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QUASIHYPONORMAL OPERATORS AND THE CONTINUITY
OF THE APPROXIMATE POINT SPECTRUM

Slavisa V. Dordevié

Abstract. Let H be a separable Hilbert space. We write o(A) for the spectrum of A €
B(H), 04(A) and o.,(A) for the approximate point and the essential approximate point spectrum
of A. Operator A € B(H) is quasihyponormal if |A* Az|| < ||A%z]| for all z € H.

In this paper we show that the approximate point spectrum o, and the essential approximate
point spectrum o., are continuous in the set of all quasihyponormal operators.

1. Introduction

Let H be a complex infinite-dimensional separable Hilbert space and let B(H)
(K(H)) denote the Banach algebra of all bounded operators (the ideal of all com-
pact operators) on H. If A € B(H), then o(A) denotes the spectrum of A and
p(A) denotes the resolvent set of A. It is well-known that the following sets are
semigroups of operators on H:

&, (H)={A € B(H): R(A) is closed and dim N (A) < oo}
®_(H)={Ae€ B(H):R(A) is closed and dim H/R(A) < oo}.
The semigroup of semi-Fredholm operators is ®(H) = ¢, (H)UP_(H). If A is

semi-Fredholm and a(A) = dim A(A4) and B(A) = dim H/R(A), then we define an
index by i(A) = a(A) — B(A). We also consider set

&L(H) = {A € &, (H) : i(4) <0}
For A € B(H), the following definitions are well-known:

o.(A)={reC: Hme | [(A — X)z| =0} — the approximate point spectrum,
z€H , ||z||=1

ow(A)={AeC:A- ¢ Dy(H)} — the Weyl spectrum ,

0ea(A)={A€C:A—-X¢ ® (H)} — the essential approximate point spectrum

oaw(A) =N{o,(A+K): AK = KA K € K(H)} — the Browder essential
approximate point spectrum
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Let mpo(A) be the set of all A € C such that A is an isolated point of o(A)
and 0 < dim N (A — \) < 00, let mo(A) be the set of all normal eigenvalues of A,
that is the set of all isolated points of o(A) for which the corresponding spectral
projection has finite-dimensional range. We say that A obeys Weyl’s theorem [3],
7, it

O'u,(A) = O'(A) \71'00(14) .

If (7,,) is a sequence of compact subsets of C, then its limit inferior is
liminf 7,, = {\ € C: there are \,, € 7, with A, — A}
and its limit superior is
limsup 7, = {\ € C: there are \,,, € 7,, with \,,, — \}.

If liminf 7,, = limsup 7,,, then lim 7, is defined by this common limit. A mapping
p, defined on B(H), whose values are compact subsets of C, is said to be upper
(lower) semi-continuous at A, provided that if 4, — A then limsup p(A4,) C p(A)
(p(A) C liminf p(A,)). If p is both upper and lower semi-continuous at A, then it
is said to be continuous at A and in this case lim p(A,) = p(A).

We say that A € B(H) is quasihyponormal provided that ||A* Az| < ||A%z]| for
all z € H. In this paper we show that the essential approximate point spectrum, the
Browder essential approximate point spectrum and the approximate point spectrum
are continuous functions in the set of all quasihyponormal operators.

2. General results

We say that A € B(H) is quasihyponormal provided that ||A*Az| < || A%z||
for all z € H. In [6], V. A. Erovenko showed that the spectrum is a continuous
function in the set of all quasihyponormal operators. In this paper we show that
the essential approximate point spectrum, the Browder essential approximate point
spectrum and the approximate point spectrum are continuous functions in the set
of all quasihyponormal operators.

THEOREM 2.1. If A% are quasihyponormal operators in B(H) and A, — A,
then lim, o 0ea(An) = 0ea(A).

Proof. Since 0., is upper semi-continuous [4, Theorem 2.1], we have to show
that o..(A) C liminf o.,(A,). Suppose that o., is not lower semi-continuous at
A. Then exists € > 0 and A € 0.,(A) such that X\ ¢ (0cq(4,))e for every n € N
such that n > ng. Hence, for n > ny we have that A\ € 0.,(A4,). By [9] we have
that A, —A € ® (H),ie. i(4,—A) <0and a(4, — ) < oco.

Now we consider two cases:

Case L: Let A # 0 and let n € N such that n > ng. If x € N(4} — X), then
A¥x = Az and since A} is quasihypinormal operator we have that

1, 1 \
l4nzll = | An (5 An2)ll = S llAndpa]l <

(A45)%]| < [\l -
RY
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This fact implies that ((4, — Nz, (A, — \)z) <0, s0 x € N(A, — \). It proves
that

BAn =) = a(A, = A)" < a(dn =)

Then by z(An A) > 0and A, — A € ®(H) we have
Si —Aw

ie. (A, —)\) >
= ince A, — A we have that i(A — \) = 0, ie.

that i(A, — \)
BA=A) =ald-X) <

Hence, we have that a(A—)\) <ooandi(A—-X) <0,ie. A- € @ (H) =
A€ 0cq(A). This is a contradiction.
Case II: Let A = 0 and let n € N such that n > ng. If z € N((A%)?), then

0=[(4)°2)]| > [[Andrzl| >0 = A4z =0

O.O

and now
(Arx, Al x) = (z, A, AL x) = (2,0) =0

ie. © € N(A%). Hence a(A%) =1 and a(A%) < oo, by [1, p. 57] we have that
BlAn) = a(4,) < B(4;) = a4,),
i.e. i(A4, —A) > 0 and the proof continuous as previous case. m

THEOREM 2.2. If A%, A* are quasihyponormal operators in B(H) and A, —
A, then lim,, .o 04p(An) = oap(A4).

Proof. Suppose that A € 0,(A) \ 0ea(A). Then A — X € & (H) and 0 <
al(A—=X) <oo[9]. If A #0, since A* is quasihyponormal, by the proof of Theorem
2.1 we get that a((4 — A\)*) < a(A — \) < co. If A = 0, then by the proof
of Theorem 2.1. we get again a(A*) < a(4) = B(4*) < oo. Anyway, we get
a((A—X)*") <a(A—A) < oco. Obviously, i(A —X) = a(4 — )\) a((A=XN)*) >
Since A — X\ € ®, (H), we get that 0 = i(A —\) =i((A—\)*), s0 A ¢ aw( .1
is well-known that quasihyponormal operators obey the Weyl’s theorem [3], [7], s
X € moo(A*) and A is an isolated point of o(A). Now, X is isolated in ¢,(A) and by
[9] we get that A ¢ o,,(A). Hence, 0.0(A) = 04p(A4).

Now we have that
ap(A) = 0eq(A) Climinfo.,(Ay) Climinf o44(Ay) .

Since 04 is always upper semi-continuous we have that lim,,_ . 0.4(A,) =
Gab(A). |

THEOREM 2.3. If A%, A* are quasihyponormal operators in B(H) and A, —
A, then lim,,_ o, 0,(A,) = 0,(4).

Proof. Since o, is upper semi-continuous [2], we have to show that
0q.(A) Climinf o, (4,).
Let A\p be in 0,(A4). If \g € 0ea(A), then by Theorem 2.1. we have that
Ao € 0eq(A) Climinf e, (A,) Climinf o, (A,) .
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Suppose that A\g € 0,(A)\ 0cq(A). Now we have that Ag is an isolated point of
o(A) and by [8, Theorem IV 3.16] we have that Ay € liminf o(A, ). There exists a
sequence A, € o(A,) such that A, — A. If \,, € 0(A4,,) \ 0.(A4,), then we have that
a(A,—A,) = 0. Since A} are quasihyponormal and 3(A, —A,)* = a(4A,—A,) < o0
by the proof of Theorem 2.1. we have that

B(An —Ap) =a(An — An)" < B(An — X)) =a(A, — ) =0.

Then by conditions a(A, — A,) = B(A, — A,) = 0 and R(A, — A,) is closed
follows that A, ¢ o(A,). This is a contradiction and we get that A,, € 0,(A,) and
A € liminfo,(A4,). =
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