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SUBHARMONIC BEHAVIOUR OF SMOOTH FUNCTIONS

Miroslav Pavlovi�c

Abstract. We prove that jf jp, p > 0, behaves like a subharmonic function if f is a C2-
function such that, for some constants K and K0,

j�f(x)j6 Kr�1 sup jrf j+K0r
�2 sup jf j;

where the supremum is taken over Br(x) = f z : jz � xj < r g. If in addition K0 = 0, then jrf jp

has a similar property.

Throughout the paper we �x a positive integer n and denote by Rn the eu-
clidean n-space. The euclidean ball of radius r, centered at x 2 Rn, is denoted by
Br(x), and the unit ball is B = B1(0). By dm we denote the Lebesgue measure
in Rn normalized so that m(B) = 1, hence m(Br(x)) = rn. Throughout, G will
denote a proper subdomain of Rn.

If f is a function harmonic in G, then the function jf jp for p > 1 is subharmonic
in G and therefore has the sub-mean-value property over balls. If p < 1, then jf jp

need not be subharmonic but, by a result of Hardy and Littlewood [4], Fe�erman
and Stein [3] and Kuran [6], there exists a constant K = K(n; p) <1 such that

jf(x)jp 6 Kr�n
Z
Br(x)

jf jp dm

whenever Br(x) � G. As observed in [1] and [7] a slight modi�cation of Fe�erman
and Stein's proof yields a more general result. To state it we de�ne a class of
functions with subharmonic behaviour.

The class sh(G). Let sh(G) denote teh class of non-negative, continuous func-
tions u on G such that, for some constant K > 1,

u(x) 6 Kr�n
Z
Br(x)

u dm

whenever Br(x) � G.

Theorem A. If u 2 sh(G), then up 2 sh(G) for every p > 0.

15



16 M. Pavlovi�c

A very short proof is in [8].

In [8] we discussed some simple su�cient conditions for a C1-function f in
order that jf j 2 sh(G) or jrf j 2 sh(G). More precisely, jf j 2 sh(G) if

jrf(x)j 6 Kr�1 supf jf(z)j : z 2 Br(x) g (1)

for some constant K > 0. And jrf j 2 sh(G) if

jrf(x)j 6 Kr�1!f(x; r); (2)

where !f(x; r) is the oscillation of f over Br(x). (In Section 2 we will state a vector
variant of these results.)

In this paper we consider su�cient conditions for a C2-function f to satisfy
(1) or (2). The main result, Theorem 2, asserts that (1) is implied by

j�f(x)j 6 Kr�1 sup
Br(x)

jrf j+K0r
�2 sup

Br(x)
jf j; (3)

while (2) is implied by (3,K0 = 0). (Here and elsewhere K, K0, K1, . . . denote
constants independent of Br(x) � G.)

Condition (3,K0 = 0) is satis�ed if, for instance,

(i) f is harmonic,

(ii) G is bounded and f is an eigenfunction of the ordinary Laplacian,

(iii) G = B and f is an eigenfunction of the hyperbolic Laplacian.

Using Theorem 2 we prove that condition (3,K0 = 0) is satis�ed if f is a
polyharmonic function (Corollary 5).

1. Classes of smooth functions

For a su�ciently smooth function f : G! R
k let @jf = @f=@xj (j = 1; . . . ; n),

whence @jf(x) 2 R
k for x 2 G. The Laplacian � is de�ned by �f =

Pn
j=1 @j(@jf)

and so �f(x) 2 R
k for x 2 G. We use the symbol rf only in the case k = 1:

rf = (@1f; . . . ; @nf). Thus if k = 1, then rf maps G into Rn. In the general case
we denote by Df(x) the derivative of f at x 2 G treated as a linear operator from

R
n to Rk. If f is real valued, then kDf(x)k = jrf(x)j, r(�f) = �(rf) and

kD(rf)(x)k � f
P
i;j
(@i@jf(x))

2g1=2; x 2 G:

(We write A(x) � B(x), x 2 G, to denote that A(x)=B(x) is between two positive
constants independent of x.)

The class HC1(G). Let C1(G) be the class of all C1-functions de�ned in G

and with values in some Rk (k is constant when f is �xed). The class HC1(G) is
the subclass of C1(G) consisting of those f for which there is a constant K > 0
such that

kDf(x)k 6 K supf jf(z)j : z 2 Br(x) g; Br(x) � G: (4)
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Note that (4) is implied by

kDf(x)k 6 Kjf(x)j=�G(x); (�G(x) = dist(x; @G)) (5)

which is a restriction on the growth of f and therefore is much stronger than (4).
For example, if f > 0 is a real function on G = (0;+1) � R

1, then (5) reduces
to f 0(x) 6 Kf(x)=x, which implies that f(x)=xK is decreasing and xKf(x) is
increasing for x > 0.

Note also that HC1(0;+1) does not contain the function f(x) = sinx, which
is seen by choosing x = 2s�, r = 2s� (s = 1; 2; . . . ).

The class OC1(G). This is the subclass of C1(G) consisting of those f such
that, for some constant K,

kDf(x)k 6 Kr�1!f(x; r); Br(x) � G; (6)

where !f(x; r) = supf jf(z)� f(x)j : z 2 Br(x) g. Clearly OC
1(G) � HC1(G).

It was observed in [8] that every convex (or concave) function from C1(G)
belongs to OC1(G). In particular the function f(x) = ex is in HC1(0;+1) but f
does not satisfy (5).

The class HC2(G). This class consists of those f 2 C2(G) for which

j�f(x)j 6 Kr�1 supf kDf(z)k : z 2 Br(x) g+K0r
�2 supf jf(z)j : z 2 Br(x) g (7)

for some constants K, K0.

The condition j�f(x)j 6 KkDf(x)k�G(x)
�1 + K0jf(x)j�G(x)

�2 implies (7)
with the same values of K and K0.

The class OC2(G). It consists of those f 2 C2(G) such that

j�f(x)j 6 Kr�1 supf kDf(z)k : z 2 Br(x) g (8)

for some constant K. In particular, OC2(G) contains every function f for which

j�f(x)j 6 KkDf(x)k=�G(x); x 2 G: (9)

Example 1. Condition (8) is satis�ed if f is a harmonic function on an
arbitrary domain G. Let f be an eigenfunction of �, i.e. �f � �f for some
constant �. Assuming that cl(rB) � G, where rB = Br(0), we have

n

Z
@B

d

dr
f(ry) d�(y) = r1�n

Z
rB

�f dm;

where d� is the normalized surface measure on @B, which is a special case of Green's
formula. Hence

r�f(0) = n

Z
@B

d

dr
f(ry) d�(y) � r1�n

Z
rB

(f � f(0)) dm;

and hence j�f(0)j 6 nr�1 suprB jrf j+ rj�j suprB jrf j. Applying this to the func-
tion z 7! f(x + z) we conclude that f 2 OC1(G) provided G is bounded. On the



18 M. Pavlovi�c

other hand, if f(x) = sinx1, G = fx 2 Rn : x1 > 0 g, then �f = �f but f is not
in OC2(G).

Example 2. A function f 2 C2(B) is said to be hyperharmonic if �hf � 0,
where

�hf(x) = (1� jxj2)2[�f(x) + 2(n� 2)(1� jxj2)�1x � rf(x)]:

(x � y denotes the inner product in Rn.) It is clear that a hyperharmonic function
satis�es (9) with K = 2(n� 2) and therefore belongs to OC2(B). More generally,
every eigenfunction of �h belongs to OC2(B), which can be proved by using the
hyperbolic variant of Green's formula. (See [5], where a complex hyperbolic analog
of (8) was considered.)

2. Results

The following theorem was proved in [8] in the case of scalar functions. The
proof of the vector variant is similar and we omit it.

Theorem 1. (a) If f 2 HC1(G), then jf j 2 sh(G).

(b) If f 2 OC1(G), then the function x 7! kDf(x)j belongs to sh(G).

Corollary 1. Let p > 0. A function f from C1(G) belongs to HC1(G) if

and only if there is a constant K such that

jrF (x)j 6 Kr�n�p
Z
Br(x)

jf jp dm; 0 < r < �G(x):

Let !pf(x; r) = fr�n
R
Br(x)

jf(z)� f(x)jp dm(z)g1=p.

Corollary 2. Let p > 0. A function f belongs to OC1(G) if and only if

jrf(x)j 6 Kr�1!pf(x; r), 0 < r < �G(x), for some constant K.

Proof. \If" part is trivial. Let f 2 OC1(G). Then f � c is in OC1(G) �
HC1(G) for an arbitrary vector c. Hence, by Corollary 1,

kDf(x)kp 6 K1r
�n�p

Z
Br(x)

jf � cjp dm:

As follows from [8], he constant K1 depends only onK from (6), p and n (not on c).
The desired result now follows by taking c = f(x).

The main result of this paper is the following

Theorem 2. The following relations hold:

(a) HC2(G) � HC1(G) (b) OC2(G) � OC1(G).

Before proving the theorem we deduce some consequences.

Corollary 3. A function f 2 C2(G) belongs to HC2(G) if and only if there

is a constant K such that j�f(x)j 6 Kr�2 supf jf(z)j : z 2 Br(x) g.
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Proof. \If" part is trivial. \Only if" part is a consequence of Theorem 2(a).

Corollary 4. Let p > 0. For a function f 2 C2(G) the following assertions

are equivalent:

(i) There is a constant K such that j�f(x)j 6 Kr�2!f(x; r).

(ii) There is a constant K such that j�f(x)j 6 Kr�2!pf(x; r).

(iii) There is a constant K such that j�f(x)jp 6 Kr�n�p
R
Br(x)

kDf(z)kp dm(z).

(iv) f 2 OC2(G).

Proof. The implications (ii) ) (i) ) (iv) and (iii) ) (iv) are trivial. The
validity of implication (iv) ) (iii) is easily derived from Theorem 2(b), Theorem
1(b) and Theorem A. That (iv) implies (ii) is deduced from Theorem 2(b) and
Corollary 2.

As a further application of Theorem 2 we note a su�cient condition for a
C3-function to be in OC2(G).

Theorem 3. A real valued C3-function f belongs to OC2(G) if there are

constants K1 and K2 such that

jr(�f)(x)j 6 K1r
�1 sup

Br(x)
kD(rf)k+K2r

�2 sup
Br(x)

jrf j: (10)

Proof. Since r(�f) = �(rf) condition (10) means that rf 2 HC2(G).
Thus (10) implies rf 2 HC1(G), by Theorem 2(b), which means kD(rf)(x)k 6
Kr�1 supBr(x) jrf j for some constant K. Since obviously j�f j 6 const � kD(rf)k,

it follows that f 2 OC2(G).

Corollary 5. A C4-function f : G ! R belongs to OC2(G) if so does �f .
Consequently a C1-function f belongs to OC2(G) if so does �kf for some inte-

ger k. In particular every polyharmonic function of �nite order belongs to OC2.
(A function f is polyharmonic if �kf � 0 for some integer k. For information see
[2].)

Proof. Let �f 2 OC2. Then �f 2 HC1, by Theorem 2, i.e. jr(�f)(x)j 6
Kr�1 supBr(x) jrf j. Now the desired conclusion follows from Theorem 3.

Remark 1. As noted in the proof of Theorem 3 condition (10) means rf 2
HC2. By Corollary 3 condition (10) implies the existence of a constant K such
that jr(�f)(x)j 6 Kr�2 supBr(x) jrf j, which is aparently stronger than (10).

Remark 2. It follows from the proofs of Theorem 3 and Corollary 5 that there
hold the following implications:

�f 2 HC1 =) rf 2 OC2 =) rf 2 HC1 =) f 2 OC2:
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3. Proof of theorem 2.

The proof is based on the following consequence of Green's formula.

Lemma 1. If f : Br(x)! R
k is a C2-function, then

kDf(x)k 6 nr�1 sup
Br(x)

jf j+
n

n+ 1
r sup
Br(x)

j�f j: (11)

Proof. In the case k = 1 a proof is in [2] (Proposition 3.1). If k > 1, we consider

the functions u(z) = f(z) � �, � 2 Rk, then use the formula ru(x) = Df(x)�� and
choose � so that j�j = 1 and jDf(x)��j = kDf(x)�k = kDf(x)k. Then the result
follows from the inequalities ju(z)j 6 jf(z)j and j�u(z)j = j(�f)(z) ��j 6 j�f(z)j.

Lemma 2. Let F1, F2 and F3 be nonnegative, continuous functions on G such

that, for some constant K,

F1(x)=K 6 r�1 sup
Br(x)

F2 + r sup
Br(x)

F3 (12)

and

F3(x)=K 6 r�1 sup
Br(x)

F1 + r�2 sup
Br(x)

F2 (13)

whenever Br(x) � G. Then there is a constant C = C(K) such that

F1(x) 6 Cr�1 sup
Br(x)

F2: (14)

Proof. By translations the proof of (14) reduces to the case x = 0. Let
cl(B"(0)) � G and F2 6 1 on B"(0). (In the general case we consider the functions
Fi=A, where A is chosen so that F2(z) 6 A for all z 2 B"(0).) Choose x 2 B"(0)
so that F1(y)("� jyj) 6 F1(x)("� jxj) for all y 2 B"(0). This implies that F1(y) 6
2F1(x) for y 2 B�(x), where � = (" � jxj)=2. Now we use the hypotheses to �nd
y 2 cl(B�(x)) so that

F1(x)=K 6 r�1 + (Kr=t)F1(y) +Krt�2

for all r, t > 0 such that r+ t = �, which implies F1(x)=K 6 r�1+(2Kr=t)F1(x)+
Krt�2. Now choose r; t so that r + t = � and 2Kr=t = 1=2K, which implies that
r = c1("� jxj), t = c2("� jxj) for some ci = ci(K), to obtain

F1(x)=K 6 F1(x)=2K +K1("� jxj)
�1;

whereK1 = c�11 +c1c
�2
2 . Hence F1(0)" 6 F1(x)("�jxj) 6 2KK1, and this concludes

the proof.

Proof of Theorem 2. Let f satisfy (7). We may assume that K > n and
K0 > n. De�ne functions

F1(x) = kDf(x)k; F2(x) = jf(x)j; F3(x) = j�f(x)j:
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Then (12) is sastis�ed because of (11), and (13) is satis�ed because of (7). Hence
f 2 HC1(G), by Lemma 2. This proves assertion (a).

To prove (b) let f 2 OC2(G). Applying (a), together with its proof, to the
functions f � c we �nd a constant K1 independent of x, r, c so that kDf(x)k 6
K1r

�1 supBr(x) jf � cj. Finally we take c = f(x) to �nish the proof.
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