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APPLICATION OF INTERPOLATION THEORY TO THE ANALYSIS

OF THE CONVERGENCE RATE FOR FINITE DIFFERENCE

SCHEMES OF PARABOLIC TYPE

Dejan Bojovi�c and Bo�sko S. Jovanovi�c

Abstract. In this paper we show how the theory of interpolation of function spaces can be
used to establish convergence rate estimates for �nite di�erence schemes. As a model problem
we consider THE �rst initial-boundary value problem for the heat equation with variable coe�-
cients. We assume that the solution of the problem and the coe�cients of the equation belong
to the corresponding Sobolev spaces. Using interpolation theory we construct a fractional-order
convergence rate estimate which is consistent with the smoothness of the data.

1. Introduction

For a class of �nite di�erence schemes for parabolic initial-boundary value
problems, the estimate of the convergence rate consistent with the smoothness of
the data, are of major interest, i.e.

ku� vk
W

r;r=2
2

(Qh� )
� C(h+

p
� )s�rkuk

W
s;s=2
2

(Q)
; s � r: (1)

Here u = u(x; t) denotes the solution of the original initial-boundary value prob-
lem, v denotes the solution of the corresponding �nite di�erence scheme, h and �

are discretisation parameters,W
s;s=2
2 (Q) denotes a Sobolev space, W

s;s=2
2 (Qh� ) de-

notes the discrete Sobolev space, and C is a positive generic constant, independent
of h; � and u. For problems with variable coe�cients the constant C depends on
the norms of the coe�cients.

A standard technique for the derivation of such estimates is based on the
Bramble{Hilbert lemma [2]. In this paper we expose an alternative technique,
based on the theory of interpolation of Banach spaces.
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2. Interpolation of Banach spaces

Let A1 and A2 be two Banach spaces, linearly and continuosly imbedded in a
topological linear space A. Two such spaces are called interpolation pair fA1; A2g
(see [11]). Consider also the space A1 \ A2, with the norm

kakA1\A2
= maxfkakA1

; kakA2
g ;

and the space A1 +A2 = fa 2 A : a = a1 + a2; ai 2 Ai; i = 1; 2g, with the norm

kakA1+A2
= inf

a=a1+a2
ai2Ai

fka1kA1
+ ka2kA2

g:

Obviously, A1 \ A2 � Ai � A1 +A2, i = 1; 2.

Let us introduce category C1 whose objects A;B;C; . . . are Banach spaces, and
morphisms|bounded linear operators L 2 L(A;B). Let, also, C2 be a category
whose objects are interpolation pairs fA1; A2g, fB1; B2g; . . . while morphisms are
L 2 L(fA1; A2g; fB1; B2g). Here L(fA1; A2g, fB1; B2g) denotes the set of bounded
linear operators from A1+A2 into B1+B2, whose restrictions on Ai belong to the
set L(Ai; Bi), i = 1; 2.

A functor F : C2 ! C1 is called an interpolation functor if

A1 \ A2 � F(fA1; A2g) � A1 +A2

for every interpolation pair fA1; A2g, while for every morphism L 2 L(fA1; A2g,
fB1; B2g), F(L) is the restriction of the operator L on F(fA1; A2g).

The corresponding Banach space A = F(fA1; A2g) is called interpolation
space.

Note that A1 \ A2 and A1 +A2 are interpolation spaces.

If the inequality

kLkF(fA1;A2g)!F(fB1;B2g) � CkLk1��A1!B1
kLk�A2!B2

;

where 0 < � < 1 and C = const � 1, is satis�ed for every morphism L of category
C2 the interpolation functor is said to be of the type �. (Here kLkAi!Bi denotes
the standard operator norm of L:Ai ! Bi, i = 1; 2).

One of the most often used interpolation methods is so called K-method [9,11].
Let fA1; A2g be an interpolation pair. De�ne the functional

K(t; a) = K(t; a; A1; A2) = inf
a2A1+A2

a=a1+a2
ai2Ai

fka1kA1
+ tka2kA2

g

It is obvious, that for a �xed t 2 (0;1), K(t; a) is a norm in A1 + A2, equivalent
to the standard norm kakA1+A2

. For 0 < � < 1, 1 � q <1, let us de�ne the space
(A1; A2)�;q as follows:

(A1; A2)�;q =

8<
:a 2 A1 +A2 : kak(A1;A2)�;q =

�Z 1

0

�
t��K(t; a)

�q dt
t

� 1
q
<1

9=
; ;
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and for q =1

(A1; A2)�;1 =

�
a 2 A1 +A2 : kak(A1;A2)�;1 = sup

0<t<1
t��K(t; a) <1

�
:

The space (A1; A2)�;q de�ned in such a way is an interpolation space. The
following relations hold:

(A1; A2)�;q = (A2; A1)1��;q ;

(A;A)�;q = A ;

kak(A1;A2)�;q � C�;qkak1��A1
kak�A2

; 8a 2 A1 \ A2:

The corresponding interpolation functor F(fA1; A2g) = (A1; A2)�;q is of the type
�, i.e.

kLk(A1;A2)�;q!(B1;B2)�;q � kLk1��A1!B1
kLk�A2!B2

:

An analogous assertion holds true for bilinear operators:

Lemma 1. Let A1 � A2, B1 � B2 and C1 � C2 and let L:A2 � B2 ! C2 be
a continuous bilinear form whose restriction on A1 � B1 is a continuous mapping
with values in C1. Than L is a continuous mapping from (A1; A2)�;p � (B1; B2)�;q
into (C1; C2)�;r, 0 < � < 1, 1

r =
1
p +

1
q � 1 � 0, and

kLk(A1;A2)�;p�(B1;B2)�;q!(C1;C2)�;r � kLk1��A1�B1!C1
kLk�A2�B2!C2 :

As an example of interpolation spaces, let us consider the Sobolev spaces W s
p

[1]. For noninteger positive s one sets

W s
p (R

n ) = Bs
p;p(R

n );

where Bs
pp is a Besov space [11].

For 0 � s1; s2 <1, s1 6= s2, 0 < � < 1, 1 � q <1 we have [11]:�
W s1

p (Rn );W s2
p (Rn )

�
�;q

= Bs
p;q(R

n ) ; s = (1� �)s1 + �s2:

In such a way, for q = p and noninteger s = (1� �)s1 + �s2, we obtain�
W s1

p (Rn );W s2
p (Rn )

�
�;p

=W s
p (R

n ) ; s = (1� �)s1 + �s2 :

For p = 2 this relation holds without restrictions, i.e.:

(W s1
2 (Rn );W s2

2 (Rn ))�;2 =W s
2 (R

n ) for all s 2 (s1; s2):

Hence,W s
2 (R

n ) are interpolation spaces. The same result holds for the Sobolev
spaces in a domain 
 with su�ciently smooth boundary.

Let us de�ne anisotropic Sobolev spaces W
s;s=2
2 (Q), Q = 
� I , I = (0; T ), as

follows [4]:

W
s;s=2
2 (Q) = L2(I;W

s
2 (
)) \W

s=2
2 (I; L2(
));
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with the norm

kfk
W

s;s=2
2

(Q)
=

 Z T

0

kf(t)k2W s
2
(
)dt+ kfk2

W
s=2
2

(I;L2(
))

! 1
2

:

These spaces are interpolation spaces, too. For s1; s2; r1; r2 � 0, 0 < � < 1, we
have [7,11]

(W s1;r1
2 (Q);W s2;r2

2 (Q))�;2 =W
s;r
2 (Q) ; s = (1� �)s1 + �s2; r = (1� �)r1 + �r2:

3. Initial-boundary value problem and its aproximation

Let us consider, as a model problem, the �rst initial-boundary value problem
for a parabolic equation with variable coe�cient in the rectangular domain Q =

� (0; T ] = (0; 1)� (0; T ]:

@u

@t
� @

@x
(a
@u

@x
) = f ; (x; t) 2 Q ;

u = 0 ; (x; t) 2 @
� [0; T ] ; (2)

u(x; 0) = u0(x) ; x 2 
 ;

We assume that the generalized solution of problem (2) belongs to the Sobolev

space W
s;s=2
2 (Q), 2 � s � 4, with right-hand side f(x; t) which belongs to

W
s�2;s=2�1
2 (Q). Consequently, the coe�cient a = a(x) belongs to the space

of multipliers M
�
W

s�1;(s�1)=2
2 (Q)

�
, i.e. it is su�cient that a belongs to the space

W s�1
2 (
) [8].

Let ! be a uniform mesh in 
 = (0; 1) with the step size h, �! = ! [ f0; 1g =
! [ . Let �� be a uniform mesh in (0; T ) with step size � , �+� = �� [ fTg,
��� = �� [ f0; Tg. We de�ne the following uniform mesh in Q: Qh� = ! � �� ,
Q+
h� = ! � �+� and Qh� = �! � ��� . We assume that the condition:

k1h
2 � � � k2h

2 ; k1; k2 = const > 0

is satis�ed. We de�ne �nite di�erences in the usual manner:

vx =
v+ � v

h
= v+�x ; vx�x =

v+ � 2v + v�

h2
; where v�(x; t) = v(x � h; t) ;

vt(x; t) =
v(x; t+ �) � v(x; t)

�
= v�t(x; t+ �):

We also de�ne the Steklov smoothing operators:

T+
x f(x; t) =

Z 1

0

f(x+ hx0; t) dx0 = T�x f(x+ h; t) ;

T 2
x f(x; t) = T+

x T�x f(x; t) =

Z 1

�1

(1� jx0j)f(x+ hx0; t) dx0 ;

T+
t f(x; t) =

Z 1

0

f(x; t+ �t0) dt0 = T�t f(x; t+ �) :
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These operators commute with derivatives and transform derivatives into di�er-
ences:

T 2
x

�
D2
xf(x; t)

�
= D2

x

�
T 2
x f(x; t)

�
= fx�x(x; t) ;

T�t (Dtf(x; t)) = Dt

�
T�t f(x; t)

�
= f�t(x; t) ; etc.

We approximate problem (2) with the following �nite{di�erence scheme:

v�t + Lhv = T 2
x T

�
t f ; in Q+

h� ;

v = 0 ; on  � ��� ; (3)

v = u0 ; on ! � f0g ;
where

Lhv = �1

2
((avx)�x + (av�x)x) :

The �nite-di�erence scheme (3) is the the standard symmetric scheme with the
averaged right-hand side. Note that for s � 3:5 the right-hand side may be discon-
tinuous function, so without averaging the scheme is not well de�ned.

4. Convergence of the �nite-di�erence scheme

Let u be the solution of the initial-boundary value problem (2) and v|the
solution of the �nite di�erence scheme (3). The error z = u � v satis�es the
conditions

z�t + Lhz = � + ' ; in Q+
h� ;

z = 0 ; on ! � f0g ; (4)

z = 0 ; on  � ��� ;

where

� = T 2
x T

�
t (Dx(aDxu))� 1

2
((aux)�x + (au�x)x) and ' = u�t � T 2

x u�t :

We de�ne the discrete inner products

(v; w)! = (v; w)L2(!) = h
X
x2!

v(�; t)w(�; t) ;

where v(�; t) = v(x; t); (x; t) 2 ! � ftg; t 2 �+� {�xed,

(v; w)Qh�
= (v; w)L2(Qh� ) = h�

X
x2!

X
t2�+�

v(x; t)w(x; t) = �
X
t2�+�

(v; w)! ;

and the discrete Sobolev norms

kvk2! = (v; v)! ; kvk2Qh�
= (v; v)Qh�

;

kvk2
W 2;1

2
(Qh� )

= kvk2Qh�
+ kvxk2Qh�

+ kvx�xk2Qh�
+ kv�tk2Qh�

:
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The following assertion holds true:

Lemma 2. Finite-di�erence scheme (4) satis�es a priori estimate

kzkW 2;1
2

(Qh� )
� k�kQh�

+ k'kQh�
: (5)

In such a way, the problem of deriving a convergence rate estimate for the
�nite-di�erence scheme (3) is now reduced to estimating the right-hand side terms
in (5).

Let us derive an estimate (1) for s = r = 2. We decompose � in the following
manner:

� = T 2
x T

�
t (Dx(aDx))� 1

2
((au�x)x + (aux)�x)

= T 2
x (aT

�
t D

2
xu) + T 2

x (DxaT
�
t Dxu)� aux�x � 1

2
(a�xu

�
x + axu

+
�x ) =

4X
k=1

�k

where:

�1 = T 2
x (aT

�
t D

2
xu) ; �2 = T 2

x (DxaT
�
t Dxu) ;

�3 = �aux�x ; �4 = �1

2
(a�xu

�
x + axu

+
�x ) :

The value �1 in the node (�; t) 2 ! � ftg can be represented in the form

�1(�; t) = 1

h

Z x+h

x�h

�
1� j� � xj

h

�
a(�)T�t

@2u(�; t)

@x2
d� :

Applying the Cauchy-Schwartz inequality we obtain

j�1(�; t)j � C

h1=2

 Z x+h

x�h

����a(�)T�t @2u(�; t)

@x2

����
2

d�

! 1
2

:

From here, summing over the mesh !, we obtain:

k�1(�; t)k! � CkakC(
)kT�t u(�; t)kW 2
2
(
) :

Using the imbedding W 1
2 (
) � C(
) we have

k�1(�; t)k! � CkakW 1
2
(
)kT�t u(�; t)kW 2

2
(
) :

Summation over the mesh �+� yields:

k�1kQh�
� CkakW 1

2
(
)kukW 2;1

2
(Q) :

Analogous estimates hold true also for other terms �k and for term '. In such
a way we obtain the estimates:

k�kQh�
� CkakW 1

2
(
)kukW 2;1

2
(Q) ; and (6)

k'kQh�
� CkukW 2;1

2
(Q) : (7)

From (5), (6) and (7) we obtain estimate (1) for s = r = 2.



Application of interpolation theory . . . 105

Let us derive estimate (1) for s = 4, r = 2. We decompose term � in the

following manner: � =
P11

k=5 �k, where

�5 = T 2
x (aT

�
t D

2
xu)� (T 2

x a)(T
2
x T

�
t D

2
xu) ;

�6 = (T 2
x a� a)(T 2

x T
�
t D

2
xu) ;

�7 = a(T 2
x T

�
t D

2
xu� ux�x) ;

�8 = T 2
x (DxaT

�
t Dxu)� (T 2

x Dxa)(T
2
x T

�
t Dxu) ;

�9 = (T 2
x Dxa� 0:5(ax + a�x))(T

2
x T

�
t Dxu) ;

�10 = 0:5(ax + a�x)(T
2
x T

�
t Dxu� 0:5(u�x + u+�x )) ;

�11 = 0:25(ax � a�x)(u
�
x � u+�x ) :

The value of �5 in the node (�; t) 2 ! � ftg can be represented in the form

�5(�; t) = 1

h2

Z x+h

x�h

Z x+h

x�h

Z �

�

Z �

�

�
1� j� � xj

h

��
1� j� � xj

h

�
�

� a0(�)T�t
@3u(�1; t)

@x3
d�1d�d�d� :

From here, using the Cauchy-Schwartz inequality we obtain

j�5(�; t)j � Ch3=2kakW 1
1
(
)kT�t u(�; t)kW 3

2
(x�h;x+h) :

Summation over the mesh ! yields:

k�5(�; t)k! � Ch2kakW 1
1
(
)kT�t u(�; t)kW 3

2
(
) :

Using the imbedding W 3
2 (
) �W 1

1(
) we obtain

k�5(�; t)k! � Ch2kakW 3
2
(
)kT�t u(�; t)kW 3

2
(
) :

From here, summing over the mesh �+� we obtain

k�5kQh�
� Ch2kakW 3

2
(
)kukW 4;2

2
(Q) :

The value of �7 in the node (x; t) 2 Q+
h� can be represented in the form:

�7(x; t) =
1

h�
a(x)

Z x+h

x�h

Z t

t��

Z �

t

�
1� j� � xj

h

�
@3u(�; �1)

@x2@t
d�1d�d� :

From here, using the Cauchy-Schwartz inequality we have

j�7(x; t)j � C
� �
h

�1=2
kakC(
)

 Z x+h

x�h

Z t

t��

����@3u(�; �)@x2@t

����
2

d�d�

! 1
2

:

Summation over the mesh Q+
h� yields:

k�7kQh�
� C�kakC(
)

 @3u

@x2@t


L2(Q)

:
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Using the imbedding W 3
2 (
) � C(
) and the imbedding theorems for anisotropic

spaces W
s;s=2
2 (Q) [4] we have

k�7kQh�
� Ch2kakW 3

2
(
)kukW 4;2

2
(Q) :

Analogous estimates hold true also for other terms �k and for term '. In such
a way we obtain the estimates:

k�kQh�
� Ch2kakW 3

2
(
)kukW 4;2

2
(Q) ; and (8)

k'kQh�
� Ch2kukW 4;2

2
(Q) : (9)

From (5), (8) and (9) we obtain estimate (1) for s = 4, r = 2.

Let us de�ne the operators A1 and A2 as follows:

� = A1(a; u) and ' = A2(u) :

The operator A1 is, obviously, bilinear. From (6) it follows that A1 is a bounded

bilinear operator from W 1
2 (
)�W

2;1
2 (Q) to L2(Qh� ), and

kA1kW 1
2
(
)�W 2;1

2
(Q)!L2(Qh� )

� C : (10)

From (8) it follows that A1 is a bounded bilinear operator from W 3
2 (
)�W

4;2
2 (Q)

to L2(Qh� ), and
kA1kW 3

2
(
)�W 4;2

2
(Q)!L2(Qh� )

� Ch2 : (11)

Applying lemma 1, from (10) and (11) it follows that A1 is a bounded bilinear
operator from�

W 3
2 (
);W

1
2 (
)

�
�;2
� �W 4;2

2 (Q);W 2;1
2 (Q)

�
�;2

=W 3�2�
2 (
)�W

4�2�;2��
2 (Q)

to
(L2(Qh� ); L2(Qh� ))�;1 = L2(Qh� ) ;

and
kA1kW 3�2�

2
(
)�W 4�2�;2��

2
(Q)!L2(Qh� )

� Ch2�2� ; 0 < � < 1: (12)

Finally, from (12) and the inequality

k�kQh�
� kA1kW 3�2�

2
(
)�W 4�2�;2��

2
(Q)!L2(Qh� )

kakW 3�2�
2

(
)kukW 4�2�;2��
2

(Q) ;

we obtain the estimate

k�kQh�
� Ch2�2�kakW 3�2�

2
(
)kukW 4�2�;2��

2
(Q) ; 0 < � < 1 : (13)

Analogously, we obtain the following estimate of term ':

k'kQh�
� Ch2�2�kukW 4�2�;2��

2
(Q) ; 0 < � < 1 : (14)

Setting 4� 2� = s, we obtain the estimates:

k�kQh�
� Chs�2kakW s�1

2
(
)kukW s;s=2

2
(Q)

; (15)

k'kQh�
� Chs�2kuk

W
s;s=2
2

(Q)
; 2 < s < 4 : (16)
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Finally, from (6){(9), (15), (16) and (5) we obtain the main result of this paper:

Theorem. Finite-di�erence scheme (3) converges in the norm of the space

W
2;1
2 (Qh� ) and, with condition k1h

2 � � � k2h
2, the following estimate holds true:

ku� vkW 2;1
2

(Qh� )
� Chs�2(kakW s�1

2
(
) + 1)kuk

W
s;s=2
2

(Q)
; 2 � s � 4 :

This estimate is consistent with the smoothness of data.
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