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SOME ESTIMATES OF THE REMAINDER IN THE EXPRESSIONS

FOR THE EIGENVALUE ASYMPTOTICS OF SOME SINGULAR

INTEGRAL OPERATORS

Milutin Dostani�c

Abstract. Some estimates are given for the remainder in the expressions for eigenvalue
asymptotics of operators of the type of Riesz' potential and logarithmic potential. As a corollary
an estimate is obtained of the spectral asymptotics of an operator playing a role in the thin
airplane wing theory. The method is elementary and it is based on the properties of the singular
values of compact operators.

0. Introduction and notation

The general method of Birman and Solomyak [1] gives the �rst term of the
convolution operator's singular values asymptotics if the operator kernels satisfy
some conditions. In the general case there is not any known method to determine
higher terms of the asymptotics, or at least an estimate of the remainder in the
known asymptotic formulas. But in some special cases, it is still possible thanks to
the special kernel structure (see [5]).

In this paper some estimates of the remainder in asymptotic formulas for con-
volution operator's eigenvalues, where the kernels of the operator are jx � yj��1

and ln jx� yj, are obtained using elementary methods.

Let H be a separable Hilbert space over C and let A be a compact operator.
The singular values of the operator A (sn(A)) are the eigenvalues of the operator
(A�A)1=2 (or (AA�)1=2).

Denote by �n(A) eigenvalues of A in the order of decreasing absolute values,
taking into account their multiplicity.

By
R b
a m(x; y) � dy we denote the integral operator on L2(a; b) with the kernel

m(x; y).

The operator A is a Hilbert-Schmidt one if
P

n>1 s
2
n(A) < +1.
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A Hilbert-Schmidt operator A =
R b
a
m(x; y) � dy satis�es the following equalityP

n>1 s
2
n(A) =

RR jm(x; y)j2 dx dy.

1. Results

Theorem 1. Let �0 =
5�p17

4
.

a) If 0 < � 6 �0, then

�n

�Z 1

�1

jx� yj��1 � dy
�
= 2�(�)

�
2

n�

��
cos

��

2

�
1 +O(n��)

�
;

where � =
1� 2�

3
.

b) If �0 6 � < 1, then

�n

�Z 1

�1

jx� yj��1 � dy
�
= 2�(�)

�
2

n�

��
cos

��

2

�
1 +O(n��)

�
;

where � =
3�� 2�2

2 + 5�� 2�2
.

Theorem 2. �n

�Z 1

�1

� 1

�
ln jx� yj � dy

�
=

2

n�

 
1 +O

 p
lnn

n1=5

!!
.

Consider the operator

Hf(x) =
1

�

Z 1

�1

f 0(t)

x� t
dt;

whose domain consists of the functions f satisfying the following conditions:
f 0 2 L1(�1; 1), Hf 2 L2(�1; 1), f(�1) = f(1) = 0 [3] (the integral is taken in
the sense of principal value). This operator plays an important role in the theory
of thin airplane wing.

In [4] M. Kac heuristically deduced the formula

�n(H) =
�n

2
(1 + o(1)):

In [3] H. M. Hogan and L. A. Sahnovi�c gave a strong proof of this asymptotic for-
mula. Applying Theorem 2 we give an estimate of the remainder in the asymptotic
formula for �n(H).

Theorem 3. The following asymptotic formula holds:

�n(H) =
�n

2

�
1 +O(n�1=11)

�
:
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Remark 1. Since the function

� 7!
(

1�2�
3 ; 0 < � 6 �0;

3��2�2

2+5��2�2 ; �0 6 � < 1;

attains its minimum when � = �0, Theorem 1 implies a more rough but uni�ed
estimate for 0 < � < 1, i.e.

�n

�Z 1

�1

jx� yj��1 � dy
�
= 2�(�)

�
2

n�

��
cos

��

2

 
1 +O(n

2�0�1
3 )

!
:

Remark 2. Part b) in Theorem 1 holds in the case 0 < � < 1 but in the
interval (0; �0) the better estimate is given by a). That is the reason why these two
cases are separated.

2. Proofs

To prove the previous Theorems we need some Lemmas.

Lemma 1. If A and B are compact operators on a Hilbert space H such that

sn(A) = a � n�� +O(n��); a > 0; � < � < �+ 1;

sn(B) = O(n��1); �1 >
�

�+ 1� �
;

(1)

then sn(A+B) = a � n�� +O(n��).

Proof. Observe that from the assumptions of Lemma 1 it follows �1 > �.

For n 2 N let k = k(n) =
�
n
1�

�
�1
� � 1, m = m(n) =

�
n

�
�1
�
([x] denotes the

greatest integer not exceeding x). Then n = (k + 1)m + j, where j = j(n) is a

nonnegative integer and j(n) 6 n
�
�1 +n

1�
�
�1 . From the properties of singular values

of the sum of two operators [2] it follows s(k+1)m+j(A+B) 6 skm+j(A)+ sm+1(B)
and hence

n�
�
sn(A+B)� a

n�

�
6

n�
�
skm+j(A)� a

(km+ j)�

�
+n�

�
a

(km+ j)�
� a

((k + 1)m+ j)�

�
+n�sm+1(B):

(2)

The assumptions (1) and the properties of the sequences k(n), m(n) and j(n)
give

limn�
�
skm+j(A)� a

(km+ j)�

�
< +1;

limn�sm+1(B) < +1;

(3)
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and since �1 >
�

�+1�� , we obtain limn�
�

1
(km+j)� � 1

((k+1)m+j)�

�
< +1. Com-

bining (2) and (3) we get lim n�
�
sn(A+B)� a

n�

�
< +1. Since s(k+1)m+j(A) =

s(k+1)m+j(A + B � B) 6 s(k+1)m+j(A + B) + sm+1(B), i.e. skm+j(A + B) >
s(k+1)m+j(A) � sm+1(B).

In the similar way we conclude limn�
�
sn(A+B)� a

n�

�
> �1, and so

sn(A+B) = an�� +O(n��).

Remark 3. The proof of the following statement is carried out in the same
way.

(a) If A and B are compact operators such that

sn(A) = an�� +O(n��L(n)); sn(B) = O(n��1L(n))

and if L is a slowly varying function, L(x)! +1 when x! +1, � < � < �+ 1,
�1 > �=(�+ 1� �), then

sn(A+B) = an�� +O(n��L(n)):

(b) From Lemma 1 it follows: If A and B are compact operators such that

sn(A) = an��; a > 0; sn(B) = O(n��1); �1 > �;

then sn(A+B) = an�� +O
�
n
�

�1
1+�1

(1+�)�
.

Lemma 2. Let T =
R 1
0 (x+ y)��1 � dy. If � > 0, then

sn(T ) = o(n�1=2) (= O(n�1=2)): (4)

If 0 < � < 1, then

sn(T ) = O
�
n
����( 3

2
��)�

: (5)

(Observe that for small (large) values of � a better estimate is given by (4)
((5)), respectively.)

Proof. From
R 1
0

R 1
0 (x + y)2��2 dx dy < +1 (� > 0) it follows that T is a

Hilbert-Schmidt operator and we have

sn(T ) = o(n�1=2) = O(n�1=2):

Let us now prove the asymptotic relation (5). Let � > 0 be a �xed number
(� < 1). First, we prove

sn

�Z �

0

(x+ y)��1 � dy
�
6 C1

��

n�
(0 < � < 1); (6)

where the constant C1 does not depend on n and �.
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Let J� : L2(0; �)! L2(0; �) be the fractional integral operator de�ned by

J�f(x) =
1

�(x)

Z x

0

(x � y)��1f(y) dy

and let the operator C : L2(0; �)! L2(0; �) be de�ned by

Cf(x) =

Z x

0

(x+ y)��1f(y) dy:

According to the formula for fractional partial integration [6] we get

Cf(x) =

Z x

0

(J�f)(y)

�
� 1

�(1� �)

d

dy

Z x

y

(t� y)��(x+ t)��1 dt

�
dy;

i.e.

C = � 1

�(1� �)
MJ�; (7)

where M : L2(0; �)! L2(0; �) is a linear operator de�ned by

Mf(x) =

Z x

0

H(x; y)f(y) dy and H(x; y) =
d

dy

Z x

y

(x+ t)��1(t� y)�� dt:

The function H can be represented in the form (for y > x)

H(x; y) = �(2x)��1(x� y)�� + (�� 1)y�1�

�
x

y

�
;

where �(s) =
R s
1 (r � 1)��(r + s)��2 dr, s > 1.

Now, we prove that the integral operator with the kernel H(x; y)�(x � y) is
bounded on L2(0;+1). (�(x) = 0 for x < 0, �(x) = 1 for x > 0). Since the function
H(x; y)�(x � y) is homogenous of order �1, according to the Hardy-Littlewood-
Polya inequality [6] it is enough to prove that k =

R1
0

x�1=2j�(x� 1)H(x; 1)j dx <
+1, i.e.

k =

Z 1

1

x�1=2j � (2x)��1(x � 1)�� + (�� 1)�(x)j dx < +1:

Since 0 < � < 1, from asymptotic behavior of the function � when x! 1 and
x! +1 it follows that the previous integral converges. Therefore, we have

kMk 6 k: (8)

Having in mind that sn(J
�) 6 const � ��=n� (const. does not depend on n and �),

from (7) and (8) and from the properties of singular values of the sum of two
operators it follows s2n(C) 6 const � ��=n�, i.e. sn(C) 6 const � ��=n� (const. does
not depend on n and �). From

s2n

�Z �

0

(x+ y)��1 � dy
�
= s2n(C + C�) 6 2sn(C) 6 2 const

��

n�

we obtain the estimate (6).
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Now, we prove that if the operator D� : L
2(�; 1)! L2(0; 1) is de�ned by

D�f(x) =

Z 1

�

(x+ y)��1f(y) dy;

then the following estimate

sn(D�) 6 C2
���1

n3=2
(9)

holds (C2 does not depend on n and �).

Let L0 = f f 2 L2(�; 1) :
R 1
�
f(t) dt = 0 g and let Q : L2(�; 1) ! L0 be the

orthoprojector. Consider the operator A0 = D�Q : L2(�; 1) ! L2(0; 1). Since the
range of D� �A0 = D�(I �Q) is one (I is the unit operator), we have [2]

sn�1(A0) 6 sn(D�) 6 sn+1(A0): (10)

As in [2] we prove that A0 = D0
�J

0, where D0
�, J

0 : L2(�; 1) ! L2(0; 1) are the
operators de�ned by

D0
�f(x) = (1� �)

Z 1

�

(x+ y)��2f(y) dy; J 0f(x) =

Z x

�

f(t) dt:

Since D0
� is a Hilbert-Schmidt operator we have

ns2n(D
0
�) 6 (1� �)2

Z 1

0

dx

Z 1

�

(x+ y)2��4 dy;

and hence sn(D
0
�) 6 const ���1=

p
n (const. does not depend on n and �). Using

(10) and

s2n(A0) 6 sn(D
0
�) � sn(J 0) 6 const

���1

n3=2

(const. does not depend on n and �) we obtain (9).

Let P� : L
2(0; 1)! L2(0; 1) be the orthoprojector de�ned by

P�f(x) = �
[0;�]

(x)f(x)

(by �S we denote the characteristic function of the set S). Then

T = T (I � P�) + (I � P�)TP� + P�TP�

and we have s3n(T ) 6 sn(T (I � P�)) + sn((I � P�)TP�) + sn(P�TP�). Combining
this with (6) and (9) we obtain

s3n(T ) 6 2C2
���1

n3=2
+ C1

��

n�

(C1, C2 do not depend on n and �). This inequality holds for each � 2 (0; 1).

Substituting � = n
��

3
2 we get

s3n(T ) 6 (2C2 + C1)n
����(

3
2��)

and therefore sn(T ) = O
�
n
����(

3
2��)

�
.
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Lemma 3. sn

�Z 1

0

ln(x+ y) � dy
�
= O

 p
lnn

n3=2

!
.

Proof. Let V : L2(0; 1)! L2(0; 1) denote the operator de�ned by

V f(x) =

Z 1

0

ln(x+ y)f(y) dy:

The operator V can be expressed in the form

V = V (I � P�) + (I � P�)V P� + P�V P� : (11)

In the similar way as for the estimates (6) and (9) we get

sn(P�V P�) 6 C3
�

n
; sn(V (I � P�)) 6 C4

p� ln �

n3=2
(12)

(C3, C4 do not depend on n and �).

From (11) and (12) and the properties of singular values of the sum of two
operators we obtain

s3n(V ) 6 2C4

p� ln �

n3=2
+ C3

�

n
:

This inequality holds for each � 2 (0; 1). If we put � =
p
(lnn)=n, then we have

s3n(V ) 6 C5(
p
lnn)=n3=2 (where the constant C5 does not depend on n) and

therefore

sn(V ) = O

 p
lnn

n3=2

!
:

Proof of Theorem 1. Let k(x) = jxj��1 (0 < � < 1) and let

A(x; y) =
1X

n=�1

(k(x � y + 4n)� k(x+ y + 4n+ 2)): (13)

By direct calculation it can be proved thatZ 1

�1

A(x; y)'n(y) dy = k̂
�n�

2

�
'n(x); 'n(x) = sin

n�(1 + x)

2
; n = 1; 2; . . . ;

where k̂(�) =
R1
�1

eit� jtj��1 dt = 2�(�) cos ��
2 j�j�� and f'ng1n=1 is an orthonormal

base of L2(�1; 1).
Let A1, A2, A3, A4 be integral operators acting on L2(�1; 1) with kernels

Ax;y; k(x� y � 4) +
X
n6=0
n6=�1

(k(x � y + 4n)� k(x+ y + 4n+ 2));

�k(x+ y + 2) and � k(x+ y � 2);
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respectively. Then we haveZ 1

�1

jx� yj��1 � dy = A1 �A2 �A3 �A4: (14)

From (13) it follows

sn(A1) = 2�(�)

�
2

n�

��
cos

��

2
: (15)

Let 0 < � < 1=2. According to Lemma 2 (relation (4)) we have sn(A3) = O(n�1=2),
sn(A4) = O(n�1=2). Since the kernel of the operator A2 is a smooth function on
[�1; 1]2, using the properties of singular values of the sum of two operaors [2] we
obtain sn(A2 + A3 + A4) = O(n�1=2). From this equality, (14), (15) and from
Remark 3(b) it follows

sn

�Z 1

�1

jx� yj��1 � dy
�
= 2�(�)

�
2

n�

��
cos

��

2

 
1 +O(n

2��1
3 )

!
:

Since the operator
R 1
�1
jx � yj��1 � dy (0 < � < 1) is positive, for 0 < � < 1=2 we

obtain

�n

�Z 1

�1

jx� yj��1 � dy
�
= 2�(�)

�
2

n�

��
cos

��

2

 
1 +O(n

2��1
3 )

!
: (16)

Suppose now 0 < � < 1. According to Lemma 2 (relation (5)) we have

sn(A3 +A4) = O(n
����(

3
2��)) and therefore, using the same line of arguments as

before, we have

sn(A2 +A3 +A4) = O

 
n
����(

3
2��)

!
:

From (14), (15) and Remark 3(b) it follows

�n

�Z 1

�1

jx� yj��1 � dy
�
= 2�(�)

�
2

n�

��
cos

��

2

�
1 +O(n��)

�
; (17)

where � =
3�� 2�2

2 + 5�� 2�2
.

Observe that for 0 < � 6 �0 (�0 6 � < 1) the better estimate is given by (16)
((17)), respectively.

Proof of Theorem 2. If G1(t) =
1
�K0(jtj) (K0 is Mc-Donald's function) thenZ 1

�1

G1(t)e
i�t dt = (1 + �2)�1=2:

It is well known that the function K0 decreases exponentially and

K0(x) = (� lnx)A(x) +B(x); (18)

where A and B are even entire functions and A(0) = 1.
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Let

R(x; y) =

1X
n=�1

(G1(x� y + 4n)�G1(x+ y + 4n+ 2)):

By direct calculation we obtainZ 1

�1

R(x; y)'n(y) dy = Ĝ1

�n�
2

�
'n(x) =

�
1 +

n2�2

4

��1=2

'n(x)

('n(x) = sin n�(1+x)
2 , n 2 N), which implies that

R 1
�1

R(x; y) � dy is positive. Using
(18) and

�
1 + n2�2

4

��1=2

= 2
n� (1 + O(

p
lnn=n3=2)) and applying technique from

Theorem 1, taking into account Remark 3(a) we obtain

�n

�Z 1

�1

� 1

�
ln jx�yj � dy

�
= sn

�Z 1

�1

� 1

�
ln jx�yj � dy

�
=

2

n�

 
1 +O

 p
lnn

n1=5

!!
:

Proof of Theorem 3. It is well known [3] that the operator B = H�1 is positive

and has the form Bf(x) =
R 1
�1

b(x; t)f(t) dt, where

b(x; t) = � 1

�
ln jx� tj+ 1

�
ln j1� tx+

p
(1� t2)(1� x2)j:

By the method from Lemma 2 and the paper [3] we get

sn

�Z 1

�1

1

�
ln j1� tx+

p
(1� t2)(1� x2)j � dt

�
= O(n�6=5):

From Theorem 2 it follows

sn

�Z 1

�1

� 1

�
ln jx� tj � dt

�
=

2

n�

�
1 +O(n�1=11)

�
:

Applying Lemma 1 (Remark 3(a)) from the previous relation and (19) it follows

sn(B) =
2

n�

�
1 +O(n�1=11)

�
, i.e.

�n(H) =
�n

2

�
1 +O(n�1=11)

�
:
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