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PROPAGATION OF SINGULARITIES AND RELATED PROBLEMS

OF SOLIDIFICATION

V. G. Danilov and G. A. Omel'yanov

Abstract. We discuss some methods for computing the dynamics and interaction of sin-
gularities in nonlinear media. We also consider a physical problem (of solidi�cation in a binary
alloy), which has some discontinuous limit solutions.

1. Problems of propagation and interaction of singularities

One of the most interesting application of the theory of generalized functions
is the problem of propagation and interaction of singularities. Nonsmooth solutions
of nonlinear equations are very important from the physical viewpoint, since they
describe such actual phenomena as shock waves, typhoons, hurricanes, tsunami
waves, and so on. There are at least three di�erent approaches to these problems.

The �rst approach is to consider the quasilinear hyperbolic equation (or the
system of equations)

@u

@t
+

@

@x
f(u) = 0; u

���
t=0

= u0(x); (1)

with nonsmooth initial data. It is assumed that there exists a solution such that the
nonlinearity in (1) is de�ned in some sense. A similar problem for linear equations
was considered by Courant, Ludwig, Maslov, and Babich [1{4]. At present, it is well
known that in the linear case the singularities propagate along the characteristics.
In the nonlinear case, we do not have such a general description, since the trajecto-
ries of singularities depend on the solution (and on the type of the singularities). For
example, for the shock wave problem (u0(x) = u0�(x) for x <  0 and u

0(x) = u0+(x)

for x >  0, where  0 = const and [u0]
��
x= 0

= u0+( 0 + 0)� u0�( 0 � 0) < 0), the

solution of the Hopf equation (f(u) = u2=2) has the form

u(x; t) = u�(x; t) for x <  (t);

u(x; t) = u+(x; t) for x >  (t);
(2)
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and the trajectory x =  (t) of the jump satis�es the Hugoniot condition

_ =
1

2
[u2]

��
x= 

�
[u]
��
x= 

: (3)

So, the problem is to �nd the trajectory of the singularity for su�ciently general
equations. At present, there exist some methods for calculating the dynamics of
singularities. The most suitable method was developed by Maslov [5,6]. The main
idea of this method is to represent the solution (from a suitable subalgebra) in the
form of an asymptotic expansion with respect to smoothness. For example, for the
solution (2) in a neighborhood of the trajectory x =  (t), we have

u(x; t) = u0�(t) + (x �  )u1�(t) + � � �+ �(x�  )v0(t) + (x�  )+v
1(t) + � � � ; (4)

where ui� = (i!)�1@iu(x; t)=@xi
��
x= 

, �(�) is the Heaviside function, �+ = � for � >

0, �+ = 0 for � < 0, and vi = (i!)�1@i
�
u+(x; t) � u�(x; t)

��
@xi

��
x= 

. Substituting

(4) into equation (1), we obtain a chain of necessary conditions for the existence
of a solution of the form (4). These so-called Hugoniot-type conditions ((3) is the
�rst of them) allow us to calculate the dynamics of the singularity. This scheme
has been successfully used for solving the shock wave problem (the gas dynamics
system) [5,7] and the typhoon problem (the shallow water system) [8], however this
scheme is not general. So, to consider an arbitrary singularity (for example, the
so-called "�-singularity: u0(x) is smooth for x 6=  0 and u

��
t=0

= u0( 0)+A0 at the

point x =  0), we have to take the second approach. Namely, we need to consider
equation (1) completed by a regularized initial value:

@

@t
u" +

@

@x
f(u") = 0; u"

���
t=0

= u0(x; "); (5)

where u0(x; ") tends to u0(x) as "! 0 in some sense.

This approach is related to the construction of algebras of generalized func-
tions developed by Ivanov, Colombeau, Egorov, Marti, Pilipovi�c, and others [9{14].
If u"(x; t) is an element of the algebra, one can calculate f(u"), substitute u" and
f(u") into equation (5), pass to the limit as " ! 0, and thus, obtain a chain of
necessary conditions similar to (4). This scheme was developed by Biagioni, Ober-
guggenberger, Danilov and Shelkovich, and others [14{17]. In particular, in [15],
both the trajectory of a "�-singularity and the interaction of such singularities were
calculated for general quasilinear hyperbolic equations of the �rst order. However,
if we use this scheme, we have to take into account the following considerations.

Let u0 be a shock wave and let u0" be a regularization of u0. Then, after some
necessary calculations, we obtain the same Hugoniot condition (3) independently of
the choice of the regularization u0" [19]. At the same time, let u0 be an "�-singularity
and let '(x=")=" be a family of �-type functions, where

R1
�1 '(�) d� = 1. Then the

regularization of the initial value has the form

u"

���
t=0

= u0(x) +A0'
�
(x�  0)="

�
; (6)
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where u0 = w�lim"!0 u
0
"(x; "). The asymptotic solution of (1), (6) has the following

self-similar form

u = u0(x; t) +A(t)'
�
(x�  (t))="

�
+O(");

where u0 is the smooth solution of the Hopf equation with the initial value u0. After
some necessary calculations, we readily obtain the �rst Hugoniot-type condition

_ = u0( ; t) +
1

2
A(t)

Z 1

�1
'2(�) d�: (7)

It is easy to see that the trajectory of the "�-singularity depends on the choice of
u0(x; "). In other words, the result depends on the choice of the algebra, and we
arrive at the question: what algebra do we have to choose?

To answer this question, let us recall that the quasilinear hyperbolic equations
give only the simplest model, whereas more realistic models of actual phenomena
include some additional terms. Assuming that these terms are small in some sense,
we obtain the equation

@

@t
u" +

@

@x
f(u") = L"

�
"
@

@x

�
u; u"

���
t=0

= u0(x; "); (8)

where the term on the right-hand side corresponds to the phenomenon considered.
For example, for phenomena in media with small viscosity, L"("@=@x) = "@2=@x2

and (8) is the Burgers equation. If we consider waves on a surface, then

L"("@=@x) = "2@3=@x3 (9)

and (8) is the KdV equation with small dispersion. Finally, if we consider interior
waves in a liquid, then

L"("@=@x) = F�1�!xa("�)Fx!� (10)

(F is the Fourier transform, a(�) = � coth � � 1), and (8) is the so-called Whitham
equation [18].

So, we can understand problem (8) in two ways: on the one hand, (8) is a
more or less realistic model for the actual phenomenon. On the other hand, (8)
is a regularization for problem (1). Problem (8) provides the third approach to
the consideration of propagation of singularities: we look for a smooth solution of
the regularized problem and then pass to the limit as " ! 0. This approach was
developed by Hopf, Oleinik, Kruzhkov, Lax, Maslov and Omel'yanov, and others
[19{21].

At the same time, from the viewpoint of the problem of singularity propa-
gation, we do not need an arbitrary solution of (8), but we have to construct a
solution whose property of being self-similar is preserved in time: lim"!0 u"(x; t)
has the same singularity as u0(x). This means that we need to have some special
initial value. In general, we do not know beforehand how to choose such an ini-
tial value. Thus, we arrive at a nonstandard problem of obtaining a solution of
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equation (8) such that it satis�es some prescribed limiting properties. The value
of this solution at the initial instant of time gives the initial value both for (8) and
for (5). In general, it is impossible to �nd the explicit solution of such problem,
however, it is possible to construct an asymptotic solution. A suitable method has
been developed by Maslov and Omel'yanov [20]. In particular, constructing the
asymptotic solution, we obtain

u = u0(x; t) +A(t) cosh�2(��) +O("); � = (x�  )="; � =
p
A=12; (11)

_ = u0( ; t) +A(t)=3; A(t) + 2u0( ; t) = const; (12)

for the solitons of the KdV equation [20] and

u = u0(x; t) +A(t)fcosh2(��) + �(t) sinh2(��)g�1 +O("); (13)

_ = u0( ; t) + 1� � coth �; ln(�= sin �)� � coth � + u0( ; t) = 0; (14)

� = tan(�=2); A = 2��; � = �=2;

for the solitons of the Whitham equation [22]. The justi�cation of the asymptotic
solutions [21,22] allows us to pass to the limit as "! 0 and to describe the propa-
gation of "�-singularities for the Hopf equation (1). One can easily see that, for the
same limit equation (1), di�erent ways of regularization ((9) and (10)) give di�erent
forms of the regularization of the solution and of the initial data ((11) and (13)),
as well as di�erent trajectories of propagation of this singularity ((12) and (14)).

The method [20] for constructing an asymptotic solution with localized \fast"
variation allows us to calculate the propagation of singularities. However, the
problem of interaction is more complicated. In fact, only the �rst steps in this
direction have been taken [20] (see also [23] about similar problems). At the same
time, by using algebraic constructions, it is relatively simple (for the approach (5))
to calculate the interaction of singularities [15].

So, returning to the question about the regularization of the initial data in (5)
and considering the application of the algebraic construction, one can suggest the
following method. By choosing the physical meaning of the constructed solution,
we determine the way of regularization of the equation. Then, constructing a
self-similar asymptotic solution, we �nd the method of regularization of the initial
data and the trajectories of propagation of the corresponding singularities. Finally,
using an appropriate algebraic construction, we can calculate the interaction of the
singularities.

2. Problems of solidi�cation

Now let us consider a preliminary model of form other than (8)

@

@t
(� + ') = ��; x 2 
; t > 0; (15)

@'

@t
+�("2�'+ '� '3 + "��) = 0:
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This model describes the problem of �rst-kind phase transitions in a binary alloy
[24]. Here 
 � Rn, n � 3, is a bounded domain with smooth boundary, � is
the normalized temperature, the so-called function of order ' characterizes the
concentration in the binary alloy, the values ' = +1 and ' = �1 correspond to the
pure phases, whereas the value ' = 0 corresponds to the uniform mixture, � > 0 is
a constant, and " is a small parameter. Equations (15) are completed by natural
initial and boundary conditions. The main purpose is to describe the evolution of
the alloy from small perturbations of the state of a uniform mixture to the �nal
state of separate phases.

Using the Whitham method, one can construct an asymptotic almost periodic
solution of system (15)

' = �0(S(x; t)="; x; t) +O("); � = �0(x; t) +O(") (16)

that describes the evolution of the system from the state ' = 0, j'j � 1 to the
state ' = O(1), j'j = O(1). Here �0 is the smooth solution of the heat equation

@�0
@t

= ��0 +
@

@t
�0;

the bar denotes the weak limit as "! 0,

�0(�; x; t) =
 � �� sn2(�� j m)

1� �sn2(�� j m)
; � =

p
(� � �)(� � )

2
p
2jrSj ; (17)

m = (� � )(�� �)
�
(� � �)(� � );

and � <  < � < � are the roots (depending on the parameters c = c(x; t) and
E = E(x; t)) of the equation �z4 + 2z2 � 4cz = 4E. The phase S of oscillations
and the additional functions c and E satisfy the model equations

@S

@t
= f1 div(f2rS); @c

@t
+ f3

@E

@t
= f4�c; jrSj = f5; (18)

where the coe�cients fj depend on c and E. An analysis of formulas (17), (18)
shows that this process is unstable and the oscillation amplitude A = �� and the
energy E increase very fast. At the critical instant of time t�1 such that �� � ! 0
as t ! t�, the oscillation solution (16) transforms (at the corresponding point x)
into the soliton type solution [25]

' = '0(x; t) + �(��) +O("); � = �0(x; t) +O("): (19)

Here � = (t�  (x))=",

�(�; x) = �8Q2fexp(�) + 8b exp(��) + 8�'0g�1; � = Q=jr j;
�'0 = '0(x;  (x)); Q =

q
3 �'20 � 1; b = 1� �'20;

and �0 and '0 2 (1=
p
3; 1) are solutions of the equations

@'0
@t

= �('30 � '0);
@�0
@t

= ��0 � @'0
@t

; (20)

completed by natural initial and boundary conditions.
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The function  describes the front �t = fx;  (x) = tg of the solitary wave �
and satis�es the geometric problem

V� =
1

3
K(1 +G) +G

@

@�
ln �'0;  

���
�0

= 0; (21)

where V� = 1=jr j is the normal velocity of �t, K = div � is the mean curvature of

�t, � = r =jr j, @=@� = h�;ri, G = IQ2=2(Q� I), and I =
p
2 �'0 lnf(

p
2 �'0 +

Q)=
p
bg.
The self-similar asymptotic solution (19) was constructed (by the method de-

veloped in [26]) and justi�ed in [25]. It is also proved that problems (20) and (21)
are well posed and solution (19) is stable, that is, this solution exists during the
time T independent of ". However, the mean value j'j = j'0j also increases and
the second process of bifurcation starts at a critical time t�2 such that j'0j ! 1 as
t! t�2. During this time interval, the soliton-type solution (19) transforms into the
tanh-type solution [27]

' = tanh(��) +O("); � = �0(x) +O("); (22)

where �0 is a function harmonic in 
, � = 1=
p
2jr j, � = (t �  (x))=", and the

function  describes the free boundary �t = fx;  (x) = tg between the domains

�t occupied by \pure" phases (that is ' = �1 in 
�t ). The function  (x) and
auxiliary functions ��1 are the solution of the Mullins{Sekerka problem

���1 = 0; x 2 
�t ; t > 0; (23)

[��1 ]
���
�t

= 0;
h@��1
@�

i���
�t

= V� ; K = 3p
2
��1

���
�t

;  
���
�0

= 0:

The asymptotic solution (22) is also stable and justi�ed [27]. So, asymptotic
solutions (16), (19), and (22) describe three di�erent stages of solidi�cation in a
binary alloy. An analysis of formulas (17){(19) provides a formal description of the
bifurcations from one state to another. However, the problem of explicit description
of these bifurcations is open at present.

At the same time, from the limit viewpoint as "! 0, the constructed solutions
are singular: solution (22) corresponds to a shock wave, (19) corresponds to the
"�-type of singularities, and (17) can be treated in terms of an oscillating wave
front. In turn, the model problems (18), and (20), (21), and (23) are Hugoniot-type
conditions for these singularities. One can conjecture that such singular solutions
can be derived by algebraic methods for the limiting equations corresponding to
(15). It also looks reasonable that these methods may be fruitful for the description
of interactions and bifurcations.
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