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Abstract. In this paper investigation is conducted of various essential spectra of minimal,
maximal and intermediate ordinary di�erential operators in scale of Lebesque spaces Lp(a;1),
1 � p � 1, obtained by means of relatively small perturbations of di�erential operators with
constant coe�cients of order n by di�erential operators of the same order, which generalizes the
results [1{3]. This makes it possible to prove the new analogons of the classical Weyl theorem of
invariance of essential spectrum as well as to obtain the precise formulas for calculating essential
spectra of various classes of ordinary di�erential operators in Lebesque spaces Lp. In contemporary
mathematical literature a few assertions are known as Weyl's theorem (see, for example, survey
[4]). The classical Weyl theorem states that if A and B are self-adjoint and A � B is compact
then �e(A) = �e(B), where �e is the essential spectrum of an operator. Generalization of Weyl
theorem on various essential spectra for closed operators in Banach spaces and special classes of
perturbations is dealt with in papers [5{7].

Let T be a closed linear operator densely de�ned on a complex Banach space.
Essential spectra of an operator T could be de�ned as complements in a complex
planeC of sets de�ned by various Fredholm properties of family of operators T��I :

�ek(T ) := C n�k(T ); k = 1; 2; 3; 4; 5;

�+e2(T ) := C n�+(T ) and ��e2(T ) := C n��(T );

where �1(T ) := f� 2 C : R(T � �I) = R(T � �I)g, �+(T ) := f� 2 �1(T ) :
nul(T ��I) <1g, ��(T ) := f� 2 �1(T ) : def(T ��I) <1g, �2(T ) := �+(T )[
��(T ) = s � �(T ), �3(T ) := �+(T ) \ ��(T ) = �(T ), �4(T ) := f� 2 �3(T ) :
ind(T � �I) = 0g, �5(T ) := f� 2 �4(T ) : a deleted neighbourhood of� lies in the
resolvent set �(T )g.

Each of the sets �ek(T ); k = 1; 5, �+e2(T ) and ��e2(T ) has been re�ered to as
the essential spectrum of T accoding to (1) Goldberg, (2) Kato, (2+) Wolf, (2�)
Gustafson-Weidmann, (3) Fredholm, (4) Weyl or Schechter, (5) Browder. It is clear
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that �ek(T ) � �el(T ) for k � l and �e2(T ) � ��e2(T ) � �e3(T ), where the inclusion
might be proper. The essential spectra �ek(T ); k = 1; 2; 2�; 3; 4; 5; can be described
by other equivalent means [8{11].

The basis of the theory of the essential spectrum �e1 for ordinary di�erential
operators in Lp spaces is due to Rota [12]. Balslev and Gamelin [13] investigated
the Fredholm essential spectrum �e3 of ordinary di�erential operators in spaces
Lp; 1 < p < 1, and generalization of these results for �e1 in Lp, 1 � p � 1, is
dealt with in Goldberg's monograph [14].

Let us consider a formal di�erential expression

� :=
nX

k=0

ak(t)D
k; a � t <1; �1 < a <1; (1)

where ak(t) are complex valued functions such that ak(t) 2 Ck[a;1), an(t) 6= 0,
1=an; ak 2 L1(a;1), 0 � k � n, and D := d=dt. Denote by T (�; p; [a;1)) a
maximal operator corresponding to (�; p; [a;1)) which is de�ned on Lp(a;1) as
follows:

D[T (�; p; [a;1))] := ff : f (n�1) 2 ACloc[a;1); f; �f 2 Lp(a;1)g;

where ACloc[a;1) is the set of complex valued functions f , absolutely continuous
on each compact subinterval from [a;1) and

T (�; p; [a;1))f := �f for f 2 D[T (�; p; [a;1))]:

We denote by T0(�; p; [a;1)) a minimal operator de�ned on Lp(a;1) for 1 � p <
1 as closure of restriction of the maximal operator T (�; p; [a;1)) on the set of
functions from D[T (�; p; [a;1))], having compact support in (a;1), and for 1 <
p � 1 de�ned by a Banach conjugate T 0(��; p0; [a;1)), where �� is the formally
conjugated di�erential operation ��g :=

Pn

k=0(�1)
kDk(akg), and 1=p + 1=p0 = 1

if 1 < p < 1; p0 = 1 if p = 1; p0 = 1 if p = 1. Various properties of essential
spectra of minimal and maximal ordinary di�erential operators are investigated in
[15{17].

Theorem 1. Let S(�; p; [a;1));�1 < a < 1, be a closed linear di�eren-
tial operator in Lp(a;1); 1 � p � 1, which is an extension of minimal opera-
tor T0(�; p; [a;1)) and a restriction of maximal operator T (�; p; [a;1)) generated
by di�erential operation � (1) with smooth coe�cients ak(t), 1=an 2 L1(a;1),
0 � k � n,

T0(�; p; [a;1)) � S(�; p; [a;1)) � T (�; p; [a;1)):

Then for any b 2 (a;1) and �ve versions of essential spectra of di�erential opera-
tors S(�; p; [a;1)) and S(�; p; [b;1)) the following equalities hold:

�ek [S(�; p; [a;1))] = �ek [S(�; p; [b;1))]; k = 1; 2; 2�; 3: (2)

For Weyl essential spectrum �e4 of minimal and maximal di�erential operators
the following equalities hold:

�e4[T0(�; p; [a;1))] = �e4[T0(�; p; [b;1))];

�e4[T (�; p; [a;1))] = �e4[T (�; p; [b;1))]:
(3)
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Proof. We will consider some key points of the proof. To check the for-
mulas (2) it su�ces to consider an equality for Fredholm essential spectrum �e3
as essential spectra �ek; k = 1; 2; 3, and ��e2 coincide for minimal T0(�; p; [a;1))
and maximal T (�; p; [a;1)) operators [15]. The operator T0b(�; p; [a;1)) for
which D[T0b(�; p; [a;1))] := ff : f (n�1) 2 ACloc[a;1); f (j)(a) = f (j)(b) = 0,
j = 0; n� 1; f; �f 2 Lp(a;1)g and T0b(�; p; [a;1)) := �f , in the direct sum of
Banach spaces Lp(a;1) = Lp(a; b) � Lp(b;1) can be written as a decomposition
T0b(�; p; [a;1)) = T0(�; p; [a; b]) � T0(�; p; [b;1)). This presentation implies the
equality for Fredholm essential spectra

�e3[T0b(�; p; [a;1))] = �e3[T0(�; p; [a; b])] [ �e3[T0(�; p; [b;1))]: (4)

Since �e3[T0(�; p; [a; b])] = ; and minimal operator T0(�; p; [a;1)) is an n-
dimensional extension of the operator T0b(�; p; [a;1)), the equality (4) implies
�e3[T0(�; p; [a;1))] = �e3[T0(�; p; [b;1))].

To prove the equality (3) we will introduce an additional operatorAb(�; p; [a; b])
de�ned on Lp(a; b) for which D[Ab(�; p; [a; b])] := ff : f (n�1) 2 ACloc[a; b];
f (j)(b) = 0; j = 0; n� 1g and Ab(�; p; [a; b])f := �f . We de�ne in the direct sum
of Banach spaces Lp(a;1) = Lp(a; b) � Lp(b;1) an operator Tb(�; p; [a;1)) :=
Ab(�; p; [a; b]) � T0(�; p; [b;1)). The identical operator I is Ab-compact since the
bounded inverse A�1b is compact and from �(Ab) 6= ; we have �e4[Ab(�; p; [a; b])] =
;. Therefore the following equality holds

�e4[Tb(�; p; [a;1))] = �e4[T0(�; p; [b;1))]: (5)

We would like to note that the operator Tb(�; p; [a;1)) is an n-dimensional ex-
tension of the operator T0b(�; p; [a;1)). On the other hand, the minimal operator
T0(�; p; [a;1)) is an n-dimentional extension of the operator T0b(�; p; [a;1)) and
hence ind[Tb(�; p; [a;1))� �I ] = ind[T0(�; p; [a;1))� �I ]. Therefore, the correla-
tion (5) implies the equality (3) for Weyl essential spectrum of minimal operators.
The theorem is proved.

We denote by B(�; p; [a;1)) (respectively B0(�; p; [a;1))) for �1 < a < 1
a maximal (minimal) di�erential operator generated in Lp(a;1); 1 � p < 1, by
the formal di�erential operation

� :=
n�1X
k=0

bk(t)D
k ; a � t <1; (6)

where complex valued functions bk 2 Ck[a;1); 0 � k � n � 1, and by
T (� + �; p; [a;1)) (respectively T0(� + �; p; [a;1))) a maximal (minimal) opera-
tor generated in Lp(a;1); �1 < a < 1; 1 � p < 1, by the formal di�erential
operation � + �, where � and � is de�ned by the formulas (1) and (6). The opera-
tors B(�; p; [a;1)), B0(�; p; [a;1)) and T (� + �; p; [a;1)), T0(� + �; p; [a;1)) are
de�ned likewise the maximal and minimal di�erential operator generated by the
operation � .
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Theorem 2. The maximal di�erential operator B(�; p; [a;1)) (the minimal
di�erential operator B0(�; p; [a;1))) generated by � (6) in Lp(a;1) is
T (�; p; [a;1))-bounded (respectively T0(�; p; [a;1))-bounded) for the di�erential op-
eration � (1), �1 < a <1 and 1 � p <1 if bk 2 Lp

loc(a;1) and

sup
m�s<1

Z s+1

s

jbk(t)j
pdt! 0 as m!1; 0 � k � n� 1: (7)

In case of fairly large a 2 (0;1) for maximal and minimal di�erential operators
considered the following equalities hold

T (� + �; p; [a;1)) = T (�; p; [a;1)) +B(�; p; [a;1)); (8)

T0(� + �; p; [a;1)) = T0(�; p; [a;1)) +B0(�; p; [a;1)); (9)

and a relative bound of di�erential operators B(�; p; [a;1)) and B0(�; p; [a;1)) is
strictly less than unity.

Proof. Denote for simplicity T (� + �) := T (� + �; p; [a;1)), T (�) :=
T (�; p; [a;1)) and B(�) := B(�; p; [a;1)). We will prove the equality (8) for maxi-
mal operators. It su�ces to check the equality for domains D[T (� +�)] = D[T (�)].
The condition (7) of the theorem implies that 8" > 0 there is a number a 2 (0;1)
such that Z s+1

s

jbk(t)j
p dt < "p for [s; s+ 1] � [a;1); 0 � k � n� 1: (10)

The estimates (10) for coe�cients of the perturbating di�erential operation � (6)
imply the relative boundedness of the operator B(�) in comparison with T (�).

For functions f 2 Wn
p (a;1) := ff : f (n�1) 2 ACloc[a;1), f (i) 2 Lp[a;1),

0 � i � ng, 1 � p <1, and 0 � k � n� 1 the following inequlity holds

kbkf
(k)kpp � C

�
kf (k+1)kpp + kf (k)kpp

�
sup

s2[a;1)

Z s+1

s

jbk(t)j
p dt; (11)

where k � kp is the norm in Lp(a;1) [17].

Under conditions on coe�cients ak(t) of the di�erential operation � (1) there
exists a constant K, which depends on p; n, the length of an interval I as well as
the maximum of the numbers k1=ank1;I and kakk1;I ; 0 � k � n� 1, such that for
f 2 D[T (�; p; I)] the following inequality holds [14]

kf (k)kpp;I � K
�
k�fkpp;I + kfkpp;I

�
; 0 � k � n; 1 � p <1: (12)

Due to the estimate (12) the inequalities (10) and (11) immediately imply that
there are a constant M and " = "(a) > 0 such that for functions f 2 D[T (�)] and
1 � p <1 the following inequality holds

k�fkp �
n�1X
k=0

kbkf
(k)kp � "M

�
k�fkp + kfkp

�
: (13)
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If f 2 D[T (�)] then by de�nition �f 2 Lp(a;1), therefore the inequality
(13) implies �f 2 Lp(a;1) whence f 2 D[T (� + �)]. Thus we have proved the
inclusion D[T (�)] � D[T (� + �)]. Now we are going to prove the inverse inclusion
D[T (� + �)] � D[T (�)]. Let f 2 D[T (� + �)]; then (� + �)f 2 Lp(a;1) and
f (k); 0 � k � n� 1, are continuous functions on each compact interval J � [a;1)
of length not less than 1, therefore �f 2 Lp(J), hence �f = (� + �)f � �f 2 Lp(J).
The inequality k�fkp;J � k(� + �)fkp;J + k�fkp;J and the inequality (13), which
also holds for the norm k �kp;J in space Lp(J), imply the estimate (for 0 < "M < 1)

k�fkp;J �
"M

1� "M

�
k(� + �)fkp + kfkp

�
: (14)

Since this inequality holds for any subinterval J � [a;1) we have �f 2 Lp(a;1),
hence �f = (� + �)f � �f 2 Lp(a;1), i.e. f 2 D[T (�)], therefore D[T (� + �)] =
D[T (�)], whence the equality (8). The equality (9) can be proved like the similar
assertion of theorem 1 of paper [17]. The theorem is proved.

Using theorem 2 and theorem on essential spectra of maximal and minimal
ordinary di�erential operators with constant coe�cients [16] one can �nd precise
formulas for essential spectra of di�erential operators with almost constant coe�-
cients, i.e. di�erential operators with variable coe�cients tending to constant ones
at in�nity.

Let us consider a formal di�erential operation of the type

� := � + � =
nX

k=0

akD
k +

n�1X
k=0

bk(t)D
k; a � t <1; (15)

where ak are complex numbers, � is a di�erential operation of type (1) with constant
coe�cients and bk(t) are complex valued functions such that bk 2 Ck(a;1); k =
0; n.

Theorem 3. Let the coe�cients bk(t); 0 � k � n � 1 in the di�erential
operation � (15) satisfy the integral conditions (7). Then for essential spectra of
minimal T0(�; p; [a;1)), maximal T (�; p; [a;1)) operators generated by � (15) in
Lp(a;1); �1 < a < 1; 1 � p < 1, and for the closed di�erential operator
S(�; p; [a;1)), which is an extension of minimal and a restriction of maximal op-
erators, as well as for similar operators de�ned by the di�erential operations � (1)
with constant coe�cients and � (6), the following equalities hold, which are the
generalizations of Weyl theorem:

�ek[S(�; p; [a;1))] = �ek [S(�; p; [a;1)) + S(�; p; [a;1))] = �ek [S(�; p; [a;1))];

k = 1; 2; 2�; 3,

�ek [T0(�; p; [a;1))] = �ek [T0(�; p; [a;1)) + T0(�; p; [a;1))] = �ek [T0(�; p; [a;1))];

k = 4; 5,

�ek [T (�; p; [a;1))] = �ek [T (�; p; [a;1)) + T (�; p; [a;1))] = �ek [T (�; p; [a;1))];

k = 4; 5.
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Proof. Denote by T (�) := T (�; p; [a;1)), T0(�) := T0(�; p; [a;1)) and by
T (� + �); T (�); B(�) (respectively T0(� + �); T0(�); B0(�)) the maximal (minimal)
operators de�ned while proving theorem 2.

Note that the inequality (12) for norms of derivatives also holds for a di�erential
operation � � �; � 2 C. Therefore for functions f 2 D[T (�)] = D[T (� + �)] in
corresponding Lebesque spaces Lp(a;1); 1 � p <1, the inequalities (13) and (14)
imply that there exists such a 2 (0;1) and, due to the conditions (7) on coe�cients
bk, such fairly small " = "(a); 0 < " < 1, for which the following inequalities hold

k�fkp � "
�
k(� � �)fkp + kfkp

�
;

k�fkp � "
�
k(� + � � �)fkp + kfkp

�
:

These estimates as well as the following equalities for maximal operators T (� +
�) � �I = (T (�) � �I) + B(�) (see formula (8)) and T (�) � �I = (T (�) + B(�) �
�I) � B(�) = (T (� + �) � �I) � B(�) imply that the operator T (� + �) � �I can
be considered as a relatively small perturbation of the operator T (�)��I and vice
versa. Hence applying the theorem of stability of the index of closed semi-Fredholm
operators [11] we have � 2 �+(T (�)) if and only if � 2 �+(T (�) + B(�)) and for
indices the following equality holds ind(T (�) � �I) = ind(T (�) + B(�) � �I) =
ind(T (�+�)��I). Therefore for essential spectra of the maximal operator T (�+�)
the following equalities hold

�ek [T (� + �)] = �ek[T (�)]; k = 1; 4; ��e2[T (� + �)] = ��e2[T (�)]: (16)

Arguing in the same way, using the equality (9) for the minimal operators T0(�)
and B0(�), one can show that for essential spectra of the minimal operator T0(�+�)
the corresponding equalities hold

�ek [T0(� + �)] = �ek [T0(�)]; k = 1; 4; ��e2[T0(� + �)] = ��e2[T0(�)]: (17)

The theorem is proved.

Corollary 1. Essential spectra of di�erential operators generated by the
operation � (15) and de�ned in theorem 3 can be calculated by the formulas:

�ek [S(�; p; [a;1))] = ��e2[S(�; p; [a;1))] = fP (�) : Re� = 0g; k = 1; 3; (18)

�ek [T0(�; p; [a;1))] = �[T0(�; p; [a;1))] = fP (�) : Re� � 0g; k = 4; 5; (19)

�ek [T (�; p; [a;1))] = �[T (�; p; [a;1))] = fP (�) : Re� � 0g; k = 4; 5; (20)

where P is a polynomial corresponding the di�erential operation with constant co-
e�cients � (1)

P (t) :=

nX
k=0

akt
k:

Proof. In theorem 2 of paper [16] the precise formulas for �nding all essen-
tial spectra of maximal and minimal di�erential operators with constant coe�-
cients were obtained. Therefore the equalities (16), (17) and theorem 3 imply the
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corresponding assertions in case of formal di�erential operation � = � = � (15)
for essential spectra �ek ; k = 1; 5, and ��e2 of minimal T0(�) and maximal T (�)
perturbated di�erential operators in Lebesque spaces Lp(a;1) and correspond-
ing a 2 (0;1). The remaining equalities for intermediate di�erential operators
S(�; p; [a;1)) follow from theorem 1 of paper [15]. Finally the formulas (18){
(20) of all essential spectra of considered di�erential operators in Lebesque spaces
Lp(a;1); 1 � p <1, for any a 2 (�1;1) follow from theorem 1. The corollary
is proved.

Let us consider a di�erential operation � of more general type, namely, as a
perturbation of � by a di�erential operation of the same order n, i.e.

� :=

nX
k=0

(ak + bk(t))D
k; a � t <1; (21)

where ak are complex numbers and complex valued functions of real argument
bk 2 Ck(a;1), for k = 0; n.

Corollary 2. Let for coe�cients of the di�erential operation � (21) the
following conditions hold bn; 1=(an + bn) 2 L1(a;1) and coe�cients bk(t); 0 �
k � n, satisfy conditions of tending to 0 at in�nity (7). Then for the minimal
T0(�; p; [a;1)), maximal T (�; p; [a;1)) and intermediate S(�; p; [a;1)) di�erential
operators generated in Lp(a;1); �1 < a < 1; 1 � p < 1, by the di�erential
operation � (21) the following generalizations of the classical Weyl theorem hold:

�ek [S(�; p; [a;1))] = �ek [S(�; p; [a;1))]; k = 1; 2; 2�; 3;

�ek [T0(�; p; [a;1))] = �ek [T0(�; p; [a;1))]; k = 4; 5;

�ek [T (�; p; [a;1))] = �ek [T (�; p; [a;1))]; k = 4; 5:

Besides, for di�erential operators de�ned by the operations � (21) the formulas for
essential spectra (18){(20) hold.

Proof. Since theorem 2 holds for the di�erential operation � (1) with variable
coe�cients, considering the conditions on the coe�cients bk(t); 0 � k � n, (7) it
su�ces to investigate the particular case of the di�erential operation � (21) with
the coe�cients bk(t) = 0; 0 � k � n� 1, the operation of the type

� := � + bn(t)D
n = (an + bn(t))D

n +

n�1X
k=0

akD
k: (22)

In other words to prove the assertion of the theorem for di�erential operators with
� (22) and then to consider the general di�erential operation � (21) as a relatively
small perturbation of the di�erential operation (22). To do so it su�ces to present
the di�erential operation � (22) in the form

�� � =
�
1 +

bn(t)

an

�
(� � �) �

n�1X
k=0

bn(t)

an
akD

k +
bn(t)

an
�:
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Corollary 3. For essential spectra of minimal T0(�;1; [a;1)), maximal
T (�;1; [a;1)) and intermediate S(�;1; [a;1)) di�erential operators generated
by the formal di�erential operation � (21) in space L1(a;1); �1 < a < 1,
with coe�cients satisfying the conditions of corollary 2 and with their derivatives
satisfying

sup
m�s<1

Z s+1

s

jb
(i)
k (t)jpdt! 0 as m!1; 0 � i � k; 0 � k � n;

the formulas (18){(20) hold for di�erential operators in case p =1.

To prove this assertion it su�ces to apply corollary 2 to di�erential operators
generated in space L1(a;1) by the formal conjugated di�erential operation

(�)�f :=

nX
k=0

(�1)kDk
�
(ak + bk(t))f

�
;

and then using the formulas of duality (see, for instance, [14,15]) proceed to di�er-
ential operators de�ned by the operation � (21) in space L1(a;1).

Theorem 3 and corollary 1,2,3 generalize the results of [13,14] for Fredholm
and Goldberg essential spectra of maximal operators in space Lp(0;1) as well as
the results of [10,18] for various essential spectra of ordinary di�erential operators
in Hilbert space. We would like to note books [19,20] on localization of essential
spectrum of ordinary self-adjoint di�erential operators with variable coe�cients.

In conclusion I wish to thank Professors K.Gustafson, W.D.Evans, V.Rako�cevi�c
who acquainted me with their papers on the theory of essential spectra of linear
operators.
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