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SOME TYPES OF RELATIVE

PARACOMPACTNESS

Vladimir Pavlović∗

Abstract. This paper is a continuation of the study of rela-
tive topological properties. We use a characterization of paracom-
pactness via a certain selection principle to introduce five types of
relative paracompactness, provide examples showing that none of
them coincide with each other and establish some results concern-
ing finite unions of subspaces which are relatively paracompact
in one or another of the defined senses.

1. Introduction

If X is a topological space and Y a subspace of X, then the properties
of Y in general will depend on the way in which that subspace is ”placed”
in X. Conversely, it is not rarely the case that having a subspace of a cer-
tain type placed in a particular way can largely effect the properties of the
whole space. This suggests that to each topological property P a kind of its
”relative” version can be assigned, now viewed on the family of all subspaces
of a space X, in attempt to grasp one aspect of the fact how a certain sub-
space can be placed in X. In that sense, we talk about ”a subspace Y being
P-placed in X”, or about ”Y relatively having the property P in X”. Thus,
we say that Y is relatively Haussdorff in X (see [3]) if for each pair of distinct
points x, y ∈ Y there exist two disjoint open in X sets U, V such that x ∈ U
and y ∈ V ; according to Ju. Smirnov (see [5]) a subspace Y of X is normally
placed in X if for each open in X set U containing Y there is a Fσ-set Z ⊆ X
such that U ⊆ Z ⊆ X; S. Mrówka (see [5]) calls Y regularly placed in X if for
each point x ∈ X \Y there is a Fσ-set Z ⊆ X such that Y ⊆ Z ⊆ X \{x} etc.
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Relative properties have already been considered by many authors: relative
compactness, countable compactness, relative dimensions, relative extremal
disconnectedness, relative Gδ-diagonal, relative cardinal invariants in Cp the-
ory and so on. Let us only mention the following result ( [5], pages 305 and
306): A Tychonoff space X is Lindelöf (realcompact) if and only if X is nor-
mally (regularly) placed in βX. As opposed to the relative ones the classical
topological properties will be referred to as absolute properties. Let us men-
tion here that a systematic study of relative topological properties was started
by A.V. Arhangel’skĭi in [3] and continued later in a series of its papers (see
for example [1], [2]).

In this paper we will be concerned with some relative versions of para-
compactness, but in distinction from A.V. Arhangel’skĭi who has already con-
sidered this relative topological property defining it starting from the usual
definition of paracompactness, we take another characterization of paracom-
pactness as a base for deriving five relative types of it (actually four because
it turns out that one of the defined versions coincides with the absolute para-
compactness of the subspace under consideration).

Let us first establish some terminology and notation. For any sets x, y
the symbol x � y means ∀z ∈ x ∃t ∈ y (z ⊆ t). P(X) denotes the set of all
subsets of x. If g is a function we use the symbol g→A (g←A) to denote the
(inverse) image of A under g and write ran(g) for the range of g. When we
say that x is point finite (point countable) on y we mean that for each b ∈ y
the set {a ∈ x : b ∈ a} is finite (countable). When a set X is looked at as a
topological space the corresponding topology will be denoted by TX . If X is a
space then OX or just O (when there is no confusion to which X the notation
refers) stands for the family of all open covers of X.

Definicija 1.1. ( [4]) Let a space X, a subspace Y of X and A,B ⊆
P(P(X)) be given. The notation S(A,B;X,Y )lf ( S(A,B;X,Y )pf ) stands
for the following statement:

For each sequence 〈Un : n < ∞〉 of elements of A there is a sequence
〈Vn : n <∞〉 of subsets of P(X) such that

– for each n Vn � Un, and the family Vn is locally finite on Y with
respect to the topology of X ( point finite on Y ),

–
⋃
{Vn : n <∞} ∈ B.

Also we introduce the abbreviation S(A,B)lf
def= S(A,B;X,X)lf , and

similarly for S(A,B)pf .
The notion we have just defined, for a convenient choice of the familiesA

and B, coincides exactly with the notion of paracompactness. More precisely,
the following theorem holds (see [4]).
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Theorem 1. A regular space X is paracompact if and only if S(O,O)lf
holds.

Thus, as we are interested in relative paracompactness we will primarily
be concerned with the Slf principle. The main reason we consider the second
one (Spf ) is that most of the theorems in the paper are valid for it too, with
almost identical (or even easier) proofs.

Now we can give an alternative (to that of Arhangel’skĭi) definition of
relative paracompactness. We simply relativize the principle S(O,O)lf .

Definicija 1.2. Let a space X and its subspace Y be given. Put OX(Y ) =
{B ⊆ TX : Y ⊆

⋃
B} and denote with i − (Y |X)lf ( i − (Y |X)pf ) the fact

S(A,B;X,Y )lf ( S(A,B;X,Y )pf ), where:
for i = 1 : A = OX(Y ), B = OX(Y ),
for i = 2 : A = OX(Y ), B = OY ,
for i = 3 : A = OX , B = OX ,
for i = 4 : A = OX , B = OX(Y ),
for i = 5 : A = OX , B = OY .

If i− (Y |X)lf ( i− (Y |X)pf ) holds we shall say that Y is a i− lf ( i− pf )
subspace of X.

So, there are five (potentially different) relative variants of paracom-
pactness to be considered.

A direct consequence of the preceding definition is the following propo-
sition, in which some basic relations between this Slf − i (i = 1, 5) relative
properties are established.

Proposition 1. For a space X and its subspace Y the following impli-
cations hold:

3− (Y |X)lf =⇒ 4− (Y |X)lf =⇒ 5− (Y |X)lf
⇑ ⇑
1− (Y |X)lf =⇒ 2− (Y |X)lf

If X is compact then 3 − (Y |X)lf for any subspace Y of X. Also, if Y
is compact then 1− (Y |X)lf for any X containing Y .

Now we list several easy facts about the Slf − i properties.

Proposition 2. For a space X and Y ⊆ X the following statements
are true:

1) 4− (Y |X)pf ⇔ 5− (Y |X)pf i 1− (Y |X)pf ⇔ 2− (Y |X)pf ;
2) if Y = X then 4 − (Y |X)lf ⇔ 5 − (Y |X)lf i 1 − (Y |X)lf ⇔ 2 −

(Y |X)lf ;
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3) if Y = Y then 1−(Y |X)ab ⇔ 4−(Y |X)ab, 2−(Y |X)ab ⇔ 5−(Y |X)ab,
where ”ab” replaces any of the notations ”lf” or ”pf”, as well as
3− (Y |X)pf ⇔ 4− (Y |X)pf ;

4) if X is a perfectly normal space and Y = Y , then 3 − (Y |X)lf ⇔
4− (Y |X)lf ;

5) Y ∈ S(OY ,OY )ab ⇔ 2 − (Y |X)ab, where ”ab” replaces any of the
notations ”lf” or ”pf”;

6) X ∈ S(O,O)ab ⇒ 3− (Y |X)ab, where ”ab” stands for either ”lf” or
”pf”;

7) if Y = Y then X ∈ S(O,O)ab ⇒ 1− (Y |X)ab, with ”ab” as before;
8) if Z ⊆ Y then i− (Y |X)ab ⇒ i− (Z|X)ab, for i ∈ {3, 4, 5} and ”ab”

as before;
9) if Z ⊆ Y = Y then i− (Z|X)ab ⇒ i − (Z|Y )ab, for i ∈ {3, 4, 5} and

”ab” as above.

Proof. The statements under 1) and 2) follow directly from the next
few easy observations:
Let L ⊆ TY , C ⊆ TX and L � C. For each A ∈ L take a UA ∈ C and a
VA ∈ TX , such that A = Y ∩ VA and A ⊆ UA. Put L′ = {UA ∩ VA : A ∈ L}.
Clearly, L � L′ � C and L′ ⊆ TX . Then for each y ∈ Y and each A ∈ L we
must have y ∈ A⇔ y ∈ UA∩VA. Also, if Y = X, then for each y ∈ Y, G ∈ TX

and A ∈ L, where y ∈ G, we have that A ∩ G = ∅ ⇔ (UA ∩ VA) ∩ G = ∅.
Consequently, if L is point-finite on Y so is L′, and if addition Y = Y , then
if L is locally finite on Y so is L′. Finally,

⋃
L ⊆

⋃
L′.

Now let us prove the claim stated under 4). Let 4 − (Y |X)lf , where
Y = Y and let a sequence of open covers ofX 〈Un : n <∞〉 be given. Applying
4 − (Y |X)lf to that sequence we obtain another sequence 〈Vn : n < ∞〉,
where Vn ⊆ TX , such that Vn � Un, each Vn a family locally finite on Y , and
Y ⊆

⋃⋃
{Vn : n <∞}. As X is perfectly normal and Y closed in X, there is a

sequence of open sets 〈Un : n <∞〉 such that Y =
⋂

n<∞ Un =
⋂

n<∞Un. Put
U ′n = {U ∩ (X \ Un) : U ∈ Un}. Then, for Mn = Vn ∪ U ′n ⊆ TX , we have that
Mn � Un, each of the familiesMn is locally finite on Y , and

⋃
{Mn : n <∞}

is an open cover of X.
The remaining statements of the proposition are trivially established.

�
Apparently, the relation 2− (Y |X)lf , i. e. 2− (Y |X)pf does not depend

on the particular way in which Y is placed in X, it actually describes the
absolute paracompactness of Y .

In the next two examples R will denote the set of reals. Also, (a, b) will
stand both for the appropriate ordered pair and for the set {x ∈ R : a <
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x < b}, in which case, of course, a, b ∈ R. It will be clear from the context
which one is the case. [a, b], where a, b ∈ R, means as usual the closed segment
{x ∈ R : a ≤ x ≤ b} of the real line.

Example 1. Let X be the Niemytzky plane [5]: the supporting set is
X = {(x, y) ∈ R2 : y > 0} ∪R, and it is topologized as follows: if (a, b) ∈
X \ R then the family of all the sets of the form K(a, b; r) = {(x, y) ∈
X :

√
(x− a)2 + (y − b)2 < r}, where r > 0 is an arbitrary real number,

constitutes an open neighborhood base at that point; if a ∈ R then an open
neighborhood base at a is given by the family of all B(a, b) = K(a, b; b)∪{a},
where b > 0 is an arbitrary real number.

It is not difficult to see that R ⊆ X is a discrete subspace of X. There-
fore it is paracompact, so 2− (R|X)lf . Let us show, on the other hand, that
1− (R|X)lf does not hold.

Assume to the contrary that R is a 1− lf subspace of X and consider
for each n a family An = A = {B(x, 1) : x ∈ R} of open subsets of X covering
the subspace R. Then there is a sequence of families Ln of open subsets of X
such that

⋃
n<∞Ln ⊇ R, and such that, for each n, Ln � An ≡ A and Ln is

locally finite on R.
For each x ∈ R there is a nx and a Ux ∈ Lnx such that x ∈ Ux.
On the other hand, as Lnx � A, there is a y ∈ R such that Ux ⊆ B(y, 1).

From {y} = R ∩B(y, 1) ⊇ R ∩ Ux ⊇ {x} it follows y = x and {x} = R ∩ Ux.
Since Ux is open, there is a real number εx > 0 such that x ∈ B(x, εx) ⊆ Ux.
So:

{x} = R ∩B(x, εx) = R ∩ Ux;
x ∈ B(x, εx) ⊆ Ux;K(x, εx; εx) ⊆ B(x, εx)

(1)

x �= y ⇒ Ux �= Uy.(2)

Put Sn = {x ∈ R : nx = n}. For each n ∈ N, and each real number
a > 0, let us call a closed segment I of the real line ”(n, a)– good” if ∀x ∈
Sn ∩ I (εx < a).

Claim. For each m ∈ N, a real number θ > 0 and a closed segment
of the real line [p, q], with p < q, there is a (m, θ)–good closed segment
I ⊆ [p, q] . . . (∗).

Indeed:
Let us first note that ∀x ∈ Sm (Ux ∈ Lm). Fix a a ∈ (p, q). Lm is locally

finite on the set R so there must be a real number r > 0 and a finite set
{V1, . . . , Vk} ⊆ Lm such that ∀V ∈ Lm \ {V1, . . . , Vk} (V ∩ B(a, r) = ∅). By
(2), this implies that there must be a finite set {x1 . . . , xk} ⊆ R such that
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∀x ∈ Sm(x �∈ {x1, . . . , xk} ⇒ Ux∩B(a, r) = ∅). So, having in mind (1) as well
as K(a, r; r) ⊆ B(a, r):

∀x ∈ Sm \ {x1, . . . , xk}(K(x, εx; εx) ∩K(a, r; r) = ∅).
Consequently, for x ∈ Sm with x �= xi we must have:

εx + r ≤
√

(x− a)2 + (r − εx)2 ≤ |x− a|+ |r − εx|.(3)

Let n > 0 be any integer such that 1
n < min(2r, θ), ((a − 1

n , a + 1
n) \ {a}) ∩

{x1, . . . , xk} = ∅ and (a − 1
n , a+ 1

n) ⊆ [p, q]. Then, according to (4), for each
x ∈ Sm ∩ ((a− 1

n , a+ 1
n) \ {a}) we have that:

εx + r ≤ 1
n

+ |r − εx|,
and

θ >
1
n
≥ εx + r − |r − εx| =

⎧⎨⎩
εx + r − r + εx = 2εx
εx + r + r − εx = 2r, which is impossible

because 1
n < 2r.

In other words, we conclude that each x ∈ Sm ∩ ((a − 1
n , a + 1

n) \ {a})
must satisfy: 2εx < θ, implying that any closed segment I ⊆ (a − 1

n , a) is
(m, θ)– good, which, together with I ⊆ [p, q], proves (∗). •

Now let, according to (∗), I1 ⊆ [0, 1] be a (1, 1)– good segment (of
length not greater than 1). If the segment In has been constructed so that it
is (i, 1

n)– good for each i ∈ {1, . . . , n} and with length not greater than 1
n ,

choose a segment Jn ⊆ In of length not greater than 1
n+1 , as well as segments

Jn ⊇ In+1
1 ⊇ In+1

2 ⊇ · · · ⊇ In+1
n+1 , such that for each i ∈ {1, . . . , n + 1}

In+1
i is (i, 1

n+1)– good and put In+1 = In+1
n+1 . Since In+1 ⊆ In+1

i and In+1
i

is (i, 1
n+1)– good, the segment In+1 must also be (i, 1

n+1)– good for each
i ∈ {1, . . . , n + 1}. Finally, In+1 ⊆ In and the length of In+1 is not greater
than 1

n+1 .
So, we have constructed a decreasing sequence 〈In : n < ∞〉 of closed

intervals with lengths converging to 0 such that for all n,m with n ≤ m Im is
(n, 1

m)– good. As there must be an x ∈
⋂

n<∞ In, and as every Im is (nx,
1
m)

good for m ≥ nx, it must be that εx < 1
m for all m ≥ nx, i. e. εx = 0, which

is impossible.
According to Proposition 2. under (3, this is also an example of a pair

Y,X with 5− (Y |X)lf but not 4− (Y |X)lf . �
Example 2. Let X denote the same space as in the example above and

fix an arbitrary compactK containing the set R as its discrete subspace. Call a
pair (U, V ) ∈ TX×TK a l-pair if U∩R = V ∩R. Put Y = X∪K, and define the
following (Hausdorff) topology on the set Y : TY = {U ∪ V : (U, V ) je l-par}.
Let us prove 4− (R|Y )lf .
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Let A ∈ OY . Consider A1 = {V ∈ TK : ∃U ∈ TX ((U, V ) is l-pair; U ∪
V ∈ A} and fix a function f : A1 → TX such that for each V ∈ A1 (f(V ), V )
is a l-pair and f(V ) ∪ V ∈ A. As A1 ∈ OK and as K is compact there are
V1, . . . , Vn ∈ A1 such that K =

⋃n
i=1 Vi. Then R ⊆

⋃n
i=1(f(Vi) ∪ Vi), where,

of course, for each i = 1, . . . , n, f(Vi) ∪ Vi ∈ A, and the family {f(Vi) ∪ Vi :
i = 1 . . . , n} is finite (whence also locally finite at every point of the space
Y ). So obviously 4− (R|Y )lf .

On the other hand, it cannot be 1 − (R|Y )lf : Since R is a discrete
subspace of K we can, for each x ∈ R, choose a Vx ∈ TK such that {x} =
Vx ∩R. Putting, for each n ∈ N, Ln = {B(x, 1) ∪ Vx : x ∈ R} (where B(x, ε)
stands for the same thing as before) and reasoning in the same manner as in
the preceding example it is not difficult to see that there can be no sequence
〈Pn : n <∞〉 with Pn ⊆ TY for each n ∈ N, such that R ⊆

⋃⋃
{Pn : n <∞}

and for each n the family Pn is locally finite on R as well as Pn � Ln. �
Example 3. If X is compact and Y any non paracompact subspace

of X then i − (Y |X)lf for i ∈ {3, 4, 5}, but not 2 − (Y |X)lf (hence neither
1− (Y |X)lf ). �

Example 4. If Y is a countable subspace of X then trivially 1 −
(Y |X)lf (so 4 − (Y |X)lf too) holds. If in addition X is not Lindëlof and
Y = X, then it cannot be 3 − (Y |X)lf . This is because any family of open
sets of a space which is locally finite on a dense countable subspace S of it
(even point countable on S) must be countable. Thus the assertion follows if
we choose any open cover K of X with no countable subcover and take all the
Un-s in the definition of 3− (Y |X)lf (see Definition 1.) to be K.

So, any non Lindëlof separable space (e.g. the Niemitcky plane) is an
example showing that neither 1− (Y |X)lf nor 4− (Y |X)lf imply 3− (Y |X)lf .
�

In the next few theorems we will try to answer the question when a
certain type of relative paracompactness of two (finitely many) subspaces
implies the same property of their union.

A trivial, but useful observation is formulated as follows.

Lemma 1. If K is an arbitrary locally finite (point-finite) on S family
of subsets of the space X, where S ⊆ X, and L any partition of the set K (i.
e.
⋃
L = K i ∀x, y ∈ L (x �= y ⇒ x∩y = ∅) ), then the family {

⋃
x : x ∈ L}

is also locally finite (point-finite) on S.

Proof. Elementary. �
We shall often make use of this fact below.
A union of two closed 2− lf subspaces is again a 2− lf subspace.



40 Vladimir Pavlović

Theorem 2. If F1, F2 are both closed and paracompact subspaces of a
space X then the subspace F1 ∪ F2 is also paracompact.

Proof. Let an arbitrary family U ⊆ TX be given such that F1 ∪ F2 ⊆⋃
U . As F1 is paracompact there exists a L ⊆ TF1 such that F1 =

⋃
L

and L � U , and such that the family L is locally finite on F1 (whence on the
whole space X, because F1 is closed). Take any function f : L → TX such that
∀U ∈ L (U = F1 ∩ f(U) ∧ ∃V ∈ U (f(U) ⊆ V )). Let L′ = {f(U) : U ′ ∈ L} i
U ′ = {(X \ F1) ∩ U : U ∈ U}.

L′ ∪ U ′ is a family of sets open in X which covers F2 so, as F2 is
paracompact, there is a V ⊆ TF2, where V � L′ ∪ U ′, F2 ⊆

⋃
V such that the

family V is locally finite on F2. Put V ′1 = {A ∈ V : ∃U ∈ L (A ⊆ f(U))} and
choose a g : V ′1 → L such that ∀A ∈ V ′1 (A ⊆ f(g(A)) = h(A)), where h = f◦g.
For a A ∈ V ′1 find a O′(A) ∈ TX such that A = F2∩O′(A) and denote O(A) =
O′(A)∩h(A) ∈ TX . For a U ∈ ran(g) let Θ(U) =

⋃
{O(A) : A ∈ g←{U}} ∈ TX

and Θi(U) = Fi ∩Θ(U), i = 1, 2. So, Θ1(U) ∪Θ2(U) = Θ(U) ∩ (F1 ∪ F2) is
open in F1 ∪ F2. Finally, put V1 = {Θ1(U) ∪Θ2(U) : U ∈ ran(g)}.

Clearly, from L′ � U it follows V1 � U (because Θ1(U) ∪ Θ2(U) ⊆
Θ(U) =

⋃
{O(A) : A ∈ g→{U}} ⊆

⋃
{f(g(A)) : g(A) = U} ⊆ f(U) ⊆ V , for

a V ∈ U ).
By construction we have that Θ1(U) ⊆ U for each U ∈ ran(g) ⊆ L,

so as L is locally finite on X so is {Θ1(U) : U ∈ ran(g)}. Also, Θ2(U) =⋃
g←{U} =

⋃
{A ∈ V ′1 : g(A) = U}, so by Lemma 1. (considering that V ′1 ⊆ V

is locally finite on F2, hence on X too) the family {Θ2(U) : U ∈ ran(g)} is
locally finite on X.

Therefore V1 ⊆ TF1∪F2 must be locally finite on X too (equivalently: on
F1 ∪ F2 ).

Put V2 = {A ∈ V : ∃U ∈ U (A ⊆ (X \ F1) ∩ U)} � U . One readily
sees that, for each A ∈ V2 we must have that A = (X \ F1) ∩ U ∩ F2 =(
(X \ F1) ∩ U

)
∩ (F1 ∪ F2), which implies that V2 ⊆ TF1∪F2 . From V2 ⊆ V it

follows that V2 is locally finite on F1 ∪ F2.
Finally, it can easily be seen that F2 ⊆

⋃
(V1 ∪ V2).

Now, we have defined a family A = V1 ∪ V2 ⊆ TF1∪F2 such that A � U ,
A is locally finite on F1 ∪ F2, and F2 ⊆

⋃
A. Replacing the roles of the

subspaces F1 and F2, in exactly the same way we can obtain a B ⊆ TF1∪F2

with the property that B � U , B is locally finite on F1 ∪ F2 and F1 ⊆
⋃
B.

A ∪ B is the required family which is locally finite on F1 ∪ F2, refines
U , with F1 ∪F2 =

⋃
(A∪B), and which witnesses for the paracompactness of

the subspace F1 ∪ F2. �
The analoguous property for ”3− lf” subspaces is established as shown

below.
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Theorem 3. If F1, F2 ⊆ X are such that 3− (Fi|X)lf , i = 1, 2, then
3− (F1 ∪ F2|X)lf .

Proof. Let a sequence 〈Uk,i : k, i < ∞〉 be given such that Uk,i ⊆ TX

and such that any of the families Uk,i covers X.
Apply the fact that 3− (F1|X)lf to each of the sequences 〈Uk,i : i <∞〉

in order to obtain for each k ∈ N a sequence 〈Lk,i : i < ∞〉 such that
Lk,i ⊆ TX , families Lk,i are all locally finite on F1, each of the sets

⋃
i<∞ Lk,i

covers X and such that Lk,i � Uk,i.
Now apply 3 − (F2|X)lf to the sequence 〈

⋃
i<∞ Lk,i : k < ∞〉 so as to

obtain a sequence 〈Jk : k < ∞〉, where Jk ⊆ TX , each Jk is locally finite
on F2, the family

⋃
k Jk covers X and Jk �

⋃
i<∞Lk,i. For each k, i put

J ′k,i = {A ∈ Jk : ∃U ∈ Lk,i (A ⊆ U)} and take any gk,i : J ′k,i → Lk,i

such that ∀A ∈ J ′k,i (A ⊆ gk,i(A)). Denote Jk,i = {
⋃
g←k,i{U} : U ∈ Lk,i}.

Obviously:
⋃
J ′k,i =

⋃
Jk,i, Jk,i � Lk,i � Uk,i. As the family Jk,i is of the

form {VU : U ∈ Lk,i}, where VU ⊆ U , and as Lk,i is locally finite on F1, we
conclude that Jk,i must also be locally finite on F1. The family J ′k,i is locally
finite on F2 (because such is Jk ), so (in view of Lemma 1. as well as the way
in which we constructed the Jk,i-s) the family Jk,i is also locally finite on F2.
And so, we have defined the families Jk,i ≺ Uk,i of open sets each of which is
locally finite on F1 ∪ F2.
Since Jk �

⋃
i<∞ Lk,i it must be Jk =

⋃
i<∞ J ′k,i, and therefore:⋃

Jk =
⋃ ⋃

i<∞
J ′k,i =

⋃
i<∞

⋃
J ′k,i =

⋃
i<∞

⋃
Jk,i =

⋃ ⋃
i<∞

Jk,i.

So
X =

⋃
k<∞

⋃
Jk =

⋃
k<∞

⋃ ⋃
i<∞

Jk,i =
⋃ ⋃

k<∞

⋃
i<∞

Jk,i =
⋃ ⋃

k,i<∞
Jk,i

i. e.
⋃

k,i<∞Jk,i is a cover of X.
And so, the sequence 〈Jk,i : k, i <∞〉 proves 3− (F1 ∪ F2|X)lf . �
Practically repeating the proof of the previous theorem we obtain the

next one.

Theorem 4. If F1, F2 ⊆ X are such that 3− (Fi|X)pf , i = 1, 2, then
3− (F1 ∪ F2|X)pf .

And finally Theorems 4.,3. and Proposition 2. (under 3) and 4) ) give
us the next two observations.

Theorem 5. If F1, F2 are both closed subspaces of a space X with 4−
(Fi|X)pf , i = 1, 2, then 4− (F1 ∪ F2|X)pf .

Theorem 6. If F1, F2 are both closed subspaces of a perfectly normal
space X with 4− (Fi|X)lf , i = 1, 2 then also 4− (F1 ∪ F2|X)lf .
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