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SUBHARMONIC BEHAVIOUR OF SMOOTH FUNCTIONS
Miroslav Pavlovié

Abstract. We prove that |f|?, p > 0, behaves like a subharmonic function if f is a C2-
function such that, for some constants K and Ky,

|Af(z)] < Kr~tsup |Vf| + Kor ?sup |f],

where the supremum is taken over B,.(z) = {z : |z — z| < r}. If in addition Ky = 0, then |V f|?
has a similar property.

Throughout the paper we fix a positive integer n and denote by R™ the eu-
clidean n-space. The euclidean ball of radius r, centered at € R", is denoted by
B.(x), and the unit ball is B = B1(0). By dm we denote the Lebesgue measure
in R™ normalized so that m(B) = 1, hence m(B,(z)) = r™. Throughout, G will
denote a proper subdomain of R".

If f is a function harmonic in G, then the function | f|P for p > 1 is subharmonic
in G and therefore has the sub-mean-value property over balls. If p < 1, then |f|?
need not be subharmonic but, by a result of Hardy and Littlewood [4], Fefferman
and Stein [3] and Kuran [6], there exists a constant K = K(n,p) < co such that

|f(z)]P < KT_n/ |f|P dm
B.(z)

whenever B,(z) C G. As observed in [1] and [7] a slight modification of Fefferman
and Stein’s proof yields a more general result. To state it we define a class of
functions with subharmonic behaviour.

The class sh(G). Let sh(G) denote teh class of non-negative, continuous func-
tions w on G such that, for some constant K > 1,

u(z) € Kr*”/ wdm
B, (z)

whenever B,.(z) C G.

THEOREM A. If u € sh(G), then u? € sh(G) for every p > 0.
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A very short proof is in [8].
In [8] we discussed some simple sufficient conditions for a C'-function f in
order that |f| € sh(G) or |Vf| € sh(G). More precisely, |f| € sh(G) if
[Vf(2)| < K™t sup{ |f(2)] - z € Br(x) } (1)
for some constant K > 0. And |V f| € sh(G) if
IVF(@)] < Kr™twf(z, ), (2)

where wf(z, ) is the oscillation of f over B,.(x). (In Section 2 we will state a vector
variant of these results.)

In this paper we consider sufficient conditions for a C?-function f to satisfy
(1) or (2). The main result, Theorem 2, asserts that (1) is implied by

|Af(x)] < Kr~" sup [Vf|+ Kor™? sup |f], (3)
- (z B, (z
while (2) is implied by (3,Ky = 0). (Here and elsewhere K, Ky, K, ... denote

constants independent of B,.(z) C G.)
Condition (3,K, = 0) is satisfied if, for instance,
(i) f is harmonic,
(ii) G is bounded and f is an eigenfunction of the ordinary Laplacian,
(ili) G = B and f is an eigenfunction of the hyperbolic Laplacian.

Using Theorem 2 we prove that condition (3,Ky = 0) is satisfied if f is a
polyharmonic function (Corollary 5).

1. Classes of smooth functions

For a sufficiently smooth function f: G — R” let 0;f =0f/ox; (j=1,...,n),
whence 8; f(x) € R" for z € G. The Laplacian A is defined by Af = > 5= 0505 f)
and so Af(x) € R” for x € G. We use the symbol Vf only in the case k = 1:
Vf=(f,...,0nf). Thusif k =1, then Vf maps G into R". In the general case

we denote by D f(z) the derivative of f at x € G treated as a linear operator from
R" to R". If f is real valued, then | Df(z)| = |Vf(z)|, V(Af) = A(Vf) and

ID(V ) (@)l < { (0 f(2)*}'/?, 2 €G.

(We write A(x) < B(x), z € G, to denote that A(x)/B(z) is between two positive
constants independent of z.)

The class HC'(G). Let C*(G) be the class of all Cl-functions defined in G
and with values in some R* (k is constant when f is fixed). The class HC(G) is
the subclass of C''(G) consisting of those f for which there is a constant K > 0
such that

IDf(@)l| < Ksup{|f(2)] : z € B:(x) }, B(x) CG. (4)
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Note that (4) is implied by
IDf(@)|l < K|f(z)|/oc(z),  (bc(x) = dist(z,0G)) (5)

which is a restriction on the growth of f and therefore is much stronger than (4).
For example, if f > 0 is a real function on G = (0,+00) C R', then (5) reduces
to f'(x) < Kf(z)/x, which implies that f(z)/a¥ is decreasing and z¥ f(x) is
increasing for x > 0.

Note also that HC(0,+00) does not contain the function f(z) = sinx, which
is seen by choosing x = 2sm, r = 2s7 (s = 1,2,...).

The class OC'(G). This is the subclass of C'(G) consisting of those f such
that, for some constant K,

IDf(@)ll < Kr~'wf(a,r), B.(x) CG, (6)
where wf(z,r) = sup{ |f(z) — f(z)| : z € B.(z) }. Clearly OC*(G) C HC'(G).

It was observed in [8] that every convex (or concave) function from C*(G)
belongs to OC*(G). In particular the function f(z) = e is in HC'(0, +00) but f
does not satisfy (5).

The class HC?(G). This class consists of those f € C?(G) for which
|Af(2)] < Kr~tsup{[|[Df(2)|| : = € By(2) }+ Kor*sup{|f ()| : 2 € B(2) } (7)

for some constants K, K.

The condition |Af(x)| <
with the same values of K and K.

The class OC?(G). Tt consists of those f € C?(G) such that
|Af(@)] < Kr~'sup{ IDf(2)|| : = € By(x) } (8)
for some constant K. In particular, OC%(G) contains every function f for which
|Af(2)] < @)/bc(z), = €. 9)

ExaMpPLE 1. Condition (8) is satisfied if f is a harmonic function on an
arbitrary domain G. Let f be an eigenfunction of A, i.e. Af = Af for some
constant A. Assuming that cl(rB) C G, where rB = B,(0), we have

n/aB—f(ry)da / Afdm,

where do is the normalized surface measure on 9B, which is a special case of Green’s
formula. Hence

10 =n [ Lpendet) == [ (7= ) dm

(@)6a (=)~

olf(2)]0g(z) "2 implies (7)

and hence |[Af(0)| < nr~'sup, 5 |V f|+ 7|\ sup, 5 |V f|. Applying this to the func-
tion z — f(x + z) we conclude that f € OC'(G) provided G is bounded. On the
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other hand, if f(x) =sinxy, G = {z € R™ : 2y > 0}, then Af = —f but f is not
in OC%(G).

EXAMPLE 2. A function f € C?(B) is said to be hyperharmonic if A, f = 0,
where

Apf(e) = (1= |2[)*[Af(z) +2(n = 2)(1 = [2]*) " 2 - Vf(2)].

(z -y denotes the inner product in R™.) It is clear that a hyperharmonic function
satisfies (9) with K = 2(n — 2) and therefore belongs to OC?(B). More generally,
every eigenfunction of A, belongs to OC?(B), which can be proved by using the
hyperbolic variant of Green’s formula. (See [5], where a complex hyperbolic analog
of (8) was considered.)

2. Results

The following theorem was proved in [8] in the case of scalar functions. The
proof of the vector variant is similar and we omit it.

THEOREM 1. (a) If f € HC*(G), then |f| € sh(G).
(b) If f € OCY(G), then the function x +— ||Df(z)| belongs to sh(G).

COROLLARY 1. Let p > 0. A function f from C1(G) belongs to HCY(G) if
and only if there is a constant K such that

|[VF(x)| < KT_”_I’/B . [fIPdm, 0<r <bg(z).

Let wpf(2,1) = {1 [y, ) |F(2) = F(@)|P dm()}V/2,
COROLLARY 2. Let p > 0. A function f belongs to OCY(G) if and only if
IVF(z)| < Kr~'w,f(z,r), 0 <r < dg(x), for some constant K.

Proof. “If” part is trivial. Let f € OCY(G). Then f — cis in OC*(G) C
HCY(G) for an arbitrary vector c. Hence, by Corollary 1,

IDf@)IP < Kar = [ (= e dm.

T

As follows from [8], he constant K7 depends only on K from (6), p and n (not on ¢).
The desired result now follows by taking ¢ = f(z). m

The main result of this paper is the following

THEOREM 2. The following relations hold:

(a) HC?*(G) Cc HCY(G) (b) OC*(G) Cc OCH(G).
Before proving the theorem we deduce some consequences.

COROLLARY 3. A function f € C%(Q) belongs to HC?(G) if and only if there
is a constant K such that |Af(z)] < Kr=2sup{|f(z)| : z € B.(z) }.
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Proof. “If” part is trivial. “Only if” part is a consequence of Theorem 2(a). m

COROLLARY 4. Let p > 0. For a function f € C%(G) the following assertions
are equivalent:

(i) There is a constant K such that |Af(x)| < Kr—2wf(x,r).

(ii) There is a constant K such that |Af(z)| < Kr~2w, f(x,1).
(iii) There is a constant K such that |Af(x)|? < Kr—""P fB,w(x) IDf ()P dm(z).
(iv) f € 0C*(G).

Proof. The implications (ii) = (i) = (iv) and (iii) = (iv) are trivial. The
validity of implication (iv) = (iii) is easily derived from Theorem 2(b), Theorem
1(b) and Theorem A. That (iv) implies (ii) is deduced from Theorem 2(b) and
Corollary 2. m

As a further application of Theorem 2 we note a sufficient condition for a
C3-function to be in OC?(G).

THEOREM 3. A real valued C3-function f belongs to OC?*(G) if there are
constants K1 and Ko such that

IV(Af)(2)] < Kur™ s ID(VH)Il + Kor™? s IV /1. (10)
B, (z B, (z

Proof. Since V(Af) = A(Vf) condition (10) means that Vf € HC?*(G).
Thus (10) implies Vf € HC(G), by Theorem 2(b), which means ||D(V f)(z)| <
Kr~! Supg, () |V f| for some constant K. Since obviously |Af| < const - [[D(Vf)[l,
it follows that f € OC?(G). m

COROLLARY 5. A C*-function f: G — R belongs to OC?*(G) if so does Af.
Consequently a C*-function f belongs to OC%(G) if so does A*f for some inte-
ger k. In particular every polyharmonic function of finite order belongs to OC?2.
(A function f is polyharmonic if A*f = 0 for some integer k. For information see

2])

Proof. Let Af € OC%. Then Af € HC!, by Theorem 2, i.e. |[V(Af)(2)| <
Kr~'supp (,)|Vf|. Now the desired conclusion follows from Theorem 3. m

REMARK 1. As noted in the proof of Theorem 3 condition (10) means Vf €
HC?. By Corollary 3 condition (10) implies the existence of a constant K such
that [V(Af)(z)| < Kr~?supg, (,) |V f], which is aparently stronger than (10).

REMARK 2. It follows from the proofs of Theorem 3 and Corollary 5 that there
hold the following implications:

Af e HC' = Vfec0OC? = Vfe HC' = fecOC?.
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3. Proof of theorem 2.

The proof is based on the following consequence of Green’s formula.
LEMMA 1. If f: B,(z) — R¥ is a C?-function, then

n

IDf()]| < ! sup I+

r sup |Af|. (11)
B, (z B, (z)

n+1

Proof. In the case k = 1 a proof is in [2] (Proposition 3.1). If £ > 1, we consider
the functions u(z) = f(z) - &, € € R”, then use the formula Vu(z) = Df(z)*€ and
choose ¢ so that |¢| = 1 and |Df(z)*¢| = ||Df(z)*]| = ||Df(z)||. Then the result
follows from the inequalities |u(2)| < |f(2)| and |Au(z)| = [(Af)(2)-&] < |Af(z)]. =

LEMMA 2. Let Fy, Fs and F3 be nonnegative, continuous functions on G such
that, for some constant K,

Fi(z)/K <r~ ' sup Fo +7 sup F3 (12)
B, (z) B, (z)
and
Fs(x)/K <r ' sup Fy +7 2 sup I, (13)
B, (z) B,.(z)

whenever B,.(x) C G. Then there is a constant C = C(K) such that

Fi(z) < Cr* sup Fo. (14)
B, (z)

Proof. By translations the proof of (14) reduces to the case x = 0. Let
cl(B:(0)) C G and F5 < 1 on B.(0). (In the general case we consider the functions
F;/A, where A is chosen so that Fy(z) < A for all z € B.(0).) Choose = € B.(0)
so that Fi(y)(c — |y|) < Fi(z)(e — |z|) for all y € B-(0). This implies that Fi(y) <
2F; (z) for y € Bs(z), where 6 = (¢ — |z])/2. Now we use the hypotheses to find
y € cl(Bs(z)) so that

Fi(z)/K < v '+ (Kr/t)Fi(y) + Krt 2

for all 7, t > 0 such that r +t = §, which implies Fy(z)/K <r '+ (2Kr/t)Fi(x)+
Krt=2. Now choose r,t so that 7 +t = § and 2Kr/t = 1/2K, which implies that
r=ci(e —|z|), t = ca(e — |z|) for some ¢; = ¢;(K), to obtain

Fi(2)/K < Fi(2)/2K + Ki(s — |2])7,

where K; = ¢ ' +c1c5 2. Hence Fy(0)e < Fy(x)(e—|2|) < 2K K1, and this concludes
the proof. m

Proof of Theorem 2. Let f satisfy (7). We may assume that K > n and
Ky > n. Define functions

Fi(z) = IDf(@)ll,  Fa(z) = [f(0)],  Fs(x) = [Af(2)]-
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Then (12) is sastisfied because of (11), and (13) is satisfied because of (7). Hence
f € HCY(G), by Lemma 2. This proves assertion (a).

To prove (b) let f € OC?(G). Applying (a), together with its proof, to the
functions f — ¢ we find a constant K; independent of z, r, ¢ so that ||Df(z)| <
Kyr~'supp (. |f —¢|. Finally we take ¢ = f(z) to finish the proof. m
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