
MATEMATIQKI VESNIK

45 (1993), 23{27
UDC 519.767

originalni nauqni rad

research paper

AUTOMATIC MODIFICATION OF SMALLTALK METHODS

R. Proti�c and D. To�si�c

Abstract. This article focuses on the issue of making a kind of preprocessor (called Au-
tomatic Modi�er of Smalltalk Methods | AMSM) for the programming language Smalltalk. A
general algorithm, based on the automatic modi�cation of Smalltalk methods, is proposed. All
modi�cations of related methods are realized in Smalltalk itself. The main parts of method-code
and relevant classes are presented. Also, some characteristics (and possible) applications of AMSM
are exposed.

1. Introduction

The Smalltalk system is the ancestor of all object-oriented systems and pro-
vides one of the best implementation of the object-oriented paradigm. Smalltalk is
a programming language and highly interactive programming environment. It was
originally developed for the Xerox family of workstations, but now it is implement-
ed on a variety type of computers. There are many books ([4], [5], . . .) and articles
([1], [2], [7], . . .) describing the features of Smalltalk system. We will mention here
some of the features of Smalltalk signi�cant for our work.

Smalltalk is an extendable language designed to make it easier to program and
to build convenient programming environment. The characteristics of Smalltalk
system are: the visual impact of bitmapped graphics, highly interactive user inter-
face and increased exibility in terms of user programmability.

For one familiar with the procedural style of programming, we are going to
shortly explain some of frequently used terms from object-oriented programming
in the procedural terminology.

Object is a package of data and description of its manipulation.

Class describes an object and the methods that it understands. The corre-
sponding term in procedural terminology is type.

Method is the procedure-like desription of sequence of actions for transforma-
tion, examination and communication with the objects.

Message speci�es one of an object's manipulations. It corresponds to the
procedure or function call.

More detail description of relevant terms could be �nd in [4] and [6].

Keywords and phrases: Smalltalk, automatic modi�cation, method, environment.

23

24 R. Proti�c and D. To�si�c

2. Why automatic modi�cation of methods?

As in other programming languages there is a need for software tools to change
and debug a running application. The writing code in Smalltalk is rather di�erent
than writing code in any other language because of speci�c organization. (The
source code of methods is integrated into the virtual image (see [4] and [6]) and
could not be modi�ed like the other ASCII-�les.) Of course, a programmer may use
the Debugger and Inspector in Smalltalk to test and debug the code. So, one could
inspect method by method to make all requested changes. If one should change ten
or hundred methods on the previous way, it might be very tedious.

The most frequent changes should be done in the same way. For example, one
should change the same message in many methods. Our goal was to make a general
tool (AMSM) for an automatic modi�cation of the same part of the code in many
methods.

3. AMSM implementation in Smalltalk/V

The automatic modi�cation involves four steps:

1. Taking out a source code of methods from Smalltalk hierarchy.

2. Transforming a source code into target code.

3. Making a standardized stream.

4. Filling the obtained stream into Smalltalk hierarchy.

Figure 1 illustrates the functioning of AMSM.

Source

methods

integrated

into

hierarchy

1:
�!

Source

code
2:
�!

Target

code
3:
�!

Target

stream
4:
�!

Target

methods

integrated

into

environment

Compiled

methods

Fig. 1

Smalltalk is a language enriched with a lot of classes and methods, well-studied
for e�cient realization of described process.

The core of AMSM is the method presented in Fig. 2. This method might be
slightly modi�ed depending on a real application.

Automatic modi�cation of Smalltalk methods 25

! Behavior method !

modifClass: anObject

"All methods of the receiver class are

modified according to the structure of anObject

and reintegrated into Smalltalk hierarchy."

| str meth aux1 aux2 has |

meth := self selectors asArray.

str := ReadWriteStream on: String new.

str beginingOfStream: self.

has := false.

meth do: [:met |

aux1 := self sourceCodeAt: met.

aux2 := aux1 transform: anObject.

aux2 �= nil

ifTrue: [str nextChunkPut: aux2 ;

cr.

has := true

]

].

str endOfStream.

has ifTrue: [str fileIn]

Fig. 2

The proposed method calls following (new, nonstandard) methods:

beginingOfStream: prepares the �rst part of standardized stream;

transform: transforms a source code of method into target code;

endOfStream: marks the end of standardized stream.

The method transform depends on a kind of change that should be done. This
method might be rather complicated. Its realization is mainly based on the classical
parsing techniques.

4. Applications

AMSM is a general tool that might be used in the di�erent applications. For
example, it is very suitable for the further development of applications described
in [3], [9], etc.

We applied AMSM to prepare an arbitrary PROLOG/V program for e�cient
interfacing with the external database. PROLOG/V is completely integrated into
Smalltalk/V environment and the organization of PROLOG predicates corresponds
Smalltalk methods. Because of that, AMSM was convinient to modify both PRO-
LOG predicates and Smalltalk methods. To realize the method transform (Fig. 3)

26 R. Proti�c and D. To�si�c

in this case, we created a new class ParseStream which contains the following
methods: isLogical:, modifyPredicate:, writeElementConstruct:, writeCom-
ment:, writeArgument:, writeString:, rewriteUntilBlank:, peekNonBlank:.

! String method !

transform: aSymbol

"Checks if the receiver is a PROLOG method.

If it is, all apperences of aSymbol(. . .) are

changed by interpret(aSymbol(. . .))."

| input lengthInput output aux length end mark ind |

lengthInput := (input := ReadStream on: self) size.

output := ParseStream on: String new.

length := (aux := aSymbol asString) size.

(output isLogical: input) ifFalse: [^nil].

ind := true.

end := lengthInput - length + 1.

[input position < end]

whileTrue: [

input peek �= (aux at: 1)

ifTrue: [output writeElementConstruct: input]

ifFalse: [

mark := input position.

((input nextWord) = aux and:

[(input peekNonBlank) == $(and:

[mark = 0 or:

[(input position: mark - 1)

peek isAlphaNumeric not]]])

ifTrue: [input position: mark.

output modifyPredicate: input.

ind := false

]

ifFalse: [input position: mark.

output nextPut: input next

]

]

].

ind ifTrue: [^nil].

[input atEnd]

whileFalse: [output nextPut: input next].

^output contents ! !

Fig. 3

The methods: writeComment:, writeArgument:, wrireString: and rewriteUn-

tilBlank: are used in the method writeElementConstruct.

Automatic modi�cation of Smalltalk methods 27

5. Conclusion

AMSM adds to the standard Smalltalk environment new possibilities to ma-
nipulate methods and enhancements to existing tools.

The programming techniques to replace software components on the y in a
running program are described in [8]. The ability to modify a system while it is
running is known as dynamic con�guration. Although AMSM is not predicted for
dynamic con�guration, it is possible to add some new methods and adopt it for that.
Therefore, AMSM is general enough to be adopted for a variety of environments
and to meet demands of new application areas.

REFERENCES

[1] J. H. Alexander, M. J. Freiling, Smalltalk-80 aids troubleshooting system development, System
& Software, 4, 4 (1985), 111{118

[2] J. Diederich, J. Milton, Experimental Prototyping in Smalltalk, IEEE Software, May, 1987,
50{64

[3] E. Gold, M. B. Rosson, Portia: An Instance-Centered Environment for Smalltalk, in OOPSLA
'91 Conference Proceedings (ed. Paepcke), 26, 11 (1991), 62{74

[4] A. Goldberg, D. Robson, Smalltalk-80: The language and its implementation, Addison-Wesley,
1983

[5] G. Krasner (editor), Smalltalk-80, Bits of History, Words of Advice, Addison-Wesley, 1983

[6] G. Krasner, The Smalltalk-80 Virtual machine, BYTE, 6, 8 (1981), 300{320

[7] J. Laursen, R. Atkinson, Opus: A Smalltalk Production System, in OOPSLA '87 Conference

Proc. (ed. N. Meyrowitz), 22, 12 (1987), 377{387

[8] M. Stadel, Object Oriented Programming Techniques to Replace Software Components on the

Fly in a Running Program, SIGPLAN Notices, 26, 1 (1991), 99{108

[9] A. Stritzinger, Smalltalk: a slim application framework, JOOP, 4, 6 (1991), 11{18

(received 20 02 1992)

Matemati�cki fakultet, Studentski trg 16, 11000 Beograd, Yugoslavia

