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OCTAHEDRAL NONCOMPACT HYPERBOLIC SPACE FORMS

WITH FINITE VOLUME

Marica �Sarac

Abstract. Following Poincar�e's geometric method, we construct two new nonorientable
noncompact hyperbolic space forms by the regular octahedron in Fig. 1. The construction is
motivated by Thurston's example [6], discussed also by Apansov [1] in details. Our new space
forms will be denoted by

~D1 = H3=G1 and ~D2 = H3=G2;

where ~D1 and ~D2 are obtained by pairing faces of D via isometries of groups G1 and G2, re-
spectively, acting discontinuously and freely on the hyperbolic 3-space H3 (Fig. 2, Fig. 3). These
groups are de�ned by generators and relations in Sect. 3. The complete computer classi�ca-
tion of possible space forms by our octahedron will be discussed in [4], where it turns out that
our two space forms are isometric, i.e. G1 and G2 are conjugated by an isometry ' of H3, i.e.
G2 = '�1G1',

G1 = (g1; g2; �g1; �g2 g1�g
�1

1
g2�g

�1

2
= g1g1g2g2 = �g1�g1�g2�g2 = 1);

G2 = (t1; t2; �g1; �g2 t1�g
�1

1
t�1
2

�g2 = t1t2t
�1

1
t�1
2

= �g1�g1�g2�g2 = 1):

1. Introduction

A complete connected Riemannian n-manifold of constant sectional curvature,
i.e. a space form, can be considered as an orbit space Mn=G, where Mn is one of
the spaces Sn, En, Hn (spherical, Euclidean and hyperbolic n-space, respectively)
and G is an isometry group acting discontinuously and freely onMn. Having inves-
tigated hyperbolic space forms in earlier papers [3,5], by the method of polyhedron
identi�cation due to Poincar�e, we shall construct two isometry groups Gi (i = 1; 2)
acting discontinuously and freely on the hyperbolic space H3. Each group is given
by the same noncompact fundamental Dirichlet polyhedronD (Fig. 1) and by pair-
ing its faces via isometries. The identifying isometries generate the corresponding
group Gi. In this way we can obtain all the hyperbolic space forms ~D = H3=G,
whose fundamental polyhedron is the given octahedron.

This paper is related with [3,5], where more details of the method are described.
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Fig. 1

2. The construction of the octahedron D

Take a triangle A0A1A2 on a hyperbolic plane H2 with a right angle at the
vertexA1, with angle \A1A2A0 = �=4 and with the ideal vertexA0 (Fig. 1). Thus
the angle of parallelism �(A1A2) equals �=4. By reections in the lines A1A2 and
A0A2, we construct a regular hyperbolic quadrangle P , with all ideal vertices. On
the plane containing the line A1A2 and the line o perpendicular to the plane of the
polygon P at the point A2 we construct the rays A1A3 and A1A

�

3
, so that both

of them are parallel to the line o, with the angle of parallelism �(A1A2) = �=4.

We get the polyhedron D, a regular tetragonal bipyramid with ideal vertices.
All its faces form angles �=4 with the base, and all its intersecting faces form angles
�=2. D will be our required noncompact fundamental Dirichlet polyhedron to the
centre A2.

Since all vertices of this polyhedron are ideal points, all its edges concurrent
to such an ideal vertex belong to a parabolic bundle. A horosphere centred at
this ideal vertex is orthogonal to this bundle and intersects the bipyramid D in
a horospherical polygon. A horosphere is isometric to the Euclidean plane E2, so
these polygons are Euclidean.

In this sense, the apices of this polyhedron D are related to Euclidean regular
quadrangles with angles �=2.
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3. Identi�cations on D

Now, we are going to identify the faces of D. The result is symbolized in the
Schlegel diagrams of ~D1 = H3=G1 (Fig. 2) and ~D2 = H3=G2 (Fig. 3), where we
omit f 's from the face symbols.

Fig. 2

The pairs of faces g�1

j and gj (j = 1; 2) are identi�ed by horospherical glide

reections gj or their inverses g�1j respectively. The pairs of faces �gj and �g�1

j

(j = 1; 2) are identi�ed by horospherical glide reections �gj and �g�1j respectively.
These will be �xed by the requirement that the centre A2 will be mapped onto the
centres of the neighbouring (along side faces) octahedra.

The identi�cations of the faces of ~D1 are induced by those of the sides of the
regular quadrangle P 1 for the group G1 in the Euclidean plane E2 (Fig. 2), where
gj (j = 1; 2) are glide reections in E2. This observation motivated us to construct
the group G1.

Now we list the edge equivalence classes of the polyhedron ~D1, induced by the
above identi�cations, writing down for each edge class the de�ning relation which
expresses that every point on these edges has a trivial stabilizer. We establish
incidentally the stabilizer subgroup for each end class (cusp).

The octahedron ~D1 has 12 side edges, divided into 3 classes with 4 edges in
each class :

(1) g1�g
�1

1
g2�g

�1

2
= 1 at the edge class =)=)

(2) g1g1g2g2 = 1 at the edge class �!�!
(3) �g1�g1�g2�g2 = 1 at the edge class 9 9 K9 9 K

each of the related dihedral angle is �=2, so 4 � �=2 = 2�, which guarantees the
trivial stabilizer for points on these edges [5].
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We conclude that ~D1 is a fundamental polyhedron for the group G1 with
presentation

(4) G1 = (g1; g2; g3; g4 g1g
�1

3
g2g

�1

4
= g1g1g2g2 = g3g3g4g4 = 1):

Forming the orbit OG
1
, where O := A2 is the centre of the polyhedron ~D1

(Fig. 1), we obtain by a symmetry argument that ~D1 = ~D1O is a Dirichlet poly-
hedron corresponding to O and its G1-orbit.

The stabilizer for the end classes of A3 (and A�

3
) will be the Euclidean plane

crystallographic group G1 = pg, coresponding to the fundamental quadrangle ~P 1 =
E2=G1 (Fig. 2), with presentation g1g1g2g2 = 1. We also have one end class on the

base of ~D1, corresponding to A0, with the plane translation group p1 as stabilizer.

Fig. 3

The pair of faces g�1j and gj (j = 1; 2) are identi�ed by horospherical glide

reections gj or their inverses g
�1

j , respectively.

The pairs of faces t�1

j and tj (j = 1; 2) are identi�ed by horospherical transla-

tions tj and t�1

j , respectively.

The identi�cations of the faces of ~D2, joining the end A3, are induced by those
of the sides of the regular quadrangle P2 for the group G2 = p1 in the Euclidean
plane E2, where tj (j = 1; 2) are translations, with relation t1t2t

�1

1
t�1
2

= 1 (Fig. 3).
This observation motivated us to construct the group G2.

Now we list the edge equivalence classes of the polyhedron ~D2, induced by the
above identi�cations, writing down for each edge class the de�ning relation which
expresses that every point on these edges has a trivial stabilizer. We establish
incidentally the stabilizer subgroup for each end class (cusp).

The octahedron ~D2 has 12 side edges, divided into 3 classes with 4 edges in
each class :
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(5) t1 � g�11
� t�1

2
� g2 = 1 at the edge class =)=)

(6) t1 � t2 � t�1

1
� t�1

2
= 1 at the edge class �!�!

(7) g1 � g1 � g2 � g2 = 1 at the edge class 9 9 K9 9 K

We conclude that ~D2 is a fundamental polyhedron for the group G2 with
presentation

(8) G2 = (g1; g2; t1; t2 t1g
�1

1
t�1
2
g2 = t1t2t

�1

1
t�1

2
= g1g1g2g2 = 1):

Forming the orbit OG
2
, by a symmetry argument we conclude that ~D2 = ~D2O

is a Dirichlet polyhedron corresponding to O and its G2-orbit.

The stabilizers for the end classes of the A3 andA
�

3
will be the Euclidean plane

crystallographic groups G1 = pg and G2 = p1, corresponding to the fundamental
quadrangles ~P 1 = E2=G1 (Fig. 2) and ~P 2 = E2=G2 (Fig. 3), respectively. We also

have one end class on the base of ~D2, corresponding to A0, with stabilizer pg.

We have seen that each pairing ~Di (i = 1; 2), by isometries on the faces
of the bipyramid D, induces equivalence classes of edges so that Poincar�e's angle
conditions hold for each edge class. This guarantees the free action of Gi, generated
by the pairing, at the points of edges of ~Di.

The orthogonal projections of the centre O := A2 on the faces and edges of D
will be mapped by the pairing onto each other, respectively. Hence each element
of Gi, preserving an end of ~Di, is parabolic. This means that only the �xed end
is invariant under the non(trivial isometry from the stabilizer of the end, so each
horosphere, centred at the end considered, is invariant under this stabilizer. Indeed,
we have determined a fundamental end domain for each stabilizer and recognized
the corresponding Euclidean plane group as one of p1 and pg. So we have checked
the so-called cusp condition which guarantees that Gi is discrete on H3 and the
hyperbolic metric of H3=Gi is complete ([2], [3]).

By the Poincar�e's theorem these facts are su�cient for ~Di = H3=Gi to be a
hyperbolic space form.

4. Metric construction of D in a vector model of H3

We are going to indicate the analitical treatment of our problem (see [2] and
[3] for more details).

We consider the 4-dimensional real vector space V 4, whose dual space, i.e.
the space of its linear forms, is denoted by V �

4
. In the usual way the projective

3-space P 3(V 4;V �

4
) can be introduced. The 1-dimensional subspaces of V 4 (or

the 3-spaces of V �

4
) represent the points of P 3 and the 1-subspaces of V �

4
(or the

3-subspaces of V 4) represent the planes of P 3. The point X(x) and the plane
�(a) are incident i� x � a = 0, i.e. the value of the linear form a on the vector x
is equal to zero (x 2 V 4, x 6= 0 and a 2 V �

4
, a 6= 0). The straight lines of P 3 are

characterized by 2-subspaces of V 4 or of V �

4
, respectively. If feig is a basis in V 4

and fejg is its dual basis in V �

4
, i.e. ei � ej = �ji (the Kronecker symbol), then the
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form a = ejaj takes the value x � a = xi � ai on the vector x = xi � ei. We use the
summation convention for the same upper and lower indices.

In order to embed H3 into the real projective space P 3(V 4;V �

4
) we introduce

a hyperbolic projective metric by giving a bilinear form [2]

h ; i : V �

4
� V �

4
! R; hbiui; bjvji = uib

ijvj ;

by means of the Schl�ai matrix

(1) (hbi; bji) = (bij) =

2
64

1 � cos�=4 0 0
� cos�=4 1 � cos�=4 0

0 � cos�=4 1 � cos�=4
0 0 � cos�=4 1

3
75

where the basis fbig in the dual vector space V �

4
represents the planes mi of P

3

in connection with the octahedron D (i = 0, 1, 2, 3) in H3 � P 3 (Fig. 1). The
planes m0 = A1A2A3 and m1 = A0A2A3 will be the symmetry ones of D,
m3 = A0A1A2 will be a base plane andm2 = A0A1A3 will be a side plane of D.

We compute

(2) B = det(bij) = �0:25 < 0

and the inverse matrix (aij) of the matrix (bij). The equation bij � ajk = �ik holds
i�

(3)

a00 = 0; a01 = a10 = �
p
2 < 0; a02 = a20 = �2 < 0; a03 = a30 = �

p
2 < 0;

a11 = �2 < 0; a12 = a21 = �2
p
2 < 0; a13 = a31 = �2 < 0;

a22 = �2 < 0; a23 = a32 = �
p
2 < 0;

a33 = 0:

Now, let fajg be the basis in the vector space V 4 dual to the given basis fbig
in V �

4
, de�ned by aj � bi = �ij . Geometrically, the vectors aj represent the vertices

of the simplex S = A0A1A2A3 in H3 � P 3, whose side planes are described by
the forms bi. The induced bilinear form

h ; i : V 4 � V 4 ! R; hxiai; yjaji = xiaijy
j

is de�ned by the matrix

(4) (hai;aji) = (aij)

with entries in (3).

We easily see that the bilinear form h ; i has a signature (+;+;+;�), so that
the projective metric in P 3(V 4;V �

4
) is hyperbolic [2].

In general, the proper points X(x) of H3 � P 3 are de�ned by \time-like"
1-subspaces of V 4

(5) f (x) � V 4 : hx;xi < 0 g;
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while the ideal points of H3 ( the ends of absolute ) are described by

(6) f (y) � V 4 : hy;yi = 0 g:
The proper planes U(u) of H3 are

(7) f (u) � V �

4
: hu;ui > 0 g:

All elements of the main diagonal of the matrix (1) are positive. This means
that all planes mi of the polyhedron D, represented by the forms bi, are proper
planes in the space H3 � P 3. From the relations (3) of this section, we see that
the vertices A1(a1) and A2(a2) of the simplex S, described by the vectors a1 and
a2, are proper points, while the vertices A0(a0) and A3(a3) of the simplex S,
described by the vectors a0 and a3, are ideal points (ends). This implies that D is
a polyhedron with ideal vertices.

Applying formulas valid for H3 � P 3 [2], other data of the simplex S can be
computed from the matrices (aij) and (bij). Thus we can check that the Coxeter
diagram (Fig. 1) correctly describes the dihedral angles of simplex S, e.g., �=4
is the angle of planes m0 = A1A2A3 and m1 = A0A2A3, furthermore, m0 is
perpendicular to m2 and m3.

The Coxeter group C, generated by reections in mirrorsmj (j = 0, 1, 2, 3) of
the simplex S, is a supergroup of index 16 of each group Gi, sinceD is the union of
16 congruent copies of simplex S. Therefore, we could also express the generators
of each group Gi by matrices with respect to the bases fbig or faig.

In general, isometries ofH3 can be described by linear transformations of V 4,
or V �

4
, which preserve the bilinear form h ; i.

The most important radius � of the inscribed ball ofD can be computed. This
is the distance of A2(a2) from the plane m2 = A0A1A3 represented by b2. We
have

(8)
sh (�=k) = a2 � b2=

p
�ha2;a2i � hb2; b2i = 1=

p�a22 =
p
2=2;

� = k � area sh
p
2=2:

Here k =
p
�1=K is the metric constant of H3, and K < 0 is the sectional

curvature.

Other data of the simplex S or of D can be computed in a similar way [2].
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