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RECENT RESULTS IN THE THEORY OF
MATRIX TRANSFORMATIONS IN SEQUENCE SPACES

Eberhard Malkowsky

Abstract. In this paper we give a survey of recent results in the theory of matrix trans-
fomrations between sequence spaces. We shall deal with sequence spaces that are closely related
to various concepts of summability, study their topological structures, find their Schauder-bases
and determine their 3-duals. Further we give necessary and sufficient conditions for matrix trans-
formations between them.

1. Introduction and well-known results

We shall write w for the set of all complex sequences z = (x)72, and ¢, [,
¢ and ¢p for the sets of all finite, bounded, convergent sequences and sequences
convergent to naught, respectively; and finally, for 1 < p < o0, I, = {z € w :
Do |7k [P < o0}

By e and e(™ (n = 0,1,...) we denote the sequences such that e = 1 for
k=0,1,...,and e zlandegcn) =0for k #n.

A BK space is a Banach sequence space with continuous coordinates. A se-
quence (b,)>2, in a linear metric space X is called a (Schauder-) basis if for each
r € X there exists a unique sequence (\,)52, of scalars such that z = 37 (A, b,.
A BK spaces X D ¢ is said to have AK if every x = (24);2, € X has a unique
representation z =Y o zpel™,

Let A = (ank)y’y—o be a infinite matrix of complex numbers, z € w and
1 < p < . Then we shall write

A(@) = Y amane Aullal?) = 3 amlael (0=0,1,...);
k=0 k=0
Alr) = (An(2))7Z0  and  A([z]?) = (An(|2]"))7Z0-
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For any subset X of w, we define the sets

Xa={rcw:A®)e X} and Xpp={rcw:A(z]f)e X }.

If p = 1, then we omit the index p, i.e. we write X[4) = Apap for short. For
instance, if E is the matrix defined by e, =1 (0 < k< n) and e, =0 (k > n)
foralln =0, 1, ..., then ¢s = cg and bs = (ly,)g are the sets of convergent and

bounded series.

We shall be interested in sequence spaces that are closely related to the con-
cepts of ordinary, strong and absolute summability with index p > 1 [5, pp. 185,
189, 190]. Further, we shall study the topological properties of these sequence
spaces, give their $-duals and characterize matrix transformations between them.

The reader is referred to [2, 13, 19] for the results in classical summability
theory, and to [18, 14, 5, 15, 19] for the theory of sequence spaces.

2. The classical BK spaces

In this section, we shall state the fundamental results. It is well known [18,
5, 14] that the spaces [, (1 < p < ), ¢p, ¢ and [« are BK spaces with their
natural norms, [, and ¢ have AK, every sequence x = (2;)72, € ¢ has a unique
representation x = le + Ezozo(xk — 1)el®) where | = limp—_oo 2 and lo has no
Schauder basis.

If X and Y are arbitrary subsets of w and z any sequence, then we shall write
'y X={rcw:rze X} and M(X,Y)= ﬂ Y.
zeX
In the special case, where Y = cs, the set
XP = M(X,cs) = {a €w: Y. apxy converges for all z € X}
k=0

is called the g-dual of X. If X is an arbitrary normed space, then we denote its
continuous dual by X*, i.e. X* is the space of all continuous linear functionals
on X, with the norm || - ||* defined by

111" = sup{|f ()| : llzll =1} (f € X7).
There is a close relation between the continuous dual and the 3-dual of a BK space.
THEOREM 2.1. ([18, Theorems 4.3.15, p. 64 and 7.2.9, p. 107) Let (X, |- ||) be
a BK space.
(a) Then X” is a BK space with ||a||g = sup{sup,, | > p_, arxzx| : [|z| = 1}.

(b) The inclusion XP C X* holds in the following sense: Let the map™: X” —
X* be defined by (a) = a: X — C (a € XP) where a(x) = Y p—, axxr, for all
x € X. Then"is an isomorphism into X*. Further, if X has AK, then the map” is
onto X*.
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The 3-duals of the classical sequence spaces are well-known [16, 18, 14]:
w62¢7 ¢ﬂ:w7 llﬂ:loo and Cg:c’ezl’go:ll.

If we put ¢ =p/(p—1) for 1 < p < o0, then lg = lg. The spaces c¢* and ¢f; are norm
isomorphic with ;. Further, we have ||a||s = ||a||; for all a € I5.

Let A be an infinite matrix of complex numbers and A, = (ank)Z":O be the
sequence in the n''-row of A. By (X,Y) we denote the class of all matrices A that
map the set X C w into the set Y C w. Thus

A, € XP for alln
Ae(X,Y) ifandonlyif and
Ax) = (Ap(z))2, €Y forall z € X.

The most important result in the theory of matrix transformations is

THEOREM 2.2 ([18, Theorem 4.2.8, p. 57) Matriz transformations between BK
spaces are continuous.

All our results are obtained from the characterization of the class (X, ):

THEOREM 2.3. ([10, Lemma 4.1]) Let X be a BK space.
(a) Then A € (X,l) if and only if
[A]I" = sup [An]" < oo where [|An[|" = sup{[An(z)[ : [l =1} (2.1)

form=0,1,....

(b) Further, if (b*)32, is a Schauder basis of X, Y and Y; are BK spaces
with Y1 a closed subspace of Y, then A € (X,Y1) if and only if A € (X,Y) and
A €Yy for all k.

Let T be a triangle, i.e. t,, = 0 for all & > n and ¢,, #0 (n = 0,1,...).
Further let B be a positive triangle. A subset X of w is called normal if x € X and
lye] < |zx] (K =0,1,...) together imply y € X, and a norm || - || on X is called
monotonous if |yx| < |zi| (k=0,1,...) for z,y € X implies ||y|| < [|z]|

THEOREM 2.4. (a) Let X be a BK space with the norm || - ||. Then Xp is a
BK space with

||z = ||T(x)|| for all z € Xp ([18, Theorem 4.3.12, p. 63]).

(b) Let X be a normal BK space with monotonous norm || - ||. We put
tn = (Bu(lylP)? for1<p<oo (n=0,1,...)
andY ={ycw:x € X}. ThenY is a BK space with ||y||ly = ||z|| for ally €Y.

The characterizations of the classes (X,Yr) and (X,Y|p)) can be reduced to
those of (X,Y).
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THEOREM 2.5. ([9, Theorem 1] and [10, Theorem 2.4]) Let X and Y be
arbitrary sets of sequences, T a triangle and B a positive triangle.

(a) Then A € (X,Yr) if and only if TA € (X,Y).

(b) For each m =0,1,..., let N,, denote a subset of the set {0,...,m}, N =
(Nm)S_y be the sequence of the sets Ny, and N be the class of all such sequences.
Further, if A is an infinite matriz, then for each sequence N € N let SN (B, A) be
the matriz defined by

Sfy]y\Z(B7A) = E bmnAn7 i.e. Sﬁk(B7A) = E bmnank (m7k:0717)
nEN,, neEN,,
Finally, let T be a normal set of sequences. Then A € (X,Yp)) if and only if
SN(B,A) € (X,Y) forall N € N.

3. Applications

3.1. Sequences that are (IV, g)-summable or bounded. Let (¢x)52, be a
positive sequence and @ the sequence with @, = >7_,¢x (n =0,1,...). Further,
let the matrix N, be defined by (Ny)nt = ¢x/Qn (0 < k < n) and (Ny)ni =0
(k > n) for all n. Then we define the sets

(N7Q)O = (CO)ﬁqv (Nv q) = cﬁq and (Nv q)OO = (lOO)Wq

of sequences that are (N, q) summable to naught, summable and bounded.

We shall write ¢ for the set of all sequences u such that uy #0 (k=0,1,...).
Foruw e U, let 1/u = (1/ur)i,-

THEOREM 3.1. (cf. [1, Theorem 2|) (a) Let X be a BK space with basis
("N, uwe U and ¥ = (1/u)b® (k= 0,1,...). Then (), is a basis of
Y =u"lxX.

(b) Let w € U be a sequence such that
luo| < |ur] <+ and |up| — o0 (n — o),

and T a triangle with t,; =1/u, (0 <k <n)andt,, =0 (k>n) for all n. Then
(co)r has AK.

We have by Theorems 2.4 and 3.1:

THEOREM 3.2. (cf. [1, Corollary 1]) Each of the sets (N,q)o, (N,q) and
(N,q)s is a BK space with

1 n
ey, = sup| 5 3 i
n k=0

If Q, — 00 (n — o0), then (N,q)o has AK, and every sequence © = (x1,)3, €

(N, q) has a unique representation

z=1le+ 3 (xp — e where l € C is such that x —le € (N, q)o.
k=0
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Let the operator At: w — w be defined by

Atz = ((AT2))iZo = (T — Tr41)20-
THEOREM 3.3. (cf. [1, Theorem 5]) Let T be a triangle such that
IT|| = sup <ki0 |tnk|> <oo and lim, .t =0 (k=0,1,...),
(co)r have AK andY = (co)r @ le. Then f € Y™ if and only if

flx) =1y, + > arzp with a € Y?, where | € C is such that
k=0

x—le € (co)r and x5 = f(e) =1 ax.
k=0

THEOREM 3.4. (cf. [1, Theorem 6]) Let At: w — w be defined by A*z =
(AtTz)p)2,. We put

Moo= (1/9) " *((Q ' xl)a+ N(Q " x1x)),
N=(1/g) "+ (@ " *l)a+r N(Q " x¢)),
Noo = (1/q) 5 ((Q " #l1)a+ N(Q " % co)).

(a) Then (N, )¢ = No, (N, 0)° =N and (N, 0)2, = N,
(b) Let Q,, — oo form — oo. Then f € (N,q)} if and only if

o0

n—1
f(x) = > apmy,  with a € Ny and || f||* = supn<z Q.
k=0

k=0

NZ_Z‘ n |anczn/qn|).

Then f € (N,q)* if and only if
f(x) =1y, + > arrr with a € N where | is such that
k=0

v —lee (N,q)o and ;= f(e) =1 - a
k=0

a

A+E] |anc2n/qn|).
qk

It follows from Theorems 2.3, 3.2 and 3.4:

n—1
and [I£* = x| +supn(z O
k=0

THEOREM 3.5. Let Q,, — 0o (n — o0) and consider the conditions

n—1
sup ('S QUA* i far)| + [Quani ] ) < o6 (3.1)

n
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(3.2) A,Q/q € c forallm (33) A.Q/q€co foralln
(3.4) JLII;O anr =0 for all k (3.5) nh_)rr;o Ank =l for allk =0
(36) lim 3 ans =0 37 lim S an =1
=00 k= n=o0 k=
Then

A€ ((N,Qo,ls) if and only if (3.1);

A€ ((N,q),l) if and only if (3.1) and (3.2);

A€ ((N,qQ)oosloo) if and only if (3.1) and (3.3);

A€ ((N,q)o,co) if and only if (3.1) and (3.4);

A€ ((N,q)o,c) if and only if (3.1) and (3.5);

A€ ((N,q),co) if and only if (3.1),(3.2),(3.4) and (3.6);

Ae((N,q),c) if and only if (3.1),(3.2),(3.5) and (3

The conditions for A € (N, q)s, (N,D)oo) etc. are obtained by replacing the entries
of A above by the entries of C = T A where t,; = pi/P, (0 <1< n) and t, =0
(I > n) for all n.

3.2. Spaces of sequences of mt? order differences. Let m be a positive
integer. We define the operators A(™), ©(m): o — w by

k
(A(l)x)k = A(l)xk =T, — Th—1, (E(l)x)k = E(l)xk = Z xj (k=0,1,...),
7=0
Al = A 5 Alm=1) 2 = v o xnlm=1 (> 2).
We shall write X (A(™)) = Xy = {z € w: Al™z € X} for X € {loo, ¢, co}.

THEOREM 3.6. ([10, Proposition 1, Theorem 1]) (a) The sets lo.(A™),
c(A™)) and co(A™) are BK spaces,

2| s = sup [(A™ )| = sup| 3= (=1)7 ()2,
k k |j=0
(b) We define the sequences b*(m) by
-1 _ m+n k N 0, (ngk—l)v
b; )(m) = < n ), and, for k >0, bsl)(m) = { (m+:::71)7 (n> k).

Then every sequence x = ()3, € co(A™) has a unique representation

T = ki_o: Me(m)OF) (m)  where  Ap(m) = (AUMz), (k=0,1,...),
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and every sequence x = (21,)3%, € c(A™) has a unique representation

=1 (m) + 3 (Ak(m) = Db (m)  where 1 = limg_ o (A ).
k=0

Given any sequence a we define the sequence R(™)(a) by
B = % aj (k=0,1,..), R™(a) = RO(R" (@) (m>2)
j=

provided the series converge. Further we write

R™(X)={zecw:R"™(z)e X} forany X C w.

THEOREM 3.7. ([10, Theorem 3, Lemma 4]) We put
ME (m) = (™) ™"+ cs) 0 R (),

MP(m) = < ) (S™)~t« cs) NR™(1y).

Then
(e(A™))T = (1o (A™))7 = ME (m),  (co(A™))7 = MY (m),
(Lo (A™))F £ (o (A™))?;
lla]l* = § IRSV| on (co(AU™))B, (e(A™)) and (1o (AT™))5.

Since obviously A, (b(=1(m)) = . (m;]>an]— and, for k > 0,

AP (m)) = 3 (m_,l“ _k)anj for all n,
3

we conclude from Theorems 3.6, 2.3 and 3.7:
THEOREM 3.8. We consider the conditions

M (loo(A™), 1) = sup [| R™ (A,) |1 < oo, (3-8)

(3.9) A, e (k™) xes (3.10) A, € nv&g(z(mw)—l % CS
(3.11)  lim A,(0®(m)) =0, k>0  (3.12) lim A,(0"(m)) =1, k>0
(3.13)  lim A,(0®(=1)) =0 (3.14)  lim A,(0"(=1)) =1_,.

n—oo
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Obvinosly (lso(AU™) 1) = («(A™), 1), and

€ (loo (AU, 1) if and only if (3.8) and (3.9);

€ (co(A™), 1) if and only if (3.8) and (3.10);

€ (co(A™), o) if and only if (3.8),(3.10) and (3.11);

€ (co(A™), ¢) if and only if (3.8),(3.10) and (3.12);

€ (c(A),co)  if and only if (3.8),(3.9),(3.11) and (3.13);
€ (e(A™) ¢) if and only if (3.8),(3.9),(3.12) and (3.14).

3.3. Spaces of sequences that are A-strongly convergent or bounded.
Let o = (pn)22, be a nondecreasing sequence of positive reals tendlng to infinity.
If (n(v ))V o is a sequence such that 0 = n(0) < n(1) < n(2) < ---, then we shall
write K ={k € Z:n(v) <k <n(v+1) -1}, and £, and max,, for the sum
and maximum taken over all k in K(*). We define the matrices B = (k)5 k=0

B = (but) ey and Au) by

1 1 -
— (O<k< - (ke K¥)
bk = { An ( ™) and by, = { An(v+1)
0

0 (k¢ K

—Hn-1 (k =n-—1)
Apk(p) =< iy (k=n) (n=0,1,...) where u_y =0
0 (otherwise).

The following sets were defined in [12]:

co(p) = ((Co)[B]) Ap)> Co(p) = ((CO)B])A(M
cp)={rew:z—lecc(n)}, &u={rew:z—leed(n}
coo() = ((lso) (B A1)+ Coo (1) = ((lso)31) A()-

THEOREM 3.9. ([8, Theorem 2(c)]) The spaces co(u), c(u) and coo(p) are BK
spaces with

el = I1BUA(L) (@)D llee = Sup< E |k — pe—1 70— 1|>

n>0 \ bn k=

co(p) has AK; every sequence x = ()72, € ¢, has a unique representation

r=1le+ Y (vp —1)e®)  where 1 € C is such that x — le € co(y).
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A sequence A = (>\ )22, of positive reals is called exponentially bounded if
there is an integer m > 2 such that for all integers v there is at least one A, in the
interval [m”, m**1). It is known (cf. [7, Lemmal]) that a nondecreasing sequence
A= (An);’fzo of positive reals is exponentially bounded if and only if the following
condition holds:

There are reals s < t in the open unit interval such that for some

(E)

subsequence (An(y41));2gs 5 < nly) Ltforallv =0,1,...
An(l/-l—l)

A subsequence (An(,41))72o of an exponentially bounded sequence A = (\,)p,
that satisfies condition (E) will be called an associated subsequence. From now
on, let A =(A,)22, always be a nondecreasing exponentially bounded sequence of
positive reals and (A,(,41))7% an associated subsequence.

THEOREM 3.10. ([8, Theorem 2]) We have co(A) = é(A), c¢(A) = é(A) and
Coo(A) = Coo(A). The norms ||z||" and

~ 1
[z]l = IB(|AA) (@)oo = SUP<7EVI>\M1C - /\k—wk_ll)
v>0 n(v+1)

are equivalent on co(A), ¢(A) and coo(A). Thus each of the spaces co(A), ¢(A) and
Coo(A) is a BK space with || - || (cf. [18, Corollary 4.2.4, p. 56).

THEOREM 3.11. ([9, Lemma2]) We put

C(A) = {a Ew: Y Ap(v1) Max,
v=0

X Qg
Lo <

3

foa all a € C(A).

> qy
ZA

k=n \k

lallecay = Z_:O An(v41) MAX,

Then (co(A))? = (c(A))7 = (o (A))? = C(A) and |lall* = [lalle(a) on C(A).

As in the previous sections, it is now easy to characterize the classes (X,Y)
where X = coo(A), ¢(A), co(A) and Y = I, ¢, co, Coo (1), c(1t), co(e). For instance,
if we put An(unanj) = HUnlnj — Un—-10An—1,j5 and

M(coo(A), coo(pt)) = sup <max< > Ak(vt1) max

m \py=0

Ea (5 )

then A € (Coo(A), coo(pt)) if and only if M (coo(A), coo(pt)) < 0o and A € (c(A), (1))
if and only if M(cs(A), Coo(pt)) < 00,

lim <H E [ AL (fon (@nk — lk))|> =0 for all &,
1 m o0
lim (— > An(ﬂn(Z Ank —lk>>‘> =0.
m— 00 Mm n=0 k=0
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