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SOME INEQUALITIES FOR ENTIRE FUNCTIONS
OF EXPONENTIAL TYPE

Milutin Dostanié

Abstract. In this paper we give simple proofs of some inequalities for entire functions of
exponential type.

1. Introduction

Thera are many LP-inequalities, as well as inequalities in the uniform norm,
concerning entire functions of exponential type and their derivatives. One of the
most known inequalities is Bernstein’s inequality

sup | £/(2)] < o sup | f(@)], (1)
zER ze€R
[ F @) de < o? / \f ()P d, (2)

which holds for entire functions of type < o. In the case p > 1 the inequalities
(1) and (2) were proved in a more general form in [1]. An extension to the case
0 < p < 1 was done in [4], where it was proved that for arbitrary numbers A, B
with Im(A/B) > 0 and an arbitrary entire function of exponential type < o

o0

| s+ i@ ar<jasionr [ i@ 3)
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In this paper we give simple proofs of some inequalities that are interesting by
themselves and may be of some interest in other investigations.

2. Results

THEOREM 1. Let f be an entire function of exponential type o and P a poly-
nomial. Let P = Py P_, where Py and P_ are polynomials whose zeros lie in
Iy ={z : Imz>0} and II_ ={z : Imz <0} respectively. Then
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a) If [ |f(z)|"dz < +o0 (r>0), then
/_ P de < PP [ Il de @)
b) If sup,cg |f(x)| < +00, then
sup |P(d/dz) f(x)| < |Py(—io)P-(io)| sup | f(z)]. (5)
z€R z€R

THEOREM 2. Let f be an entire function of exponential type o such that
ffooo |f(2)|P dx < 400 (p>0). Then

Zme

|f ()l w)lPdu (z € R), (6)

where m = mingso(e — 1)/t2.

It was proved in [1] that if f is an entire function of exponential type such
that [*°_|f(z)|P do < oo for some p > 1, then it is bounded on R. In [4] this was
extended to all p > 0, but the method did not give an estimate from above for

11/ 11l where (1]l = sup,er |F(@)], [1fll, = (Jg £ ()P da)' /7.

Theorem 2 asserts that ||f|lc < C(p,0)|f|l, where C(p,0) = (20mp/7)/?.
This constant (in the case p > 1) is better than the one given in [1]. It is an open
question what is the best constant in (6).

3. Proofs

Theorem 1 (a) is a direct consequence of (3). Indeed, from (3) we obtain

)
/ lof (@) + f(@)|" dx < |+ o / (@) d,
R R

provided Ima > 0. Let P(z) = [[\~,(# + i), Imay; > 0,4 =1,2,...,m. Then by
successive apphcatlons of the last inequality, we get

/|P d/dx)f dx-/‘( ( ))f(x)
<|am+iU|T/R‘<£[1 (ai-k%))f(ir)

< Jam + o] Jam—1 +io]" - -|ay + o] / (@) do
R
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In the case when all the zeros of P lie in II;, an application of the preceding
inequality to the polynomial P;(z) = P(—z) and the entire function f;(z) = f(—=2)
shows that

/ P(d/de) f(2)]" di < |P(—io)[" / @) da
R R

Finally, if P = P, P_, then combining the last two inequalities we obtain (4).

Inequality (5) cannot be obtained from (4) as the limit when r — oo, be-
cause the interval of integration is unbounded. In proving (5) we shall use Levitan
polynomials [1], [3] as well as the following theorem [3].

Let the roots of an algebraic polynomial P lie in IT; and let

S(0) = Z be?, T(h) = Z a,e™®, a_, #0.
If T(9) # 0 in II. and |S(A)| < |T(9)| for all # € R, then |P(d/dF)S(F)| <
|P(d/dB)T(8)] for all # € I1..
Hence, by taking T'(f) = e~ "Y maxyer |S(#)| we obtain the following

LEMMA. If all the zeros of a polynomial P lie in 114 and S is a trigonometric
polynomial of degree n, then

max |P(d/d9)S(6)| < [P(—in)| max|S()].

Let ¢(z) = (sinwa/mx)? and f be an entire function of exponential type o

such that ||f||e = sup,er |f(z)| = M < +o00. For b > 0 we define

[e]

fu(z) = Z olhz+v)f (z+ %) )

Vv=—00

It turns out [3] that f, has the following properties:
1° f, is a trigonometric polynomial, f(z) = Y0 a,e2™* a, € C, N =
1+ [0/27h] (Levitan polynomial).
2° |Ifnlloc = supger | fu(x)] < M.

3° limp— 40 fn(z) = f(2), the convergence being uniform on compact subsets.
(The same holds for the derivatives.)

Consider first the case of a polynomial P(z) = Y_;" ; d2" with zeros in II;.
Applying Lemma to the trigonometric polynomial fj,(8/27h) (of degree N =1 +
[0/27h]) and the polynomial Py (z) = P(2mhz), it follows

max | Pu(d/dB) fu(8/2mh)| < |Pa(=iN) | max | fa(6/2mh)] < [Ph(=iN)| sup ()],

i.e.

sup |~ de fi" (0/27h)| < sup |f()] - |Pa(=iN)].
9eR|; g z€R

Hence, sup, e | Sheg dify (2)] < sup,er |F()] - |Pa(=iN)].
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When h — 0+ we obtain P,(—iN) = P(—27hiN) — P(—ic) and, since
FB 1) we have sup, cg | S di f ) (2)] < |P<—z'a>| N flloos Le.

|P(d/dz) f(z)] . < |P(=i0)] || flloo- (7)

If the zeros of P lie in II_, then we only have to apply the preceding inequality
to Pi(z) = P(—z) and fi(z) = f(—z). So we obtain, for such polynomials, the
inequality |P(d/dx)f(z)]|e < |P(i0)|- || fllc- By successive applications of the last
inequality and (7) we obtain (5).

Proof of Theorem 2. In [2], p. 98 it is proved that if f is an entire function of
exponential type ¢ such that f (z)|P dx < 0o (p > 0) then

/ @+ iy)|P de < erlV / @) de

— 00 — 00

Hence

h Iyl epo'h_]_
/dy/ fla +iy)lP de < ||f||§/ e?? W dy = 2| fllf———,
“h po

ie. ok _ 1
[ rerdae <t =
[Im z|<h
(Here dA(z) =dxdy, z = z + 1y.)

Since |f|? is a subharmonic function we have that

for< s [ Iraacalps =t iew
20|} e
po ePoh — 1
P P , teR.
fop < TR ve

The last inequality holds for all A~ > 0 and hence

2

FOF < m tER.
T x>

REFERENCES

[1] H. . Axuesep, Jexyuu no meopuu anpoxcumayuu, Hayka, Mocksa 1965.
[2] R. P. Boas, Jr., Entire functions, Academic Press, New York 1954.

(3] B. AI. JIeBuH, Pacnpedeaenue xopred yeavir gynryud, MockBa 1956.

4]

4] QaziI. Rahman, G. Schmeisser, L? inequalities for entire functions of exponential type, Trans.

Amer. Math. Soc. 320 (1990), 91-103

(received 26.08.1996.)

Faculty of Mathematics, Studentski trg 16, Belgrade, Yugoslavia



