We prove that $|f|^p$, $p>0$, behaves like a subharmonic
function if $f$ is a $C^2$-function such that, for some constants $K$ and
$K_0$,
$$
|\Delta f(x)|\leq Kr^{-1}\sup|\nabla f|+K_0r^{-2}\sup|f|,
$$
where the supremum is taken over $B_r(x)=\{\,z\,:|z-x|