GEOMETRY OF \boldsymbol{k}-LAGRANGE SPACES OF SECOND ORDER

Mihai Anastasiei and Irena Čomić

Introduction

Let M be a smooth manifold coordinated by $\left(U, x^{1}, \ldots, x^{n}\right)$ and $x^{i}=$ $x^{i}\left(t^{1}, \ldots, t^{k}\right), \operatorname{rank}\left(\frac{\partial x^{i}}{\partial t^{\alpha}}\right)=k, \alpha=1, \ldots, k$ its k-dimensional submanifold, $k=1, \ldots, n-1$. The Latin indices will range from 1 to n and the Greek indices will run from 1 to k. The Einstein convention on summation will work for both kinds of indices.

A real valued smooth function $L\left(x^{i}, \frac{\partial x^{i}}{\partial t^{\alpha}}, \frac{\partial^{2} x^{i}}{\partial t^{\alpha} \partial t^{\beta}}\right)$ will be called a k-Lagrangian of second order.

For an open set \mathcal{O} in the range of parameters $\left(t^{1}, \ldots, t^{k}\right)$ with the property that its closure $\overline{\mathcal{O}}$ is compact, one considers the multiple integral $\int_{\overline{\mathcal{O}}} L\left(x^{i}(t), \frac{\partial x^{i}}{\partial t^{\alpha}}(t), \frac{\partial^{2} x^{i}}{\partial t^{\alpha} \partial t^{\beta}}(t)\right) d t^{(\alpha)}$, where $d t^{(\alpha)}=d t^{1} d t^{2} \ldots d t^{k}$.

One may ask to find among the k-submanifolds with the same frontier those which afford extremal values for the above multiple integral.

Our purpose is to provide a geometrization of the k-Lagrangians of second order as a framework of the variational problem sketched above.

First, we introduce in $\S 1$ a manifold $J_{k}^{2} M$ fibered over M on which such Lagrangians are living.

In $\S 2$ we consider a nonlinear connection on $J_{k}^{2} M$ and exhibit the basis adapted to it. Various geometrical structures on $J_{k}^{2} M$ are pointed out, too. In $\S 3$ a special class of linear connections on $J_{k}^{2} M$ is considered.

The geometry of the manifold $J_{k}^{2} M$ is interesting for itself since for $k=1$ it reduces to the manifold $\operatorname{Osc}^{2} M$, see R. Miron [3], and for $k=n$ it is the prolongation of second order of the frame manifold.

More facts from this geometry will appear elsewhere.

[^0]
1. Manifold $J_{k}^{2} M$

Let M be a smooth manifold of dimension n and $J_{o, p}\left(\mathbf{R}^{k}, M\right)$ the set of germs of smooth mappings $f: \mathbf{R}^{k} \rightarrow M$ with $f(0)=p \in M$. We say that $f, g \in J_{o, p}\left(\mathbf{R}^{k}, M\right)$ are equivalent up to order q if there exists a chart (U, φ) around p such that

$$
\begin{equation*}
d_{0}^{h}(\varphi \circ f)=d_{0}^{h}(\varphi \circ g), \quad 1 \leq h \leq q \tag{1.1}
\end{equation*}
$$

where d denotes Frechet differentiation. It can be seen that if (1.1) holds for a chart (U, φ), it holds for any other chart (V, ψ) around p.

We denote by $j_{0, p}^{q} f$ the equivalence class of f (the coset of f) and set $J_{0, p}^{q}=$ $\left\{j_{o, p}^{q} f, f \in J_{0, p}\left(\mathbf{R}^{k}, M\right)\right\}$. Then we put $J_{k}^{q} M=\bigcup_{p \in M} J_{0, p}^{q}$ and define $\pi: J_{k}^{q} M \rightarrow$ M by $\pi\left(J_{0, p}^{q}\right)=p$.

One can see that $J_{k}^{q} M$ has a structure of smooth manifold.
We notice that for $k=1$, this manifold is just the manifold $\mathrm{Osc}^{q} M$ studied by R. Miron [3], which reduces to the tangent manifold for $q=1$. For $k=n$ and $q=1$, we get the manifold of frames over M and for $k \in\{2,3, \ldots, n-1\}$ and $q=1$ it can be identified with $T M \otimes \cdots \otimes T M$ (k times) which is the manifold supporting the k-Lagrange geometry, see R. Miron, M. Kirkovits, Mihai Anastasiei [5].

For these reasons we confine ourselves to the cases $k=2,3, \ldots, n-1$ and for the sake of simplicity we take $q=2$. The case q greater than 2 can be similarly treated.

We also notice that $J_{k}^{2} M$ is the manifold of 2-jets of the sections of the fibre bundle $\mathbf{R}^{k} \times M \rightarrow \mathbf{R}^{k}$ but the theory of jets from the book by D.J. Saunders [6] cannot be applied since the typical fibre M of this bundle is too general.

Instead of that theory we follow the ideas and techniques from the k-Lagrange geometry and from the geometry of $\mathrm{Osc}^{q} M$ spaces as well, see [1], [2], [4].

Let us return to (1.1) for $q=2$. Letting $\varphi \circ f, \varphi \circ g: \mathbf{R}^{k} \rightarrow \mathbf{R}^{n}$ as $f^{i}=$ $f^{i}\left(t^{1}, \ldots, t^{k}\right), g^{i}=g^{i}\left(t^{1}, \ldots, t^{k}\right)$ this condition becomes

$$
f^{i}(0)=g^{i}(0)=\varphi(p), \frac{\partial f^{i}}{\partial t^{\alpha}}(0)=\frac{\partial g^{i}}{\partial t^{\alpha}}(0), \frac{\partial^{2} f^{i}}{\partial t^{\alpha} \partial t^{\beta}}(0)=\frac{\partial^{2} g^{i}}{\partial t^{\alpha} \partial t^{\beta}}(0)
$$

for $\alpha, \beta=1,2, \ldots, k$. Let us set $\partial_{i}: \partial / \partial x^{i}, \partial_{\alpha}:=\partial / \partial t^{\alpha}$.
Now, for another local chart (V, ψ) around p such that $\psi \circ \varphi^{-1}: x^{i^{\prime}}=$ $x^{i^{\prime}}\left(x^{1}, \ldots, x^{n}\right), \operatorname{rank}\left(\frac{\partial x^{\prime}}{\partial x^{k}}\right)=n$, taking $\psi \circ f$ and $\psi \circ g$ as $f^{i^{\prime}}=f^{i^{\prime}}\left(t^{1}, \ldots, t^{p}\right)$ and $g^{i^{\prime}}=g^{i^{\prime}}\left(t^{1}, \ldots, t^{p}\right)$, respectively, we get $f^{i^{\prime}}=x^{i^{i^{\prime}}}\left(f^{j}\left(t^{1}, \ldots, t^{p}\right)\right), g^{i^{\prime}}=$ $x^{i^{\prime}}\left(g^{j}\left(t^{1}, \ldots, t^{p}\right)\right)$ as well as

$$
\begin{align*}
\frac{\partial f^{i^{\prime}}}{\partial t^{\alpha}}(0) & =\frac{\partial x^{i^{\prime}}}{\partial x^{j}}(\varphi(p)) \frac{\partial f^{j}}{\partial t^{\alpha}}(0) \tag{1.2}\\
\frac{\partial^{2} f^{i^{\prime}}}{\partial t^{\alpha} \partial t^{\beta}} & =\frac{\partial^{2} x^{i^{\prime}}}{\partial x^{j} \partial x^{k}}(\varphi(p)) \frac{\partial f^{j}}{\partial t^{\alpha}}(0) \frac{\partial f^{k}}{\partial t^{\beta}}(0)+\frac{\partial x^{i^{\prime}}}{\partial x^{j}} \frac{\partial^{2} f^{j}}{\partial t^{\alpha} \partial t^{\beta}}
\end{align*}
$$

By (1.2) the independence of (1.1) on the chosen local chart follows.

For $f: \mathbf{R}^{k} \rightarrow M$ with $f(0)=\varphi(p)\left(x^{1}, \ldots, x^{n}\right)$ we set $y_{\alpha}^{i}=\frac{\partial f^{i}}{\partial t^{\alpha}}(0), z_{\alpha \beta}^{i}=$ $\frac{1}{2} \frac{\partial^{2} f^{i}}{\partial t^{\alpha} \partial t^{\beta}}(0)$ and define a mapping $\phi: \pi^{-1}(U) \rightarrow \varphi(U) \times \mathbf{R}^{k n} \times \mathbf{R}^{\frac{k(k+1)}{2} n}$ by $\phi\left([f]_{p}\right)=$ ($x^{i}, y_{\alpha}^{i}, z_{\alpha \beta}^{i}$).

The mapping ϕ is invertible, its inverse associating to $\left(x^{i}, y_{\alpha}^{i}, z_{\alpha \beta}^{i}\right)$ the coset of the mapping $\varphi^{-1} \circ T$, where T is the Taylor polynomial $x^{i}+y_{\alpha}^{i} t^{\alpha}+z_{\alpha \beta}^{i} t^{\alpha} t^{\beta}$. If we similarly define ψ in connection with the local chart $(V, \psi), \psi \circ \phi^{-1}$ has the following form

$$
\left.\begin{array}{rl}
x^{i^{\prime}} & =x^{i^{\prime}}\left(x^{i}, \ldots, x^{n}\right), \operatorname{rank}\left(\frac{\partial x^{i^{\prime}}}{\partial x^{i}}\right)=n \\
y_{\alpha}^{i^{\prime}} & =\frac{\partial x^{i^{\prime}}}{\partial x^{i}} y_{\alpha}^{i}, \quad \alpha=1, \ldots, k \tag{1.3}\\
z_{\alpha \beta}^{i^{\prime}} & =\frac{1}{2} \frac{\partial^{2} x^{i^{\prime}}}{\partial x^{j} \partial x^{k}} y_{\alpha}^{j} y_{\beta}^{k}+\frac{\partial x^{i^{\prime}}}{\partial x^{j}} z_{\alpha \beta}^{j} .
\end{array}\right\}
$$

It results that $\psi \circ \phi^{-1}$ is smooth. Thus $\left\{\left(\pi^{-1}(U), \phi\right)\right\}$ associated to the atlas $\{(U, \varphi)\}$ on M provides a smooth manifold structues for $J_{k}^{2} M$. At the same time (1.3) gives the allowable coordinate transformations with respect to the fibration $\pi: J_{k}^{2} M \rightarrow$ M. This fibration is a locally trivial bundle with typical fibre $\mathbf{R}^{k n} \times R^{\frac{k(k+1)}{2} n}$. The bundle chart associated to (U, φ) is $\left(\pi^{-1}(U), \bar{\phi}\right)$ where $\bar{\phi}: \pi^{-1}(U) \rightarrow U \times \mathbf{R}^{n k} \times$ $R^{\frac{k(k+1)}{2} n}, \bar{\phi}\left([f]_{p}\right)=\left(p, y_{\alpha}^{i}, z_{\alpha \beta}^{i}\right)$.

We notice that $\pi: J_{k}^{2} M \rightarrow M$ is not a vector bundle although its typical fibre is so, because the mappings $\bar{\psi}_{p} \circ \bar{\phi}_{p}^{-1}$ are not linear. Here $\bar{\phi}_{p}$ is the restriction of $\bar{\phi}$ to the fibre $\pi^{-1}(p)$ and $\bar{\psi}, \bar{\psi}_{p}$ are similarly constructed in connection with (V, ψ).

The mapping $j_{0, p}^{2} f \mapsto j_{0, p}^{1} f$ induces a mapping $\pi_{2,1}: J_{k}^{2} M \rightarrow J_{k}^{1} M$ which in the local charts previously introduced has the form $\left(x^{i}, y_{\alpha}^{i}, z_{\alpha \beta}^{i}\right) \mapsto\left(x^{i}, y_{\alpha}^{i}\right)$. Thus, it is a surjective submersion. We set $\pi_{1}: J_{k}^{1} M \rightarrow M$ and so $\pi=\pi_{1} \circ \pi_{2,1}$. For a local chart (U, φ) around $p \in M$, let $\phi_{1}: \pi_{1}^{-1}(U) \rightarrow U \times \mathbf{R}^{k n}, \phi_{1}\left(j_{0, p}^{1} f\right)=\left(p, y_{\alpha}^{i}\right)$ and $\psi_{1}: \pi_{1}^{-1}(V) \rightarrow V \times \mathbf{R}^{k n}$ similarly associated to (V, ψ). Then $\psi_{1, p} \circ \phi_{1, x}^{-1}: y_{\alpha}^{i^{\prime}}=\frac{\partial x^{i^{\prime}}}{\partial x^{i}} y_{\alpha}^{i}$ is a linear mapping from $R^{k n} \rightarrow \mathbf{R}^{k n}$. Hence $\left(J_{k}^{1} M, \pi_{1}, M\right)$ is a vector bundle of rank $k n$. Now let $\phi_{2}\left(J_{0, p}^{2} f\right)=\left(p, j_{0, p}^{1} f, z_{\alpha \beta}^{i}\right)$ and ψ_{2} similarly defined in connection with (V, ψ). Then $\psi_{2,(p, y)} \circ \phi_{2,(p, y)}^{-1}: z_{\alpha \beta}^{i^{\prime}}=\frac{1}{2} \frac{\partial^{2} x^{i^{\prime}}}{\partial x^{i} \partial x^{j}} y_{\alpha}^{i} y_{\beta}^{j}+\frac{\partial x^{i^{\prime}}}{\partial x^{i}} z_{\alpha \beta}^{i}$ with $y:=j_{0, p}^{1} f$ is an affine morphism of the space $\mathbf{R}^{\frac{k(k+1)}{2} n}$ endowed with the standard affine structure. Hence $\left(J_{k}^{2} M, \pi_{2,1}, J_{k}^{1} M\right)$ is an affine bundle.

2. Nonlinear connections on $J_{k}^{2} M$. Adapted basis

Let us put $E:=J_{k}^{2} M$ and let $\pi: E \rightarrow M$ be the canonical projection. Since π is a submersion, the linear spaces $V_{u} E:=\operatorname{ker} \pi_{*, u}, u \in E$ define a distribution $V: u \rightarrow V_{u} E$ on E (vertical distribution).

Definition. A nonlinear connection on $J_{k}^{2} M=: E$ is a distribution $H: u \rightarrow$ $H_{u} E$ on E which is supplementary to the vertical distribution i.e.

$$
\begin{equation*}
T_{u} E=H_{u} E \oplus V_{u} E \quad(\text { direct sum }) \tag{2.1}
\end{equation*}
$$

holds for every $u \in E$.
Let us introduce the following notation:

$$
\begin{equation*}
\partial_{i}:=\frac{\partial}{\partial x^{i}}, \partial_{i}^{\alpha}:=\frac{\partial}{\partial y_{\alpha}^{i}}, \partial_{i}^{\alpha \beta}=\frac{\partial}{\partial z_{\alpha \beta}^{i}}=\partial_{i}^{\beta \alpha} . \tag{2.2}
\end{equation*}
$$

The natural basis \bar{B} of $T_{u}\left(J_{k}^{2} M\right)$ is

$$
\begin{equation*}
\bar{B}=\left(\partial_{i}, \partial_{i}^{\alpha}, \partial_{i}^{\alpha \beta}\right) \tag{2.3}
\end{equation*}
$$

If the change of coordinates (1.3) is performed, the elements of \bar{B} are transformed as follows:

$$
\begin{align*}
\partial_{i} & =\left(\partial_{i} x^{i^{\prime}}\right) \partial_{i^{\prime}}+\left(\partial_{i} \partial_{j} x^{i^{\prime}}\right) y_{\alpha}^{j} \partial_{i^{\prime}}^{\alpha}+\left[2^{-1}\left(\partial_{i} \partial_{j} \partial_{k} x^{i^{\prime}}\right) y_{\alpha}^{j} y_{\beta}^{k}+\left(\partial_{i} \partial_{j} x^{i^{\prime}}\right) z_{\alpha \beta}^{j}\right] \partial_{i}^{\alpha \beta}, \\
\partial_{i}^{\alpha} & =\left(\partial_{i} x^{i^{\prime}}\right) \partial_{i^{\prime}}^{\alpha}+\left(\partial_{i} \partial_{j} x^{i^{\prime}}\right) y_{\beta}^{j} \partial_{i^{\prime}}^{\alpha \beta}, \partial_{i}^{\alpha \beta}=\left(\partial_{i} x^{i^{\prime}}\right) \partial_{i^{\prime}}^{\alpha \beta} . \tag{2.4}
\end{align*}
$$

We note that the vertical distribution is locally spanned by $\left(\partial_{i}^{\alpha}, \partial_{i}^{\alpha \beta}\right)$. For each $\alpha \in\{1,2, \ldots, k\}$ we define a linear operator $\stackrel{\alpha}{J}: T_{u} E \rightarrow T_{u} E$ on basis \bar{B} as follows:

$$
\begin{equation*}
\stackrel{\alpha}{J}\left(\partial_{i}\right)=\partial_{i}^{\alpha}, \stackrel{\alpha}{J}\left(\partial_{i}^{\beta}\right)=\partial_{i}^{\alpha \beta}, \stackrel{\alpha}{J}\left(\partial_{i}^{\beta \gamma}\right)=0 \tag{2.5}
\end{equation*}
$$

One checks using (2.4) that $\stackrel{\alpha}{J}$ is well-defined. Also, one easily verifies

$$
\begin{equation*}
\stackrel{\alpha}{J} \circ \stackrel{\beta}{J}=\stackrel{\beta}{J} \circ \stackrel{\alpha}{J}, \stackrel{\alpha}{J} \circ \stackrel{\beta}{J} \circ \stackrel{\gamma}{J}=0, \stackrel{\alpha}{3}_{J}^{3}=0, \text { for every } \alpha, \beta, \gamma \in\{1,2, \ldots, k\} . \tag{2.6}
\end{equation*}
$$

Thus $\stackrel{\alpha}{J}$ is a 3-tangent structure on E and so $J_{k}^{2} M$ is endowed with k natural 3 -tangent structures which commute with each other.

The restriction of $\pi_{*, u}$ to $T_{u} E$ is an isomorphism $H_{u} \rightarrow T_{\pi(u)} M$. Denoting by h its inverse and setting $\delta_{i}=h\left(\partial_{i}\right)$ one gets a local basis of the horizontal distribution. Since $\pi_{*}\left(\delta_{i}\right)=\partial_{i}$, the local vector fields δ_{i} will have the form

$$
\begin{equation*}
\delta_{i}=\partial_{i}-N_{i \alpha}^{j}(x, y, z) \partial_{j \alpha}-N_{i \alpha \beta}^{j}(x, y, z) \partial_{j}^{\alpha \beta} \tag{2.7}
\end{equation*}
$$

where the minus sign is taken for convenience and because of $\delta_{i}=\left(\partial_{i} x^{i^{i}}\right) \delta_{i}$, the functions $N_{i \alpha}^{j}, N_{i \alpha \beta}^{j}$ have to satisfy

$$
\begin{align*}
N_{i^{\prime} \alpha}^{j^{\prime}}\left(\partial_{i} x^{i^{\prime}}\right) & =\left(\partial_{j} x^{j^{\prime}}\right) N_{i \alpha}^{j}-\partial_{i}\left(y_{\alpha}^{j^{\prime}}\right) \\
N_{i^{\prime} \alpha \beta}^{j^{\prime}}\left(\partial_{i} x^{i^{i^{\prime}}}\right) & =\left(\partial_{j} x^{j^{\prime}}\right) N_{i \alpha \beta}^{j}+N_{i \gamma}^{j} \partial_{j}^{\gamma}\left(z_{\alpha \beta}^{j^{\prime}}\right)-\partial_{i} z_{\alpha \beta}^{j^{\prime}} \tag{2.8}
\end{align*}
$$

Conversely, a set of functions $N=\left(N_{i \alpha}^{j}(x, y, z), N_{i \alpha \beta}^{j}(x, y, z)\right)$ verifying (2.8) completely determine $\left(\delta_{i}\right)$ which in turn defines a nonlinear connection on E.

Now if we consider $\delta_{i}^{\alpha}:=\stackrel{\alpha}{J}\left(\delta_{i}\right)=\partial_{i}^{\alpha}-N_{i \beta}^{j} \partial_{j}^{\alpha \beta}$ for all $\alpha \in\{1, \ldots, k\}$, we get $k n$ linearly independent local vector fields verifying,

$$
\begin{equation*}
\delta_{i}^{\alpha}=\left(\partial_{i} x^{i^{\prime}}\right) \delta_{i}^{\alpha}, \quad \alpha=1, \ldots, k \tag{2.9}
\end{equation*}
$$

Setting $H_{u} E:=N_{0}(u)$, from the above it follows that $\left(\delta_{i}^{\alpha}\right)$ span a subdistribution $N_{1}(u)$ of V and $\delta_{i}^{\alpha \beta}:=(\stackrel{\alpha}{J} \circ \stackrel{\beta}{J})\left(\delta_{i}\right)$ span a second subdistribution $N_{2}(u)$ of V. Clearly, we have

$$
\begin{equation*}
T_{u} E=N_{0}(u) \oplus N_{1}(u) \oplus N_{2}(u), \quad u \in E \tag{2.10}
\end{equation*}
$$

Notice that each distribution N_{1} and N_{2} decomposes in k and, respectively, $k(k+1) / 2 n$-dimensional distributions.

The adapted basis with respect to the decomposition (2.10) is

$$
\begin{equation*}
B=\left(\delta_{i}, \delta_{i}^{\alpha}, \delta_{i}^{\alpha \beta}\right) ; \quad \delta_{i}^{\alpha \beta}=\partial_{i}^{\alpha \beta}=\partial_{i}^{\beta \alpha} \tag{2.11}
\end{equation*}
$$

Notice that we have

$$
\begin{equation*}
\delta_{i}=\left(\partial_{i} x^{i^{\prime}}\right) \delta_{i}, \delta_{i}^{\alpha}=\left(\partial_{i} x^{i^{\prime}}\right) \delta_{i^{\prime}}^{\alpha}, \delta_{i}^{\alpha \beta}=\left(\partial_{i} x^{i^{\prime}}\right) \delta_{i^{\prime}}^{\alpha \beta} \tag{2.12}
\end{equation*}
$$

These equations provide the main advantage of B when comparing with \bar{B}.
The dual basis of \bar{B} is $\bar{B}^{*}=\left(d x^{i}, d y_{\alpha}^{i}, d z_{\alpha \beta}^{i}\right)$. By the change of coordinates (1.3) the elements of \bar{B}^{*} are transformed as follows

$$
\begin{align*}
d x^{i^{\prime}}= & \left(\partial_{i} x^{i^{\prime}}\right) d x^{i} \\
d y_{\alpha}^{i^{\prime}}= & \left(\partial_{i} \partial_{j} x^{i^{\prime}}\right) y_{\alpha}^{j} d x^{i}+\left(\partial_{i} x^{i^{\prime}}\right) d y_{\alpha}^{i} \\
d z_{\alpha \beta}^{i^{\prime}}= & \left(\partial_{i} z_{\alpha \beta}^{i^{\prime}}\right) d x^{i}+\left(\partial_{j}^{\gamma} z_{\alpha \beta}^{i^{\prime}}\right) d y_{\gamma}^{j}+\left(\partial_{i}^{\gamma \delta} z_{\alpha \beta}^{i^{\prime}}\right) d z_{\gamma \delta}^{i} \tag{2.13}\\
= & {\left[2^{-1}\left(\partial_{i} \partial_{j} \partial_{h} x^{i^{\prime}}\right) y_{\alpha}^{j} y_{\beta}^{h}+\left(\partial_{i} \partial_{j} x^{i^{\prime}}\right) z_{\alpha \beta}^{j}\right] d x^{i} } \\
& +2^{-1}\left(\partial_{j} \partial_{h} x^{i^{\prime}}\right)\left(y_{\beta}^{h} d y_{\alpha}^{j}+y_{\alpha}^{h} d y_{\beta}^{j}\right)+\left(\partial_{i} x^{i^{\prime}}\right) d z_{\alpha \beta}^{i}
\end{align*}
$$

The dual basis of B is $B^{*}=\left(d x^{j}, \delta y_{\alpha}^{j}, \delta z_{\alpha \beta}^{j}\right)$, where

$$
\begin{align*}
\delta y_{\alpha}^{j} & =d y_{\alpha}^{j}+M_{i \alpha}^{j} d x^{i} \\
\delta z_{\alpha \beta}^{j} & =d z_{\alpha \beta}^{j}+M_{i \alpha \beta}^{j \gamma} d y_{\gamma}^{i}+M_{i \alpha \beta}^{j} d x^{i} . \tag{2.14}
\end{align*}
$$

The functions M are, for the time being, undetermined.
Proposition 2.1. The necessary and sufficient conditions for the basis B and B^{*} to be dual to each other (when \bar{B} and \bar{B}^{*} are dual) are the following equations:

$$
\begin{align*}
M_{i \alpha}^{j} & =N_{i \alpha}^{j} \\
M_{i \alpha \beta}^{j \gamma} & =N_{i \alpha}^{j} \text { for } \gamma=\beta \text { and zero for } \beta \neq \gamma \tag{2.15}\\
M_{i \alpha \beta}^{j} & =N_{i \alpha \beta}^{j}+N_{h \alpha}^{j} N_{i \beta}^{h}
\end{align*}
$$

The proof follows by a straightforward calculation.
In the following we shall need the formulae which express the elements of \bar{B} as functions of elements of B. These are getting in the form

$$
\begin{align*}
\partial_{i} & =\delta_{i}+N_{i \alpha}^{j} \delta_{j}^{\alpha}+\left(N_{i \alpha}^{h} N_{h \beta}^{j}+N_{i \alpha \beta}^{j}\right) \delta_{h}^{\alpha \beta} \\
\partial_{i}^{\alpha} & =\delta_{i}^{\alpha}+N_{i \beta}^{j} \delta_{j}^{\alpha \beta} \tag{2.16}\\
\partial_{i}^{\alpha \beta} & =\delta_{i}^{\alpha \beta}
\end{align*}
$$

We shall need also the brackets of vector fields from B

$$
\begin{align*}
{\left[\delta_{i}^{\alpha \beta}, \delta_{j}^{\varepsilon \gamma}\right] } & =0 \\
{\left[\delta_{i}^{\alpha}, \delta_{j}^{\beta \gamma}\right] } & =\partial_{j}^{\beta \gamma}\left(N_{i \varepsilon}^{h}\right) \delta_{h}^{\alpha \varepsilon} \\
{\left[\delta_{i}, \delta_{j}^{\beta \gamma}\right] } & =\partial_{j}^{\beta \kappa}\left(N_{i \alpha}^{k}\right) \delta_{k}^{\alpha}+\left[\partial_{j}^{\beta \kappa}\left(N_{i \alpha}^{k}\right) N_{k \varepsilon}^{h}+\partial_{j}^{\beta \kappa}\left(N_{i \alpha \varepsilon}^{h}\right)\right] \delta_{h}^{\alpha \varepsilon}, \tag{2.17}\\
{\left[\delta_{i}^{\alpha}, \delta_{j}^{\beta}\right] } & =\left[\partial_{j}^{\beta}\left(N_{i \gamma}^{k}\right)-N_{i \varepsilon}^{h} \partial_{h}^{\beta \varepsilon}\left(N_{i \gamma}^{k}\right)\right] \partial_{k}^{\alpha \gamma}-\left[\partial_{i}^{\alpha}\left(N_{j \varepsilon}^{h}\right)-N_{j \varepsilon}^{h} \partial_{h}^{\beta \varepsilon}\left(N_{i \gamma}^{k}\right)\right] \partial_{k}^{\beta \gamma}, \\
{\left[\delta_{i}, \delta_{j}\right] } & \left.=R_{i j \alpha}^{k} \partial_{k}^{\alpha}+\bar{R}_{i j \alpha \beta}^{k} \partial_{k}^{\alpha \beta}=R_{i j \alpha}^{k} \delta_{k}^{\alpha}+\left(\bar{R}_{i j \alpha \beta}^{k}-N_{h \beta}^{k} R_{i j \alpha}^{h}\right)\right) \partial_{k}^{\alpha \beta},
\end{align*}
$$

where

$$
\begin{align*}
R_{i j \alpha}^{k} & =\delta_{j}\left(N_{i \alpha}^{k}\right)-\delta_{i}\left(N_{j \alpha}^{k}\right) \\
\bar{R}_{i j \alpha \beta}^{k} & =\delta_{j}\left(N_{i \alpha \beta}^{k}\right)-\delta_{i}\left(N_{j \alpha \beta}^{k}\right) \tag{2.18}
\end{align*}
$$

From (2.17) one reads
Proposition 2.2. The horizontal distribution $u \mapsto N_{0}(u), u \in E$ is integrable if and only if

$$
\begin{equation*}
R_{i j \alpha}^{k}=0, \quad \bar{R}_{i j \alpha \beta}^{k}=0 . \tag{2.19}
\end{equation*}
$$

By (1.3) and (2.4) it follows that $\stackrel{(\beta)}{\Gamma}=y_{\alpha}^{i} \partial_{i}^{\alpha \beta}$ are k-vector fields globally defined on $J_{k}^{2} M$. They are similar to the Liouville vector field on $T M$.

3. Distinguished connections on $J_{k}^{2} M$

Among the linear connections on $E=J_{k}^{2} M$ those which preserve by parallelism the decomposition (2.11) are remarkable ones. They are useful especially when a calculation in local coordinates is performed.

Let $\mathcal{N}_{0}, \mathcal{N}_{1}, \mathcal{N}_{2}$ be the sets of vector fields on E which take their values in the distributions N_{0}, N_{1}, N_{2}, respectively.

Definition 3.1. A linear connection D on E will be called a distinguished connection (d-connection, for brevity) if for any vector field $X \in \mathcal{X}(E)$ we have

$$
\begin{equation*}
\left(\forall Y \in \mathcal{N}_{a}\right) D_{X} Y \in \mathcal{N}_{a}, \quad a=0,1,2 \tag{3.1}
\end{equation*}
$$

By (2.21), $P(X)=X \Longleftrightarrow X \in \mathcal{N}_{0}, P(X)=-X \Longleftrightarrow X \in \mathcal{N} 1 \oplus \mathcal{N}_{2}$.
Using these formulae one finds
Proposition 3.1. A linear connection D on E is ad-connection if and only if $D_{X} P=0$.

In the basis B, a d-connection D takes the form:

$$
\begin{align*}
D_{\delta_{j}} \delta_{i} & =\stackrel{1}{F_{i j}^{k}} \delta_{k}, D_{\delta_{j}^{\alpha}} \delta_{i}=\stackrel{1}{V_{i j}^{k \alpha}} \delta_{k}, D_{\partial_{j}^{\alpha \beta}} \delta_{i}=\stackrel{1}{C_{i j}^{k \alpha \beta}} \delta_{k}, \\
D_{\delta_{j}} \delta_{i}^{\alpha} & =\stackrel{2}{{ }^{k}} i j \beta \tag{3.2}\\
{ }_{i j \beta} & \delta_{k}^{\beta}, D_{\delta_{j}^{\beta}} \delta_{i}^{\alpha}=\stackrel{2}{V_{i j \gamma}^{k \alpha \beta}} \delta_{k}^{\gamma}, D_{\partial_{j}^{\beta \gamma}} \delta_{i}^{\alpha}=\stackrel{2}{C_{i j \varepsilon}^{k \alpha \beta \gamma}} \delta_{k}^{\varepsilon}, \\
D_{\delta_{j}} \partial_{i}^{\alpha \beta} & =\stackrel{3}{F_{i j \mu \nu}^{k \alpha \beta}} \partial_{k}^{\mu \nu}, D_{\delta_{j}^{\gamma}} \partial_{i}^{\alpha \beta}=\stackrel{3}{V_{i j \mu \nu}^{k \alpha \beta \gamma}} \partial_{k}^{\mu \nu}, D_{\partial_{j}^{\gamma \varepsilon}} \partial_{i}^{\alpha \beta}=\stackrel{3}{C_{i j \mu \nu}^{k \alpha \beta \gamma \varepsilon}} \partial_{k}^{\mu \nu} .
\end{align*}
$$

Definition 3.2. A d-connection D will be called strongly distinguished if $D \stackrel{\alpha}{J}=0, \alpha=1, \ldots, k$.

A straightforward calculation gives
Proposition 3.2. A d-connection D is normal if and only if its local coefficients in (3.1) verify

$$
\begin{align*}
\stackrel{2}{F}_{i j \beta}^{k \alpha} & =\stackrel{1}{F_{i j}^{k}} \delta_{\beta}^{\alpha}, \stackrel{3}{F_{i j \mu \nu}^{k \alpha \beta}}=\stackrel{1}{F_{i j}^{k}} \delta_{\nu}^{\alpha} \delta_{\mu}^{\beta} \\
\stackrel{2}{V}_{i j \gamma}^{k \alpha \beta} & =\stackrel{1}{V_{i j}^{k \beta}} \delta_{\gamma}^{\alpha} \stackrel{3}{V_{i j \mu \nu}^{k \alpha \gamma \beta}}=\stackrel{1}{V_{i j}^{k \beta}} \delta_{\nu}^{\alpha} \delta_{\mu}^{\gamma} \tag{3.3}\\
\stackrel{2}{C}_{i j \mu}^{k \alpha \beta \gamma} & =\stackrel{1}{C_{i j}^{k \beta}} \delta_{\mu}^{\alpha}, \stackrel{3}{C_{i j \mu \nu}^{k \alpha \beta \gamma \varepsilon}}=\stackrel{1}{C_{i j}^{k \alpha \beta}} \delta_{\mu}^{\varepsilon} \delta_{\nu}^{\gamma} .
\end{align*}
$$

Thus a normal d-connection is completely determined by the local coefficients $D \Gamma=\left(\stackrel{1}{F}{ }_{i j}^{k}, \stackrel{1}{V_{i j}^{k \alpha}}, \stackrel{1}{C_{i j}^{k \alpha \beta}}\right)$.

When the local coordinates are changed by (1.3), these local coefficients are transformed as follows:

$$
\begin{align*}
\stackrel{1}{F_{i^{\prime} j^{\prime}}^{k^{\prime}}} & \left.=\left(\partial_{i^{\prime}} x^{i}\right)\left(\partial_{j^{\prime}} x^{j}\right)\left(\partial_{k} x^{k^{\prime}}\right)\right)_{i j}^{k}-\left(\partial_{i^{\prime}} x^{i}\right)\left(\partial_{j^{\prime}} x^{j}\right) \frac{\partial^{2} x^{k^{\prime}}}{\partial x^{i^{\prime}} \partial x^{j^{\prime}}} \\
\stackrel{1}{V_{i^{\prime} j^{\prime}}^{k^{\prime} \alpha}} & =\left(\partial_{i^{\prime}} x^{i}\right)\left(\partial_{j^{\prime}} x^{j}\right)\left(\partial_{k} x^{k^{\prime}}\right) V_{i j}^{k \alpha} \tag{3.4}\\
{\stackrel{1}{C^{\prime}}{ }_{i^{\prime} j^{\prime}}^{k^{\prime} \beta}}^{k} & =\left(\partial_{i^{\prime}} x^{i}\right)\left(\partial_{j^{\prime}} x^{j}\right)\left(\partial_{k} x^{k^{\prime}}\right) \stackrel{1}{C_{i j}^{k \alpha \beta}}
\end{align*}
$$

Notice that $\stackrel{1}{V}$ and $\stackrel{1}{C}$ are tensor fields and $\stackrel{1}{F}$ changes like the coefficients of a linear connection.

From (2.8) one sees that if $\left(N_{i \alpha}^{j}(x, y, z)\right)$ do not depend on z in a local chart, then this happens also in any other local chart. In other words, the property $\partial_{k}^{\beta \gamma} N_{i \alpha}^{j}=0$ is a geometrical one. In fact, the functions $T_{i k \alpha}^{j \beta \kappa}=\partial_{k}^{\beta \kappa} N_{i \alpha}^{j}$, define a tensor field of type (1.2).

Using again (2.8) it follows that if $T_{i k \alpha}^{j \beta \gamma}=0$ then $\partial_{j}^{\alpha} N_{i \alpha}^{k}$ and $\partial_{j}^{\alpha \beta} N_{i \alpha \beta}^{k}$ change under (1.3) as $\stackrel{1}{F}_{i j}^{k}$. Thus we have

Proposition 3.3. Let $\left(N_{i \alpha}^{k}, N_{i \alpha \beta}^{k}\right)$ be a nonlinear connection on E. If $\left(N_{i \alpha}^{k}\right)$ do not depend on z then $B \stackrel{1}{\Gamma}=\left(\partial_{j}^{\alpha} N_{i \alpha}^{k}, 0,0\right)$ and $B \stackrel{2}{\Gamma}=\left(\partial_{j}^{\alpha \beta} N_{i \alpha \beta}^{k}, 0,0\right)$ are normal d-connections on E.

The connections from Proposition 3.3 are similar with the Berwald connection from Finsler geometry.

REFERENCES

[1] M. Anastasiei, H. Kawaguchi, Geometry of multiparametrized Lagrangians, Publ. Math. Debrecen 42 (1993), 29-37.
[2] I. Čomić, The curvature theory of strongly distinguished connection in the recurrent k Hamilton space, Indian J. Pure Appl. Math. 23 (3) (1992), 189-202.
[3] R. Miron, Spaces with higher order metric structures, Tensor N.S. 53 (1993), 1-23.
[4] R. Miron, M. Anastasiei, The Geometry of Lagrange Space: Theory and Applications, Kluwer Academic. Publ. FTPH 59, 1994.
[5] R. Miron, M. Kirkovits, M. Anastasiei, A geometrical model for variational problems of multiple integrals, Proc. Conf. Diff. Geometry and Appl. Dubrovnik, Yugoslavia, 1988, 209-216.
[6] D. J. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press, 1989.
(received 27.12.1996.)
Faculty of Mathematics, University "Al. I. Cuza" Iaşi, 6600, Iaşi , Romania
Faculty of Technical Sciences, University of Novi Sad, 21000 , Novi Sad, Yugoslavia
e-mail: anastas@uaic.ro

[^0]: Communicated at the 11. Yugoslav Geometrical Seminar, Divčibare 1996.

