LD

m=0 “ne I(m)

N = sup Yl (p<1,q=00). (1.8)

nel(m)

For economy the dependence of ||| on p and ¢ has not been indicated but it
should be borne in mind. Thus in the case 1 < p,q < oo, (IP9,| - ||) is a Banach
space, usually called the mixed-norm space (79, in the case 1 <p<o0,0< ¢ <1,
and in the case 0 < p < 1, ¢ < p, it is a complete g-normed space; finally, in the
case 0 < p < 1, p<gq, it is a complete p-normed space (see e.g. [10], [11]).

If L is a subset of the set of all integers and x = (z;) is a sequence, we set L(z)
for the sequence L(x) = (L(x);), where L(z); = z; if i € L, and L(z); =01if i ¢ L.

For any two subsets E and F of [*°, the set of multipliers from E to F (denoted
by (E, F)) is the set of all A = {\,} € [* such that Aa = {\,a,} is an element of
F for all a = {a,} € E. Let T) : E — F be the operator defined by Th(a) = Aa,
(a € E). For the convenience of a reader, recall the following well-known theorem
of Kellog [9, Theorem 1].

THEOREM (KELLOG) 1.1. Let 1 <r,s,u,v < 00, and define p and q by

/p=1/u—1/r if r>u, p=oco if r<u,
1/g=1/v—=1/s if s>, g=o00 if s<w.
Then (I™5,1"") = [P1,

Recall that Kellog (in [9, Theorem 1]) proved that the operator T) : [™5 — [*?,
defined by T\ (z) = Az, (z € I"*), is a bounded linear operator and that its operator
norm ||Ty]| is equal to ||A]].

REMARK. Let us remark that it was observed (see e.g. [3, Lemma 2], [4,
Theorem 7.1, Theorem 8.1], [6, Lemma 2.4] or [7, Lemma 1.1.2]) that Kellog’s
theorem is true for 0 < r, s, u,v < oo.

If X and Y are metric spaces, then f : X — Y is a compact map if f(Q) is
relatively compact (i.e., if the closure of f(Q) is a compact subset of Y') subset of
Y for each bounded subset @ of X. Recall that if Q is a bounded subset of a metric
space X, then the Hausdorff measure of noncompactness of @ is denoted by x (@),
and

x(Q) =inf{e >0:Q has a finite e-net in X}.

The function x is called the Hausdorff measure of noncompactness, and for its
properties and applications see e.g., ([1], [2], [5], [12], [13], [15]). Denote by @ the



Multipliers of mixed-norm sequence spaces ... 199

closure of ). For the convenience of the reader, let us mention that: If @, @1 and
Q)2 are bounded subsets of a metric space (X, d), then

X(Q) =0<= Q@ is a totally bounded set,

X(@) = x(Q),
Q1 C Q2 = x(Q1) < x(Q2),
X(Q1 U Q2) = max{x(Q1), x(Q2)},
X(Q1 N Q2) < min{x(Q1), x(Q2)}-

If our space X is a normed space, then the function x(Q) has some additional
properties connected with the linear structure. We have e.g.

X(Q1 + @2) < x(Q1) + x(Q2),
X(AQ) = |A|x(Q) foreach XeC.

If X (V) is a p-normed space (resp. ¢g-normed space), then let us denote by
B(X,Y) the set of all continuous linear operators from X into Y. For A € B(X,Y)
the Hausdorff measure of noncompactness of A, denoted by || A|ly, is defined by
lAlly = x(AK), where K = {z € X : ||z|| < 1} is the unit ball in X. Further, A is
compact if and only if ||A]|, = 0.

In this paper, we investigate the Hausdorff measure of noncompactness of the
operator T in the cases when 0 < r,u, s,v < 00, and prove necessary and sufficient
conditions for T to be compact. The paper is a continuation of [8] where we
considered the cases 1 < r,u,s,v < 00.

2. Results
The following lemma extends the results of [8, Lemma 2.1].

LEMMA 2.1. Let Q be a bounded subset of [*V, u € (0,00], v € (0,00). Then

r oo v/u\ 1/v
@<=t | sw (S5 k) ) | asur<w
Lz1)€Q N\p=n \pe1(m) (2.1)
r oo vy 1/v
x(Q) = inf | sup ( (sup :r)) ], uw=n00,1<0) 2.2)
( n€N|(z1)eQ mz::n keum)' ¢ ( (
r [ee) 'U/u
\(@) = inf | sup (Z( ) |xk|“) )] (L <u<oov<)
Lz1)€Q N\p=n \pe1(m) (2.3)
@ = iut | sw (30 (s juel) )] w=se,0<) (2.4
nEN L(a1)eQ \ 5=y, \kEI(m)
- S v/u
= inf | su T|® , (u<l,v<u 2.5
@ =t | s (S 3 i) )]« ) @)
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xX(Q) = Jlelzfv L sup (i ( Z |xk|“>v/u>u/v], (u<1,u<w).

Tr)€EQ m=n “kel(m) (26)

Proof. The case Q@ C ™", u € [1,00], v € [1,00) was proved in [8, Lemma
2.1]. The other cases @ C [*?, follow by the proofs of the previous case (we bear
in mind that now [* is a v-normed space, or u-normed space); see also [8, Lemma
24].m

Now we prove the main result of this paper. Let us mention that in the proof
we use the following result (see [14, p.7]) known as Jansen’s inequality: Let {w,}
be arbitrary sequence of complex numbers. Then

Z(|un|p)1/p is a decreasing function of p for p > 0.

THEOREM 2.2. Let 0 < r,u,s,v < 0o, and define p and q by
1/p=1/u—=1/r i r>u, p=oco if r<u,
1/g=1/v—1/s if s>, g=00 if s<w.
Then (I™*,1%") = [P9, and the operator T\ : I™* — ™", defined by the multiplier

Ti(a) = {Aant, A = {\.} € 179, a = {a,} € 1™, is well defined (see Remark
following Theorem 1.1). Now we have:

||T)\||X = 07 (U < 3)7 (27)
ITall = limsup A", (s <0< 1,7 < w),

v/p
||TA||X:limsup< Z |)\n|p> , (s<v<1,r>u), (2.9)
meee nel(m)
I\l = limsup [A,], (1 <v<oo,s<wv,r<u,l<u), (2.10)

1/p
||TA||X:limsup< Z |)\n|p> , (1<v<oo,s<v,r>u,1<u),

1T\l = limsup [A,]", (1<v<o0,s<v,7r<u,u<l), (2.12)

n— oo

u/p
||TA||X:limsup< Z |)\n|p> ,1<v<oo,s<y, r>u,u<l),

1 .
B Slimsup | A | < | Taly < limsup|A,], (v =00, 7 <u, 1< u), (2.14)
1 1/p
3otmsw( ¥ P) T <Imlhs
nEI(m)
1/p
< lim sup( Z |)\n|p> , (w=o00,7>u,1<u). (2.15)

nel(m)
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1
3 Alimsup | ALY < [|Th ||y < limsup [An]Y, (v=100, 7 <u, u < 1),
1 u/p
3otmsw( 3 P) < Incs
nel(m)
< limsup< Z |>\n|p> , (v=o00,r>u,u<l). (2.17)

Proof. Set K = {x € 1™ : ||z|| <1}. Then ||T\|| = x(X), and the proof in the
cases (2.7)—(2.13) begins from the corresponding formulae for y(K) (see Lemma
2.1). In the remaining cases (2.14)—(2.17) our results are not as sharp as in the
previous cases, but still precise enough to get necessary and sufficient conditions for
the compactness of T\ (se Corollary 2.3). As a general remark let us mention that
in the proof of Theorem 2.2 we use the techniques from the proofs of [8, Theorem
2.2] and [9, Theorem 1].

To prove (2.7), let us remark that in this case ¢ is a real number. Then by
(2.1)—(2.6), using the techniques from the proof of [8, (2.2.1)] and [9, Theorem 1]
we can get the result. For example in the case v < s, v < land 1 < u <r < 00,
we know that p and ¢ are real numbers. Now for A € 79, by Lemma 2.1, we have

S v/u
T\l = lim sug ( E ( E |)\kxk|"> >7 (2.18)
n— oo ze

m=n “kel(m)

where z = (z1, z2, ...) € K. By applying Holder’s inequality first to the inner
sum in (2.18) with @ = r/(r —u), and to the outer sum with 3 = s/(s —v) (see [9])
we get (we note that the condition v < 1 is not essential for the proof)

(S5 per))

keI(m)
o0 a/p\ 1/q s > s/r\ 1/s
<(x(Z ) ) () )
m=n “keI(m) m=0 “nel(m)

Now, (2.7) follows by (2.18) and (2.19).

Now, suppose that 1 < u <r < o0, v < 1, v < s = oco. Hence, ¢ = v, and
again by [9, Theorem 1] we get

(S5 per) )

(2.19)

keI(m)

oo q/p\ 1/4 1/r (2.20)
< <Z< Z |>‘k|p> ) <SHP< Z |3?1c|T> )

m=n “keI(m) ™ Nkel(m)

Now, (2.7) follows by (2.18) and (2.20).
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Further, in the case v < s, u < 1, v < w and r < u, we have (let us remark
that p = 00)

o0

Z( > |>\kxk|“>v/u S?( sup |>\k|“>< > |$k|“>v/u

m=n “keI(m) =n \k€I(m) kel(m)

o0 s/(s=v)y (s=v)/s ; oo (v/u)-(s/v)y v/s
<(Z(ampr) ) (XX ) )

m=n \k€l(m) m=n “keI(m)

<( (o w)) (2T ) ) @.21)

m—n keI(m) m=n “keI(m)

Now, (2.7) follows by (2.5) and (2.21). Let us remark that all the other possibilities
for r, s, u, v in the case v < s can be proved in a similar way, and we omit the
proof.

Now suppose that s < v < oo. Hence ¢ = 0o. Further suppose that » < wu.
Thus p = co. Hence we have to consider the cases: (2.8), (2.10) and (2.12). All
these cases can be proved (with natural changes for u,v) as in the case [8, (2.2.2)].

Let € > 0. Then there is a subsequence {A,, } of {\,} such that
[An, | > limsup |A,| — €. (2.22)

Set M ={ng:k=1,2,...}, and let e; = {6;;} €[>, i=1,2,.... Now
ITalx = X(TxEK) 2 X(Tarn) K) 2 xH{M(Aei i € N}), (2.23)
and by Lemma 2.1
lim sup |A,|?, forv <1

n—oo

ITaly > { lim sup |Ap|, forl<w,1<u (2.24)

limsup [A,|*, for 1l <wv,u<1.

n— oo

To prove “<” in (2.24), we could use the method of proof of [8, (2.2.11)], or by
direct calculation, in the case, say, s <v < 1, v < u < oo and 7 < u, for each n we
have

5] v/u
< (5 )

m=n “kel(m)

m>n kEI(m m—n kEI(m)

] v/r
< sup< SUP)|)\1¢|U : < > ka|T>

m>n \kel(m m=n “keI(m)

)
< sup( Sup)lkkrj) ' i( > |xk|“>v/u
)
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< sup( Sup)|>\k|”> : [(i ( > |xk|r>5/r>1/s]v. (2.25)

m>n \keI(m m=n ‘kel(m)
Now, by (2.25) we get

ITxlly <limsup|A,|”, fors<wv<1l,v<u<ooandr<u. (2.26)

n— oo

To prove “<” in the case s < v < 1, u = 00, suppose that € > 0. Set L = {n :
[An| > limsup, o |An| + €} and W =N\ L. Hence

T)\(K) = TW()\)(I() + TL()\)(I().
Clearly, L is a finite set, and the multiplier T7,(,) is a compact operator. Hence

X(T\(K)) < X(TW(A)(K)) + X(TL()\)(—K)) = X(TW(A)(K))- (2.27)
and by (2.4) we have

1Tw oyl = X(Tiv(n)(K)) = inf [ sup (Z( sup W|)\kxk|> )]
m=n n

neN|(z,)eK kel(m)

< (lim sup(|An +e)] -inf[ sup ( ( sup xk> )]
|:n—>oo (2] neN [(z,)eK mXZ:n ke](m)mw| |

< [lim sup(|An] +e)] .

n— oo

Hence
ITh]lx <limsup|A,|” fors<v<1,u=o0. (2.28)

n— oo

Now suppose that s < v < oo and r > u. Hence ¢ = oo and p is a real
number. Thus we have to consider the cases (2.9), (2.11) and (2.13). All these
cases can be proved (with natural changes for u,v) as in the case [8, (2.2.3)] (let us
remark that in the proof of [8, (2.2.3)] in the line following [8, (2.2.12)] M should
be M =J, I(ms), and N\ L();) should be [J{I(m) :m € N\ L(\;)}).

Let us prove (2.9). Let € > 0. Then there is a subsequence {I(my)} of {I(m)}
such that

1/p 1/p
( > |)\n|p> > limsup< > |)\n|”> —¢, keN. (2.29)
nEI(mk) m—oo nel(m)
Set M = U/CI('ITL}C)7 and ¢, = (E
the sequence z(*) = (z\"), by
AnlP/7, it mo€ I(my,
20 — { k| Anl if n € I(my)

) |)\n|f’)_1/r7 k=1,2,.... For each k, define

nel(my,

(2.30)

" 0, otherwise.

Now z(®) € 1" and ||z®| = 1, k = 1,2,.... Further, in the case 1 < u < oo,
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v < 1, by (2.3) we get
ITa e = X(TAK) > X(Tan K) > x({M (V)™ - &k € N})

= nt [ (3 |<M<A)x<k>>¢|“)v/u]

keN i€l(my,)
v/ 2.31
= inf {sup( |)\ix§k)|“> } (2:31)
neNlken i€l(my)

v/p 1/p v
:sup( Z |)\i|p> > {hmsup( Z |)\n|p> —e} .

keN ieI(my) k— o0 nel(my)
Since the inequalities for the remaining two cases are quite similar, we omit the
proofs. Hence

,

v/p
1Ty > limsup< Z |)\n|p> , fors<v,1<v<oo,r>u>1 (2.32)

To prove “<” in (2.32), suppose that € > 0. Then
1/p 1/p
L= {m: ( Z |)\n|p> > limsup< Z |)\n|p> +e}

nEI(m) m—oo nel(m)

is a finite set. Set W = U{I(m):m € N\ L}, and U = N\ W. Now
TA\(K) = Tw ) (K) + Ty (K),
and
1Tl = X(TA(K)) < X(Twn) (K)) + X(Tuoy (K)) = x(Tw) (K)). (2.33)

In the case 1 < u < 00, 0 < v < 1, by (2.3) we have

(% |W<A>kxk|“)v/u]}. (230

X(Twny(K)) = inf{ sup [Z
m=n “kel(m)

neEN | (z,)EK

Applying Holder’s inequality to the inner sum with r/(r — u), we get
X(Twxy(K)) <

<t { s [ (08 w5 1))}

e €K L0 \ LT (m) kel(m)

<t s [ (S wonn™) L mn”]h

(zr)EK m>n keI(m) m=n_ kel(m)

(2.35)
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Now, by (2.33) we have

X(TH(K)) < x(Twx)(K)) <lim Sup(( Z |)\n|P)1/” + e) :

meree nel(m)

and finally

v/p
1Tl < lim Sup< > |An|p> . (2.36)
m=ee n€l(m)
Hence, now (2.9) follows from (2.32) and (2.36). Since the inequalities for the
remaining cases are quite similar, we omit the proofs. Let us remark that in these
cases the proof could be given by a direct calculation as in (2.25)

Finally let us consider the case v = co. We have to prove (2.14), (2.15), (2.16)
and (2.17). The right inequalities in all these cases follows by the proof of the
corresponding cases for the parameters r and w when v is real. To prove the left
inequalities let us recall (see e.g. [1, Theorem 1.1.7 and Remark 1.3.2]) that if Q is
a bounded subset of a metric space (X,d), a > 0 and u,, is a sequence in @ such
that

d(Un,um) >a, n#m, then «a<2x(Q). (2.37)
Hence, for example the left inequality in (2.15) (similarly (2.17)) follows from the
fact that (using the notations of the proof of (2.9), more precisely we use M and
2k =1,2,3,...), fori#j

1/p
limsup(( Z |)\n|p> - 6)7 for1 <u

meree nel(m)

1/p u
limsup(( Z |)\n|p> —e) , foru<l1

m— 0o nEI(m)

1M (X2 =M )P > (2.38)

Finally let us remark that the left inequalities in (2.14) and (2.15) can be
proved by the argument in the proof of [8, (2.2.4)]. This completes the proof of
Theorem 2.2. m

Now as a corollary of the above theorem we have
COROLLARY 2.3. Let 1 < r,u < o0, 0 < s,v <00, and define p and q by
/p=1/u—1/r if r>u, p=oco if r<u,
1/g=1/v—1/s if s>, g=00 if s<w.
Then, for X € (I"%,1%?) =179, we have:

T\ is a compact, if v < s, (2.39)
T\ is a compact <= limsup [A\,| =0, if s <v and r < u, (2.40)

1/p
T is a compact < limsup< Z |)\n|p> =0, ifs<vandr>u.
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Let us mention that the results of Theorem 2.1 and Corollary 2.3 can be
extended from dyadic to general blocks without problem (see [4]).
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