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MULTIPLIERS OF MIXED-NORM SEQUENCE SPACES

AND MEASURES OF NONCOMPACTNESS. II

Ivan Jovanovi�c and Vladimir Rako�cevi�c

Abstract. Let lp;q; 0 < p; q � 1, be the mixed norm sequence space, and T� : lr;s ! lu;v

the operator de�ned by the multiplier T�(a) = f�nang, � = f�ng 2 l1, a = fang 2 lr;s. In this
paper, we investigate the Hausdor� measure of noncompactness of the operator T� in the cases
when 0 � r; u; s; v � 1, and prove necessary and su�cient conditions for T� to be compact. The
paper is a continuation of [8] where we considered the cases 1 � r; u; s; v � 1.

1. Introduction and preliminaries

A complex sequence f�ng is of class l
p;q, 0 < p; q �1, if

1X
m=0

� X
n2I(m)

j�nj
p

�q=p
<1; (1.1)

where I(0) = f0g and I(m) = fn 2 N : 2m�1 � n < 2mg, for m > 0. In the case
where p or q is in�nite, replace the corresponding sum by a supremum.

It is known that lp;q with norm

k�k =

� 1X
m=0

� X
n2I(m)

j�nj
p

�q=p�1=q

; (1 � p; q <1); (1.2)

is a Banach space. Note that lp;p = lp, and that if p or q is in�nite then the
corresponding sum should be replaced by a supremum; thus

k�k = sup
m

� X
n2I(m)

j�nj
p

�1=p

; (1 � p <1; q =1): (1.3)

De�ne

k�k =

1X
m=0

� X
n2I(m)

j�nj
p

�q=p
; (1 � p <1; q < 1); (1.4)
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k�k =

1X
m=0

�
sup

n2I(m)
j�nj

�q
; (p =1; q < 1): (1.5)

k�k =

1X
m=0

� X
n2I(m)

j�nj
p

�q=p
; (p < 1; q � p); (1.6)

k�k =

� 1X
m=0

� X
n2I(m)

j�nj
p

�q=p�q=p
; (p < 1; p � q <1); (1.7)

k�k = sup
m

X
n2I(m)

j�nj
p; (p < 1; q =1): (1.8)

For economy the dependence of k�k on p and q has not been indicated but it
should be borne in mind. Thus in the case 1 � p; q � 1, (lp;q; k � k) is a Banach
space, usually called the mixed-norm space lp;q, in the case 1 � p � 1, 0 < q < 1,
and in the case 0 < p < 1, q � p, it is a complete q-normed space; �nally, in the
case 0 < p < 1, p � q, it is a complete p-normed space (see e.g. [10], [11]).

If L is a subset of the set of all integers and x = (xi) is a sequence, we set L(x)
for the sequence L(x) = (L(x)i), where L(x)i = xi if i 2 L, and L(x)i = 0 if i =2 L.

For any two subsets E and F of l1, the set of multipliers from E to F (denoted
by (E;F )) is the set of all � = f�ng 2 l1 such that �a = f�nang is an element of
F for all a = fang 2 E. Let T� : E ! F be the operator de�ned by T�(a) = �a,
(a 2 E). For the convenience of a reader, recall the following well-known theorem
of Kellog [9, Theorem 1].

Theorem (Kellog) 1.1. Let 1 � r; s; u; v � 1, and de�ne p and q by

1=p = 1=u� 1=r if r > u; p =1 if r � u;

1=q = 1=v � 1=s if s > v; q =1 if s � v:

Then (lr;s; lu;v) = lp;q.

Recall that Kellog (in [9, Theorem 1]) proved that the operator T� : l
r;s ! lu;v,

de�ned by T�(x) = �x, (x 2 lr;s), is a bounded linear operator and that its operator
norm kT�k is equal to k�k.

Remark. Let us remark that it was observed (see e.g. [3, Lemma 2], [4,
Theorem 7.1, Theorem 8.1], [6, Lemma 2.4] or [7, Lemma 1.1.2]) that Kellog's
theorem is true for 0 < r; s; u; v �1.

If X and Y are metric spaces, then f : X ! Y is a compact map if f(Q) is
relatively compact (i.e., if the closure of f(Q) is a compact subset of Y ) subset of
Y for each bounded subset Q of X . Recall that if Q is a bounded subset of a metric
space X , then the Hausdor� measure of noncompactness of Q is denoted by �(Q),
and

�(Q) = inff� > 0 : Q has a �nite �-net in Xg:

The function � is called the Hausdor� measure of noncompactness, and for its
properties and applications see e.g., ([1], [2], [5], [12], [13], [15]). Denote by Q the
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closure of Q. For the convenience of the reader, let us mention that: If Q, Q1 and
Q2 are bounded subsets of a metric space (X; d), then

�(Q) = 0() Q is a totally bounded set;

�(Q) = �(Q);

Q1 � Q2 =) �(Q1) � �(Q2);

�(Q1 [Q2) = maxf�(Q1); �(Q2)g;

�(Q1 \Q2) � minf�(Q1); �(Q2)g:

If our space X is a normed space, then the function �(Q) has some additional
properties connected with the linear structure. We have e.g.

�(Q1 +Q2) � �(Q1) + �(Q2);

�(�Q) = j�j�(Q) for each � 2 C :

If X (Y ) is a p-normed space (resp. q-normed space), then let us denote by
B(X;Y ) the set of all continuous linear operators from X into Y . For A 2 B(X;Y )
the Hausdor� measure of noncompactness of A, denoted by kAk�, is de�ned by
kAk� = �(AK), where K = fx 2 X : kxk � 1g is the unit ball in X . Further, A is
compact if and only if kAk� = 0.

In this paper, we investigate the Hausdor� measure of noncompactness of the
operator T� in the cases when 0 < r; u; s; v �1, and prove necessary and su�cient
conditions for T� to be compact. The paper is a continuation of [8] where we
considered the cases 1 � r; u; s; v �1.

2. Results

The following lemma extends the results of [8, Lemma 2.1].

Lemma 2.1. Let Q be a bounded subset of lu;v, u 2 (0;1], v 2 (0;1). Then

�(Q) = inf
n2N

�
sup

(xk)2Q

� 1X
m=n

� X
k2I(m)

jxk j
u

�v=u�1=v�
; (1 � u; v <1)

(2.1)

�(Q) = inf
n2N

�
sup

(xk)2Q

� 1X
m=n

�
sup

k2I(m)
jxk j

�v�1=v�
; (u =1; 1 � v) (2.2)

�(Q) = inf
n2N

�
sup

(xk)2Q

� 1X
m=n

� X
k2I(m)

jxk j
u

�v=u��
; (1 � u <1; v < 1)

(2.3)

�(Q) = inf
n2N

�
sup

(xk)2Q

� 1X
m=n

�
sup

k2I(m)
jxk j

�v��
; (u =1; v < 1); (2.4)

�(Q) = inf
n2N

�
sup

(xk)2Q

� 1X
m=n

� X
k2I(m)

jxk j
u

�v=u��
; (u < 1; v � u) (2.5)
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�(Q) = inf
n2N

�
sup

(xk)2Q

� 1X
m=n

� X
k2I(m)

jxk j
u

�v=u�u=v�
; (u < 1; u � v):

(2.6)

Proof. The case Q � lu;v, u 2 [1;1], v 2 [1;1) was proved in [8, Lemma
2.1]. The other cases Q � lu;v, follow by the proofs of the previous case (we bear
in mind that now lu;v is a v-normed space, or u-normed space); see also [8, Lemma
2.4].

Now we prove the main result of this paper. Let us mention that in the proof
we use the following result (see [14, p.7]) known as Jansen's inequality : Let fung
be arbitrary sequence of complex numbers. ThenX�

junj
p
�1=p

is a decreasing function of p for p > 0:

Theorem 2.2. Let 0 < r; u; s; v �1, and de�ne p and q by

1=p = 1=u� 1=r if r > u; p =1 if r � u;

1=q = 1=v � 1=s if s > v; q =1 if s � v:

Then (lr;s; lu;v) = lp;q, and the operator T� : lr;s ! lu;v, de�ned by the multiplier
T�(a) = f�nang, � = f�ng 2 lp;q, a = fang 2 lr;s, is well de�ned (see Remark
following Theorem 1.1). Now we have:

kT�k� = 0; (v < s); (2.7)

kT�k� = lim sup
n!1

j�nj
v ; (s � v < 1; r � u); (2.8)

kT�k� = lim sup
m!1

� X
n2I(m)

j�nj
p

�v=p
; (s � v < 1; r > u); (2.9)

kT�k� = lim sup
n!1

j�nj; (1 � v <1; s � v; r � u; 1 � u); (2.10)

kT�k� = lim sup
m!1

� X
n2I(m)

j�nj
p

�1=p

; (1 � v <1; s � v; r > u; 1 � u);
(2.11)

kT�k� = lim sup
n!1

j�nj
u; (1 � v <1; s � v; r � u; u < 1); (2.12)

kT�k� = lim sup
m!1

� X
n2I(m)

j�nj
p

�u=p
; (1 � v <1; s � v; r > u; u < 1);

(2.13)

1

2
� lim sup

n!1
j�nj � kT�k� � lim sup

n!1
j�nj; (v =1; r � u; 1 � u); (2.14)

1

2
� lim sup
m!1

� X
n2I(m)

j�nj
p

�1=p

� kT�k� �

� lim sup
m!1

� X
n2I(m)

j�nj
p

�1=p

; (v =1; r > u; 1 � u): (2.15)
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1

2
� lim sup

n!1
j�nj

u � kT�k� � lim sup
n!1

j�nj
u; (v =1; r � u; u < 1);

(2.16)

1

2
� lim sup
m!1

� X
n2I(m)

j�nj
p

�u=p
� kT�k� �

� lim sup
m!1

� X
n2I(m)

j�nj
p

�u=p
; (v =1; r > u; u < 1): (2.17)

Proof. Set K = fx 2 lr;s : kxk � 1g. Then kT�k = �(K), and the proof in the
cases (2.7){(2.13) begins from the corresponding formulae for �(K) (see Lemma
2.1). In the remaining cases (2.14){(2.17) our results are not as sharp as in the
previous cases, but still precise enough to get necessary and su�cient conditions for
the compactness of T� (se Corollary 2.3). As a general remark let us mention that
in the proof of Theorem 2.2 we use the techniques from the proofs of [8, Theorem
2.2] and [9, Theorem 1].

To prove (2.7), let us remark that in this case q is a real number. Then by
(2.1){(2.6), using the techniques from the proof of [8, (2.2.1)] and [9, Theorem 1]
we can get the result. For example in the case v < s, v < 1 and 1 � u < r < 1,
we know that p and q are real numbers. Now for � 2 lp;q, by Lemma 2.1, we have

kT�k� = lim
n!1

sup
x2K

� 1X
m=n

� X
k2I(m)

j�kxkj
u

�v=u�
; (2.18)

where x = (x1; x2; . . . ) 2 K. By applying H�older's inequality �rst to the inner
sum in (2.18) with � = r=(r�u), and to the outer sum with � = s=(s� v) (see [9])
we get (we note that the condition v < 1 is not essential for the proof)

� 1X
m=n

� X
k2I(m)

j�kxkj
u

�v=u�1=v

�

�

� 1X
m=n

� X
k2I(m)

j�k j
p

�q=p�1=q� 1X
m=0

� X
n2I(m)

jxnj
r

�s=r�1=s

:

(2.19)

Now, (2.7) follows by (2.18) and (2.19).

Now, suppose that 1 � u < r < 1, v < 1, v < s = 1. Hence, q = v, and
again by [9, Theorem 1] we get

� 1X
m=n

� X
k2I(m)

j�kxkj
u

�v=u�1=v

�

�

� 1X
m=n

� X
k2I(m)

j�kj
p

�q=p�1=q�
sup
m

� X
k2I(m)

jxkj
r

�1=r�
:

(2.20)

Now, (2.7) follows by (2.18) and (2.20).
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Further, in the case v < s, u < 1, v � u and r � u, we have (let us remark
that p =1)

1X
m=n

� X
k2I(m)

j�kxkj
u

�v=u
�

1X
m=n

�
sup

k2I(m)

j�kj
v

�� X
k2I(m)

jxk j
u

�v=u

�

� 1X
m=n

�
sup

k2I(m)
j�k j

v

�s=(s�v)�(s�v)=s� 1X
m=n

� X
k2I(m)

jxk j
u

�(v=u)�(s=v)�v=s

�

� 1X
m=n

�
sup

k2I(m)
j�k j

q

��v=q� 1X
m=n

� X
k2I(m)

jxkj
r

�s=r�v=s
: (2.21)

Now, (2.7) follows by (2.5) and (2.21). Let us remark that all the other possibilities
for r; s; u; v in the case v < s can be proved in a similar way, and we omit the
proof.

Now suppose that s � v < 1. Hence q = 1. Further suppose that r � u.
Thus p = 1. Hence we have to consider the cases: (2.8), (2.10) and (2.12). All
these cases can be proved (with natural changes for u; v) as in the case [8, (2.2.2)].

Let � > 0. Then there is a subsequence f�nkg of f�ng such that

j�nk j > lim sup
n!1

j�nj � �: (2.22)

Set M = fnk : k = 1; 2; . . . g, and let ei = f�ijg 2 l1, i = 1; 2; . . . . Now

kT�k� = �(T�K) � �(TM(�)K) � �(fM(�)ei : i 2 Ng); (2.23)

and by Lemma 2.1

kT�k� �

8>>><
>>>:

lim sup
n!1

j�nj
v; for v < 1

lim sup
n!1

j�nj; for 1 � v; 1 � u

lim sup
n!1

j�nj
u; for 1 � v; u < 1:

(2.24)

To prove \�" in (2.24), we could use the method of proof of [8, (2.2.11)], or by
direct calculation, in the case, say, s � v < 1, v � u <1 and r � u, for each n we
have

kT�k� �

1X
m=n

� X
k2I(m)

j�kxkj
u

�v=u

�

1X
m=n

�
sup

k2I(m)
j�kj

v

�� X
k2I(m)

jxkj
u

�v=u

� sup
m�n

�
sup

k2I(m)

j�k j
v

�
�
1X

m=n

� X
k2I(m)

jxk j
u

�v=u

� sup
m�n

�
sup

k2I(m)

j�k j
v

�
�

1X
m=n

� X
k2I(m)

jxk j
r

�v=r
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� sup
m�n

�
sup

k2I(m)
j�k j

v

�
�

�� 1X
m=n

� X
k2I(m)

jxk j
r

�s=r�1=s�v
: (2.25)

Now, by (2.25) we get

kT�k� � lim sup
n!1

j�nj
v; for s � v < 1, v � u <1 and r � u: (2.26)

To prove \�" in the case s � v < 1, u = 1, suppose that � > 0. Set L = fn :
j�nj > lim supn!1 j�nj+ �g and W = N n L. Hence

T�(K) = TW (�)(K) + TL(�)(K):

Clearly, L is a �nite set, and the multiplier TL(�) is a compact operator. Hence

�(T�(K)) � �(TW (�)(K)) + �(TL(�)(K)) = �(TW (�)(K)): (2.27)

and by (2.4) we have

kTW (�)k� = �(TW (�)(K)) = inf
n2N

�
sup

(xk)2K

� 1X
m=n

�
sup

k2I(m)\W

j�kxk j

�v��

�

�
lim sup
n!1

(j�nj+ �)

�v
� inf
n2N

�
sup

(xk)2K

� 1X
m=n

�
sup

k2I(m)\W

jxkj

�v��

�

�
lim sup
n!1

(j�nj+ �)

�v
:

Hence

kT�k� � lim sup
n!1

j�nj
v for s � v < 1, u =1: (2.28)

Now suppose that s � v < 1 and r > u. Hence q = 1 and p is a real
number. Thus we have to consider the cases (2.9), (2.11) and (2.13). All these
cases can be proved (with natural changes for u; v) as in the case [8, (2.2.3)] (let us
remark that in the proof of [8, (2.2.3)] in the line following [8, (2.2.12)] M should
be M =

S
k I(mk), and N n L(�i) should be

S
fI(m) : m 2 N n L(�i)g).

Let us prove (2.9). Let � > 0. Then there is a subsequence fI(mk)g of fI(m)g
such that� X

n2I(mk)

j�nj
p

�1=p

> lim sup
m!1

� X
n2I(m)

j�nj
p

�1=p

� �; k 2 N: (2.29)

SetM = [kI(mk), and ck =
�P

n2I(mk)
j�nj

p
��1=r

, k = 1; 2; . . . . For each k, de�ne

the sequence x(k) = (x
(k)
n ), by

x(k)n =

�
ckj�nj

p=r; if n 2 I(mk)

0; otherwise:
(2.30)

Now x(k) 2 lr;s and kx(k)k = 1, k = 1; 2; . . . . Further, in the case 1 � u < 1,



204 I. Jovanovi�c, V. Rako�cevi�c

v < 1, by (2.3) we get

kT�k� = �(T�K) � �(TM(�)K) � �(fM(�)x(k) : k 2 Ng)

= inf
n2N

�
sup
k2N

� X
i2I(mk)

j(M(�)x(k))ij
u

�v=u�

= inf
n2N

�
sup
k2N

� X
i2I(mk)

j�ix
(k)
i ju

�v=u�

= sup
k2N

� X
i2I(mk)

j�ij
p

�v=p
�

�
lim sup
k!1

� X
n2I(mk)

j�nj
p

�1=p

� �

�v
:

(2.31)

Since the inequalities for the remaining two cases are quite similar, we omit the
proofs. Hence

kT�k� �

8>>>>>>>>>>><
>>>>>>>>>>>:

lim sup
n!1

� X
n2I(m)

j�nj
p

�v=p
; for s � v < 1, r > u

lim sup
n!1

� X
n2I(m)

j�nj
p

�v=p
; for s � v, 1 � v <1, r > u � 1

lim sup
n!1

� X
n2I(m)

j�nj
p

�v=p
; for s � v, 1 � v <1, u < 1:

(2.32)

To prove \�" in (2.32), suppose that � > 0. Then

L �

�
m :

� X
n2I(m)

j�nj
p

�1=p

> lim sup
m!1

� X
n2I(m)

j�nj
p

�1=p

+ �

�

is a �nite set. Set W = [fI(m) : m 2 N nLg, and U = N nW . Now

T�(K) = TW (�)(K) + TU(�)(K);

and

kT�k� = �(T�(K)) � �(TW (�)(K)) + �(TU(�)(K)) = �(TW (�)(K)): (2.33)

In the case 1 � u <1, 0 < v < 1, by (2.3) we have

�(TW (�)(K)) = inf
n2N

�
sup

(xk)2K

� 1X
m=n

� X
k2I(m)

jW (�)kxkj
u

�v=u��
: (2.34)

Applying Holder's inequality to the inner sum with r=(r � u), we get

�(TW (�)(K)) �

� inf
n2N

�
sup

(xk)2K

� 1X
m=n

�� X
k2I(m)

jW (�)k j
p
�v=p� X

k2I(m)

jxk j
r
�v=r���

� inf
n2N

�
sup

(xk)2K

��
sup
m�n

� X
k2I(m)

jW (�)k j
p
�v=p�

�

1X
m=n

� X
k2I(m)

jxk j
r
�v=r��

:

(2.35)
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Now, by (2.33) we have

�(T�(K)) � �(TW (�)(K)) � lim sup
m!1

�� X
n2I(m)

j�nj
p
�1=p

+ �

�v
;

and �nally

kT�k� � lim sup
m!1

� X
n2I(m)

j�nj
p

�v=p
: (2.36)

Hence, now (2.9) follows from (2.32) and (2.36). Since the inequalities for the
remaining cases are quite similar, we omit the proofs. Let us remark that in these
cases the proof could be given by a direct calculation as in (2.25)

Finally let us consider the case v =1. We have to prove (2.14), (2.15), (2.16)
and (2.17). The right inequalities in all these cases follows by the proof of the
corresponding cases for the parameters r and u when v is real. To prove the left
inequalities let us recall (see e.g. [1, Theorem 1.1.7 and Remark 1.3.2]) that if Q is
a bounded subset of a metric space (X; d), � > 0 and un is a sequence in Q such
that

d(un; um) > �; n 6= m; then � < 2�(Q): (2.37)

Hence, for example the left inequality in (2.15) (similarly (2.17)) follows from the
fact that (using the notations of the proof of (2.9), more precisely we use M and
x(k), k = 1; 2; 3; . . . ), for i 6= j

kM(�)x(i)�M(�)x(j)k �

8>>>>><
>>>>>:

lim sup
m!1

�� X
n2I(m)

j�nj
p

�1=p

� �

�
; for 1 � u

lim sup
m!1

�� X
n2I(m)

j�nj
p

�1=p

� �

�u
; for u < 1

(2.38)

Finally let us remark that the left inequalities in (2.14) and (2.15) can be
proved by the argument in the proof of [8, (2.2.4)]. This completes the proof of
Theorem 2.2.

Now as a corollary of the above theorem we have

Corollary 2.3. Let 1 � r; u �1, 0 < s; v �1, and de�ne p and q by

1=p = 1=u� 1=r if r > u; p =1 if r � u;

1=q = 1=v � 1=s if s > v; q =1 if s � v:

Then, for � 2 (lr;s; lu;v) = lp;q, we have:

T� is a compact, if v < s; (2.39)

T� is a compact () lim sup
n!1

j�nj = 0; if s � v and r � u, (2.40)

T� is a compact () lim sup
m!1

� X
n2I(m)

j�nj
p

�1=p

= 0; if s � v and r > u.
(2.41)
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Let us mention that the results of Theorem 2.1 and Corollary 2.3 can be
extended from dyadic to general blocks without problem (see [4]).
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