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SURVEY ON TRANSVERSAL NORMED

SPACES

Milan R. Tasković∗

Abstract. In this paper we formulate a new structure of
spaces which we call it transversal (upper or lower) normed spa-
ces. Combination of algebraic and transversal structures opens
up the possibility of studying linear transformation of one tran-
sversal normed space into another. This concept of spaces is a
natural extension of Banach spaces. Most of our work in this pa-
per centers around forms of three fundamental theorems relating
to bounded linear transformations: form of the Hahn-Banach the-
orem, form of the open mapping theorem and form of the Banach
- Steinhaus theorem.

1. Introduction and history

Starting from the work of Friedrich Riesz and Eduard Helly on the pro-
blem of moments it was a natural generalization to define norms on arbitrary
vector spaces.

This was done independently by Stefan Banach and Hans Hahn about
1920. In 1932 Banach published book containing a comprehensive account of
all results known at that time in the theory of normed spaces, and in particular
the theorems he had published in his papers of 1922 and 1929.

A large part was devoted to the concept of weak convergence and its ge-
neralizations, which he had begun to study in 1929. Banach’s terminology and
notations were universally adopted, complete normed spaces became known
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as Banach spaces. After 1935 the theory of normed spaces became part of the
more general theory of locally convex spaces.

In connection with this, first, in Tasković [9] we introduced the concept
of transversal (upper or lower) spaces as a natural extension of Fréchet’s,
Kurepa’s and Menger’s spaces.

Let X be a nonempty set. The function ρ : X ×X → R0
+ := [0,+∞) is

called an upper transverse on X (or upper transversal) iff: ρ[x, y] = ρ[y, x],
ρ[x, y] = 0 if and only if x = y, and if there is function ψ : (R0

+)2 → R0
+ such

that

ρ[x, y] ≤ max
{
ρ[x, z], ρ[z, y], ψ

(
ρ[x, z], ρ[z, y]

)}
(A)

for all x, y, z ∈ X. An upper transversal space is a set X together with a
given upper transverse on X. The function ψ in (A) is called upper bisection
function.

On the other hand, the function ρ : X × X → R0
+ is called a lower

transverse on X (or lower transversal) iff: ρ[x, y] = ρ[y, x], ρ[x, y] = 0 if and
only if x = y, and if there is a lower bisection function d : (R0

+)2 → R0
+ such

that

ρ[x, y] ≥ min
{
ρ[x, z], ρ[z, y], d

(
ρ[x, z], ρ[z, y]

)}
(Am)

for all x, y, z ∈ X. A lower transversal space is a set X together with a
given lower transverse on X.

Also, the function ρ : X × X → R0
+ ∪ {+∞} := W is called a lower

limit transverse on X iff: ρ[x, y] = ρ[y, x], ρ[x, y] = +∞ if and only if x = y,
and if there is a lower bisection function d : W 2 → W such that (Am).

A lower limit transversal space is a set X together with a given
lower limit transverse on X.

For further facts on transversal (upper or lower) spaces see: Tasković
[7] and [9].

2. Transversal upper normed spaces

Let X be a linear space over K(:= R or C). The mapping x �→ ||x|| :
X → R is called an upper transversal seminorm (or upper seminorm) iff:
||x|| ≥ 0 for every x ∈ X, ||λx|| = |λ| ||x|| for all λ ∈ K and x ∈ X, and if
there is a function ψ : (R0

+)2 → R0
+ := [0,+∞) such that

||x+ y|| ≤ max
{
||x||, ||y||, ψ

(
||x||, ||y||

)}
(Nu)

for all x, y ∈ X.
Further, x �→ ||x|| is called an upper transversal norm (or upper

norm) iff in addition: ||x|| = 0 if and only if x = 0.
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An upper transversal normed space (X, || · ||) over K consists of a
linear space X over K together with an upper transversal norm x �→ ||x||.

The function ψ : (R0
+)2 → R0

+ in (Nu) is called upper bisection
function. From (Nu) it follows, by induction, that there is a function M :
(R0

+)n → R0
+ such that

||x0 − xn|| ≤

≤ max
{
||x0 − x1||, . . . , ||xn−1 − xn||,M

(
||x0 − x1||, . . . , ||xn−1 − xn||

)}
for all x0, x1, . . . , xn ∈ X and for any fixed integer n ≥ 2.

It is easy to verify that the upper transversal normed linear space X
is a transversal upper space (see: Tasković [7]) with respect to the upper
transverse ρ : X ×X → R0

+ defined by

ρ[x, y] = ||x− y|| for all x, y ∈ X;

thus we obtain ρ[x − z, y − z] = ρ[x, y] and ρ[λx, λy] = |λ|ρ[x, y] for all
x, y, z ∈ X and for every scalar λ ∈ K.

In this sense, an upper transversal normed space X is said to be up-
per complete if it is upper complete as a transversal upper space. The upper
convergence xn → x (n→∞) means ||xn − x|| → 0 (n→∞).

We will in further denote by G(R0
+) the set of all upper bisection fun-

ctions ψ : (R0
+)2 → R0

+ which are increasing satisfying ψ(t, t) ≤ t for every
t ∈ R0

+.
In an former paper (Tasković: Math. Japonica, 37 (1992), 367-372), ha-

ve introduced the notion of general convex functions. A function f : D → R,
where R denotes the real line and D is a convex subset of Rn, is said to be
general convex iff there is a function ψ : (f(D))2 → R such that

f(λx+ (1− λ)y) ≤ max
{
f(x), f(y), ψ

(
f(x), f(y)

)}
(Max)

for all x, y ∈ D and for arbitrary λ ∈ [0, 1]. We notice that the set of all convex
and quasiconvex functions can be a proper subset of the set all general convex
functions.

Also, a function f : D → R is said to be general convex with tent
iff there is a function ψ : f(D)2 → R such that (Max) and that

S :=
{

(x, y) ∈ Rn+1 : x ∈ D, y > max
{
f(a), f(b), ψ(f(a), f(b))

}}
is a convex set for arbitrary a, b ∈ D.

We notice that upper transversal norm x �→ ||x|| is a general convex
function. The proof is simple.

Example 1. Let X be a linear space over K and let G be the set of
all nonincreasing, left continuous functions x �→ Mx : R → [a, b] for a < b
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(a, b ∈ R0
+), where infMx = a and supMx = b. Then (X,G) is an upper

transversal normed space if: Mx(0) = a for every x ∈ X, Mx = b for x ≤ 0
and Mx = a for x > 0,

Mλx(σ) = Mx

(
σ

|λ|

)
for every x ∈ X

and for all σ ∈ R and λ �= 0, and if there is a function g : [a, b]2 → [a, b] such
that

Mx+y(p+ q) ≤ max
{
Mx(p),My(q), g

(
Mx(p),My(q)

)}
for all x, y ∈ X and for all p, q ≥ 0.

The fundamental results of this section are the statement characterizing
finite dimensional spaces (as a Riesz’s theorem type), statement of separable
upper transversal normed spaces and a statement as the form of Riesz lemma
for upper transversal normed spaces. See brief proofs for this in: Tasković [7].

Also, in this part, we derive a general extension theorem, as a form of
Hahn-Banach theorem, for linear functionals on an arbitrary linear space.

In the next we can apply this theorem to the problem of the existence
of upper bounded linear functionals.

3. General Hahn-Banach theorem and extension theorems

In this section we give some generalizations of the well known Hahn-
Banach theorem in terms of general convex functions.

Let A ⊂ X be a subset of linear space X. We say that A is Q-radial
at a point a ∈ A if for every y ∈ X (y �= 0) , there exists an εy > 0 such that
a+ λy ∈ A for every λ ∈ Q ∩ (0, εy).

Lemma 1. Let X be a linear space, let D ⊂ X be a set Q-convex and
Q-radial at a point x0 ∈ D , and let L ⊂ X be a linear space (over Q) such
that x0 ∈ L. Let f : D → R be a function fulfilling the inequality

f(λx+ (1− λ)y) ≤ max
{
f(x), f(y), g

(
f(x), f(y)

)}
(Q)

for a function g : f(D)2 → R, for all x, y ∈ D and for every λ ∈ Q ∩ [0, 1]. If
z /∈ L, if Z = Lin(L ∪ {z}) and if h : L→ R is a linear functional such that

h(x) ≤ f(x) for every x ∈ D ∩ L,(1)

then there exists a linear functional H : Z → R such that

H(x) ≤ f(x) for every x ∈ D ∩ Z
and H|L = h, i.e., there is an extension of the linear functional h on Z.
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Hence we derive a new form of the rational version of the Hahn-Banach
theorem.

Theorem 3.1. Let X be a linear space, let D ⊂ X be a set Q-convex
and Q-radial at a point x0 ∈ D, and let L ⊂ X be a linear space (over Q)
such that x0 ∈ L. Let f : D → R be a function fulfilling (Q) for all x, y ∈ D
and for every λ ∈ Q ∩ [0, 1]. If h : L→ R is a linear functional with property
(1), then there exists a linear functional H : X → R such that

H(x) ≤ f(x) for every x ∈ D
and H|L = h, i.e., there is an extension of the linear functional h on X.

In this section arguing as in the proof of Theorem 1 we can get however
the following result.

Theorem 3.2. (General Hahn-Banach theorem). Let X be a real linear
space, let D ⊂ X be a subspace and let f : X → R be a general convex function
such that

h(x) ≤ f(x) for every x ∈ D,
where h : D → R is a linear functional. Then there is a linear functional
H : X → R such that

H(x) ≤ f(x) for every x ∈ X
and H|D = h , i.e., there is a linear extension of the linear functional h on
the space X.

By the preceding method, we also prove the following result, which is a
separation theorem on a linear space.

Theorem 3.3. (Separation of concavity and general convexity). Let
E be a real linear space, let D ⊂ E be a nonempty convex subset, and let
f : E → R be a general convex with tent function such that

k(x) ≤ f(x) for every x ∈ D,
where k : D → R is a concave functional. Then there is a linear functional
H : E → R such that

k(x) ≤ H(x) for every x ∈ D,
and

H(y) ≤ f(y) for every y ∈ E.
A brief proof of this statement may by found in Tasković [7]. For the

proof of this statement the following result is essential.
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Lemma 2. Let X be a nonempty compact convex subset of a separated
linear topological space and fv : X → R ∪ {+∞} for v ∈ I a family of lower
semi-continuous general convex with tent functionals. If for any finite indices
v1, . . . , vn the following inequality holds

λ1fv1(y) + · · ·+ λnfvn(y) ≤ 0

for every y ∈ X and for any nonnegative numbers λ1, . . . , λn with property
λ1 + · · ·+ λn = 1, then there is an x ∈ X such that

fv(x) ≤ 0 for every v ∈ I.
Let E be a linear functional and let f : E → R be a general convex

with tent function. For two nonempty subsets A and B of E, we consider a
number

f(A,B) := inf
{
f(x− y) : x ∈ A, y ∈ B

}
.

As a directly consequence of the preceding results we obtain the follow-
ing statement.

Proposition 3.4. Let E be a real linear space and let f : E → R be a
general convex with tent function. If C and D are nonempty convex subsets
of E such that f(C,D) > −∞, then there is a linear functional H : E → R

such that

inf
{
H(x) : x ∈ C

}
= f(C,D) + sup

{
H(y) : y ∈ D

}
and

H(x) ≤ f(x) for every x ∈ E.
Let X be a real linear space, D a convex set in the space X, k : D → R

and f : D → R are given functionals, kβ : D → R (β ∈ J) and fα : D → R

(α ∈ I) denote the sequences of concave and general convex functionals such
that k(x) ≤ kβ(x), fα(x) ≤ f(x) for all x ∈ D, respectively. Also, let the
envelope (of functional f) f̄(x) = supα∈I fα(x) be a general convex with
tent function. If the functionals k : D → R and f : X → R have the preceding
properties we call that k and f have the envelope majorantes property.

Theorem 3.5. Let X be a real linear space, let D ⊂ X be a nonempty
convex set, and let k : D → R and f : X → R have the envelope majorantes
property. Then there is a linear functional H : X → R such that

k(x) ≤ H(x) for every x ∈ D,
H(x) ≤ f(x) for every x ∈ X

if and only if the following inequality holds

inf
β∈J

Kβ(x) ≤ inf
λ>0

1
λ

supα∈I fα(λx)



Survey on transversal normed spaces 159

for every x ∈ ConvD, where the functions Kβ(x) are defined by

Kβ(x) =
{
kβ(x) for every x ∈ D,
−∞ for every x ∈ (ConvD)\D.

Theorem 3.6. (Extension of Mazur-Orlicz’s theorem). Let X be a real
linear space, and let g : X → R be a given functional. If J is an arbitrary
index set, {xj : j ∈ J} ⊂ X, and if {cj : j ∈ J} ⊂ R, then the system of form

φ ≤ g, cj ≤ φ(xj) for j ∈ J

has a solution φ ∈ X∗ if and only if for every finite set {j(1), . . . , j(n)} ⊂ J

and for every set {α1, . . . , αn} of nonnegative numbers we have
n∑

k=1

αkcj(k) ≤ g

(
n∑

k=1

αkxj(k)

)
.

If g : X → R is a sublinear functional, then from Theorem 5 we obtain
well known result in 1934 of S.Mazur and W.Orlicz.

In this section we will consider a stronger version of the general Hahn-
Banach theorem which will also turn out to be equivalent to the Axiom of
Choice.

Theorem 3.7. (An equivalent of Axiom of Choice). Let M be a sub-
space of real linear space E and S a subset of E. Suppose f : E → R is a
general convex functional and h : M → R a linear functional such that

h(x) ≤ f(x) for every x ∈M.

Then the set G of all f -dominated linear extensions of h to E has an
element g : E → R such that for all H ∈ G with g(s) ≤ H(s) for all s ∈ S,
we have g(s) = H(s) for all s ∈ S. That is, g is S-maximal in G.

Annotations. We notice that, in special case, if D ⊂ Rn and if the
function f : D → R satisfying the following inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ D and for arbitrary λ ∈ Q ∩ [0, 1] the preceding statement of
Theorem 1 are considered M E. Kuczma [5] and E. Berz [1].

Also, in the book of Kolmogorov - Fomin [4] there is an extension the-
orem of Hahn - Banach type of the form Theorem 1 in case when f : D → R

(for D ⊂ Rn) is a convex function. In connection with this see and: Roberts
- Varberg [6].
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Corollary 3.8. (Form of the Hahn - Banach theorem). Let X be a real
linear space, let D ⊂ X be a subspace and let x �→ ||x|| : X → R be an upper
transversal norm such that

h(x) ≤ ||x|| for every x ∈ D,
where h : D → R is a linear functional. Then there is a linear functional
H : X → R such that

H(x) ≤ ||x|| for every x ∈ X
and

H(z) = h(z) for every z ∈ D.

Proof. Applying Theorem 2 for the case when f(x) = ||x|| : X → R,
where x �→ ||x|| is an upper transversal norm, directly we obtain this state-
ment.

4. A sandwich with general convexity

In is the aim of this section to characterize which can be separated
by a general convex function. This leads us to functional inequality for real
functions f, g : I → R (I ⊂ R is an interval) such that

f(λx+ (1− λ)y) ≤ max
{
g(x), g(y), G

(
g(x), g(y)

)}
(R)

for a continuous increasing function g : g(I)2 → R, for all x, y ∈ I and for
arbitrary λ ∈ [0, 1].

Theorem 4.9. Real functions f, g : I → R ( I ⊂ R is an interval)
satisfy (R) for all x, y ∈ I and arbitrary λ ∈ [0, 1] if and only if there exists
a general convex function h : I → R for a continuous increasing function
S : h(I)2 → R such that

f(x) ≤ h(x) ≤ g(x) for every x ∈ I.(R’)

Arguing as in the proof of Theorem 7 we can get however the following
result.

Theorem 4.10. Real functions f, g : D → R (D is a convex subset of
a vector space) satisfy for a continuous increasing function G : g(D)n → R

the following inequality

f

⎛⎝ n∑
j=1

λjxj

⎞⎠ ≤ max
{
g(x1), . . . , g(xn), G

(
g(x1), . . . , g(xn)

)}
(2)



Survey on transversal normed spaces 161

for all n ∈ N, for all x1, . . . , xn ∈ D and for reals λ1, . . . , λn ∈ [0, 1] with
property λ1 + . . .+λn = 1 if and only if there exists a general convex function
h : D → R for a continuous increasing function S : h(D)n → R such that

f(x) ≤ h(x) ≤ g(x) for every x ∈ D.(3)

We notice, if real functions f and g, defined on a convex subset D of an
(n − 1)-dimensional real linear space, satisfy (2) if and only if there exists a
general convex function h : D → R satisfying (3).

Further applications of Theorem 7 concern solutions of the inequalities
for the function f : J → R (J either R0

+ or R) with

f(λx+ (T − λ)y) ≤ max
{
f(x), f(y), G(f(x), f(y))

}
(4)

for a continuous increasing function g : f(J)2 → R, for all x, y ∈ J , for given
T > 0 and for arbitrary λ ∈ [0, T ].

For given T > 0 and f : J → R we define the function fT : J → R by
the formula

fT (x) = T−1f(Tx).

Theorem 4.11. Let T be a positive real number. A function f : J → R

satisfies (4) for all x, y ∈ J and arbitrary λ ∈ [0, T ] if and only if there exists
a general convex function ψ : J → R for a continuous increasing function
S : ψ(J)2 → R such that

ψT (x) ≤ f(x) ≤ ψ(x) for every x ∈ J.
Let f : I → R ( I ⊂ R is an interval) for a continuous increasing

function G : f(I)2 → R satisfy the following inequality

f(λx+ (T − λ)y + (1− T )ξ) ≤ max
{
f(x), f(y), G(f(x), f(y))

}
(5)

for all x, y ∈ I, for given T ∈ (0, 1), for arbitrary λ ∈ [0, T ] and for fixed ξ ∈ I.
Fix a real interval I and a point ξ ∈ I. For T ∈ (0, 1) put

I∗T = TI + (1− T )ξ.

Given a real function ψ with the domain containing I∗T , we define ψ∗T :
I → R by the formula

ψ∗T (x) = T−1
(
ψ(Tx+ (1− T )ξ)− (1− T )ψ(ξ)

)
.

Theorem 4.12. Let T ∈ (0, 1). A function f : I → R ( I ⊂ R is an
interval) satisfies (5) for all x, y ∈ I and arbitrary λ ∈ [0, T ] if and only if
there exists a general convex function ψ : I∗T → R for a continuous increasing
function S : ψ(I∗T )2 → R such that

ψ∗T (x) ≤ f(x) for every x ∈ I,
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and

f(x) ≤ ψ(x) for every x ∈ I∗T .
Theorem 4.13. (Form of the open mapping theorem). Let X and Y

be upper complete upper transversal normed spaces with a bisection function
ψ ∈ G(R0

+). If A is a bounded linear operator of X onto Y , then A is an open
mapping, i.e., A(G) is an open subset of Y whenever G is an open subset of
X.

A brief proof of this statement may be found in: Tasković [7]. The open
mapping theorem for complete normed spaces was obtainded by S. Banach
in 1929. A general form of the open mapping theorem was obtained by J.
Schauder in 1930.

In further, let B(X,Y ) denoted the set of all bounded linear transfor-
mations of an upper transversal normed space X into an upper transversal
normed space Y .

Theorem 4.14. (Form of the Banach - Steinhaus theorem). Let J be
an index set, X and Y be upper transversal normed spaces with a bisection
function ψ ∈ G(R0

+), X be an upper complete space and Aj ∈ B(X,Y ) for
every j ∈ J . Then supj∈J ||Ajx|| < ∞ for every x ∈ X if and only if the
following inequality holds supj∈J ||Aj || <∞.

A brief proof of this theorem may be found in Tasković [7]. The prece-
ding statement, for case of the Banach space X and the normed space Y , is
the well-known as the uniform boundness principle. This principle first was
obtained (for bounded linear functionals) in 1922 by Hahn and in 1923 by
Hildebrant. General version of this principle was obtained by Banach and
Steinhaus in 1927.

5. Transversal lower normed spaces

Let X be a linear space over K. The mapping x �→ ||x|| : X → R is
called a lower transversal seminorm (or lower seminorm) iff: ||x|| ≥ 0 for
every x ∈ X, ||λx|| = |λ| ||x|| for all λ ∈ K and x ∈ X, and if there is a
function d : (R0

+)2 → R0
+ such that

||x+ y|| ≥ min
{
||x||, ||y||, d

(
||x||, ||y||

)}
(Nl)

for all x, y ∈ X.
Further, x �→ ||x|| is called a lower transversal norm (or lower norm)

iff in addition: ||x|| = 0 if and only if x = 0; also x �→ ||x|| is called a limited
lower transversal norm (or limited lower norm) iff in addition: ||x|| = +∞
if and only if x = 0.
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A lower transversal normed space (X, || · ||) over K consists of a
linear space X over K together with a lower transversal norm x �→ ||x||.

The function d : (R0
+)2 → R0

+ in (Nl) is called lower bisection fun-
ction. From (Nl) it follows, by induction, that there is a function D : (R0

+)n →
R0

+ such that

||x0 − xn|| ≥

≥ min
{
||x0 − x1||, . . . , ||xn−1 − xn||,D

(
||x0 − x1||, . . . , ||xn−1 − xn||

)}
for all x0, x1, . . . , xn ∈ X and for any fixed integer n ≥ 2.

It is easy to verify that the lower transversal normed linear space X is a
transversal lower space (see: Tasković [7]) with respect to the lower transverse
ρ : X ×X → R0

+ defined by

ρ[x, y] = ||x− y|| for all x, y ∈ X;

thus we obtain ρ[x − z, y − z] = ρ[x, y] and ρ[λx, λy] = |λ|ρ[x, y] for all
x, y, z ∈ X and for every scalar λ ∈ K.

In this sense, the sequence {xn}n∈N in (X, || · ||) converges (or lower
converges) to x ∈ X if the sequence {xn}n∈N converges (or lower converges)
in (X, ρ), i.e., if

ρ[xn, x] = ||xn − x|| → ∞ as n→∞.
In this sense, a lower transversal normed space X is said to be lower

complete (or complete) if it is lower complete as a transversal lower space.
We will, in further, denote by D(R0

+) the set of all lower bisection fun-
ctions d : (R0

+)2 → R0
+ which are increasing satisfying d(t, t) ≥ t for every

t ∈ R0
+.
A function f : D → R, where R denotes the real line and D is a

convex subset of Rn, is said to be general concave iff there is a function
d : (f(D))2 → R such that

f(λx+ (1− λ)y) ≥ min
{
f(x), f(y), d

(
f(x), f(y)

)}
(Min)

for all x, y ∈ D and for arbitrary λ ∈ [0, 1]. For this see: Tasković [8].
We notice that lower transversal norm x �→ ||x|| is a general concave

function. The proof is simple.

Example 2. Let X be a linear space over K and let D be the set of
all nondecreasing, leftcontinuous functions x �→ Nx : R → [a, b] for a < b
(a, b ∈ R0

+), where inf Nx = a and supNx = b. Then (X,D) is a lower tran-
sversal normed space if: Nx(0) = b for every x ∈ X, Nx = a for x ≤ 0 and
Nx = b for x > 0,

Nλx(σ) = Nx

(
σ

|λ|

)
for every x ∈ X
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and for all σ ∈ R and λ �= 0, and if there is a function d : [a, b]2 → [a, b] such
that

Nx+y(p+ q) ≥ min
{
Nx(p), Ny(q), d

(
Nx(p), Ny(q)

)}
for all x, y ∈ X and for all p, q ≥ 0. For further examples see: Tasković [7].

Example 3. (The space LB(S)). Let S be a nonempty set and let
LB(S) be a set of all lower bounded functions x : S → R. Thus we have that
LB(S) ⊂ RS with the lower transversal norm defined by

||x|| = inf
{
|x(t)| : t ∈ S

}
;

and we denote the resulting lower transversal normed space by LB(S). Then
LB(S) is a lower complete lower transversal normed space. (A brief poof of
this fact may be found in: Tasković [7]).

Lower bounded linear operators. Let X and Y be lower transver-
sal normed spaces over K. The linear operator A : X → Y is called lower
bounded (or bounded) iff

inf
x∈X\{0}

||Ax||
||x|| > 0;

and, thus, the set B(X,Y ) of lower bounded linear operators from X to Y

together with the operator lower norm of the form

||A|| := inf
x∈X\{0}

||Ax||
||x||

is a complete (lower complete) lower transversal normed space over K.
Let X and Y be lower transversal normed spaces, then a map f : M ⊂

X → Y is lower continuous (or continuous) at x ∈ M iff for every ε > 0
there is a δ = δ(ε) > 0 such that ||f(x) − f(y)|| > ε whenever y ∈ M and
||x− y|| > δ.

Proposition 5.15. Let X and Y be lower transversal normed spaces.
Then the linear operator A : X → Y is lower continuous in 0 ∈ X if and only
if it is lower bounded.

A brief proof of this statement may be found in: Tasković [7].

Proposition 5.16. Let X be a lower transversal normed space with
the lower bisection function d ∈ D(R0

+) and let Y be a lower complete lower
transversal normed space, then B(X,Y ) is a lower complete lower transversal
normed space.
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A brief proof of this statement may be found in: Tasković [7].
Series in a lower transversal normed space. Let X be lower tran-

sversal normed space. A pair of sequences {xn}n∈N and {σn}n∈N is called a
series if σn = x0 + x1 + · · · + xn for any n ∈ N. The series is said to lower
converge (or converge) to x ∈ X iff∥∥∥∥∥

n∑
k=1

xk − x
∥∥∥∥∥→∞ (n→∞);

and, in this sense, the series
∑∞

k=1 ||xk|| is said to lower converge (or converge)
iff

inf
{
||xn+1||, ||xn+2||, . . .

}
→∞ (n→∞).

In connection with this, in a lower transversal normed space X, a lower
absolutely convergent series {xn}n∈N is a series such that the series of ge-
neral term ||xn|| is lower convergent.

Proposition 5.17. A lower transversal normed space X with the lower
bisection function d ∈ D(R0

+) is lower complete if and only if every lower
absolutely convergent series in X is lower convergent in X.

A brief proof of this statement may be found in: Tasković [7].
The set M is lower dense (or dense) in the lower transversal normed

space X iff Cl(M) = X, i.e., for every x ∈ X there exists a sequence {xn}n∈N

in M such that xn → x as n→∞. This is equivalent to the condition that for
every x ∈ X and every ε > 0 there is a point y ∈M such that ||x− y|| > ε.

A lower transversal normed space X is separable (or lower separable)
iff it contains a lower dense set M which is at most countable.

Example 4. Let K be a nonempty compact set in Rn and let C(K)
denote the set of all lower continuous functions f : K → R. The lower tran-
sversal norm

||f || = min
x∈K

|f(x)|

makes C(K) into a real complete lower transversal normed space. Then the
set M of all polynomials in C(K) is lower dense in C(K). The space C(K) is
lower separable, for example.

A set F of the lower transversal normed space X is called lower fun-
damental (or fundamental) iff the linear hull of F is a lower dense set in
X; if F in addition and countable, then F is called lower fundamental (or
fundamental) sequence in X.
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Proposition 5.18. The lower transversal normed space X with the
lower bisection function d ∈ D(R0

+) is separable if and only if there is a
lower fundamental sequence in X.

We notice, from the preceding facts, that a nonempty bounded clo-
sed subset of a finite dimensional lower transversal normed linear space is
compact. There is a converse of this fact which is true and which provides
an important characterization of finite dimensional lower transversal normed
linear spaces. We shall need an essential statement.

Proposition 5.19. (Geometrical lemma). Let X be a lower transver-
sal normed space and let Y be a linear subspace of X that is a proper closed
subset of X. Then for every ε > 1 there exists a point xε ∈ X such that

||xε|| = 1 and hdiam(xε, Y ) := sup
y∈Y

||xε − y|| < ε.

In further, applying Geometrical lemma, we obtain the following state-
ment for lower transversal normed spaces.

Proposition 5.20. Let X be a lower transversal normed space and let
d(K[0, 1]) := {x ∈ X : ||x|| ≥ 1} be a closed compact unit ball in X, then X
is a finite dimensional space.

We turn now to the question of the existence of nonzero lower bounded
linear functionals on an arbitrary nonzero lower transversal normed space.
Such functionals obviously exist when the space is onedimensional and every
nonzero linear space has onedimensional linear subspaces. In this section we
derive a general extension statement.

Theorem 5.21. Let X be a real linear space, let D ⊂ X be a subspace
and let x �→ ||x|| : X → R be a lower transversal norm such that

h(x) ≥ ||x|| for every x ∈ D,
where h : D → R is a linear functional. Then there is a linear functional
H : X → R such that

H(x) ≥ ||x|| for every x ∈ X
and

H(z) = h(z) for every z ∈ D.
Lemma 3. Let X be a linear space, let D ⊂ X be a set Q-convex and

Q-radial at a point x0 ∈ D , and let L ⊂ X be a linear space (over Q) such
that x0 ∈ L. Let f : D → R be a function fulfilling the inequality

f(λx+ (1− λ)y) ≥ min
{
f(x), f(y), d

(
f(x), f(y)

)}
(M)
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for a function d : f(D)2 → R, for all x, y ∈ D and for every λ ∈ Q ∩ [0, 1]. If
z /∈ L, if Z = Lin(L ∪ {z}) and if h : L→ R is a linear functional such that

h(x) ≥ f(x) for every x ∈ D ∩ L,(6)
then there exists a linear functional H : Z → R such that

H(x) ≥ f(x) for every x ∈ D ∩ Z
and H|L = h, i.e., there is an extension of the linear functional h on Z.

Hence we derive a totally new form of the rational version of the well
known Hahn-Banach theorem.

Theorem 5.22. Let X be a linear space, let D ⊂ X be a set Q-convex
and Q-radial at a point x0 ∈ D, and let L ⊂ X be a linear space (over Q)
such that x0 ∈ L. Let f : D → R be a function fulfilling (M) for all x, y ∈ D
and for every λ ∈ Q ∩ [0, 1]. If h : L→ R is a linear functional with property
(6), then there exists a linear functional H : X → R such that

H(x) ≥ f(x) for every x ∈ D
and H|L = h, i.e., there is an extension of the linear functional h on X.

In this section arguing as in the proof of Theorem 14 we can get however
the following result.

Theorem 5.23. (Form of Hahn-Banach theorem). Let X be a real lin-
ear space, let D ⊂ X be a subspace and let f : X → R be a general concave
function such that

h(x) ≥ f(x) for every x ∈ D,
where h : D → R is a linear functional. Then there is a linear functional
H : X → R such that

H(x) ≥ f(x) for every x ∈ X
and H|D = h , i.e., there is a linear extension of the linear functional h on
the space X.

A brief proof of Theorem 15 (as and Lemma 3 and Theorem 14) may
be found in Tasković [7].

Proof of Theorem 13. Applying Theorem 15 for the case when f(x) =
||x|| : X → R, where x �→ ||x|| is a lower transversal norm, directly we obtain
this statement.

We notice that Theorem 15 guarantees that a lower transversal normed
space is richly supplied with continuous linear functionals, and makes possible
an adequate theory of conjugate spaces.

The following form of open mapping theorem enables us to give a sat-
isfactory description of the projections on a lower transversal normed spase,
an has the important closed graph statement as one of its consequences.
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Theorem 5.24. (Form of the open mapping theorem). Let X and Y

be lower complete lower transversal normed space with a bisection function
d ∈ D(R0

+). If A is a lower bounded linear operator of X onto Y , then A is
an open mapping, i.e., A(G) is an open subset of Y whenever G is an open
subset of X.

A brief proof of this statement may be found in: Tasković [7].

Theorem 5.25. (Form of Banach - Steinhaus theorem). Let J be an
index set, X and Y be lower transversal normed spaces with coninuous lower
norm and with a bisection function d ∈ D(R0

+), X be a lower complete space
and Aj ∈ B(X,Y ) for every j ∈ J . Then infj∈J ||Ajx|| > 0 for every x ∈ X
if and only if infj∈J ||Aj || > 0.

Proof. First, let J be a countable set and defined for k ∈ N the
following set such that

Ek =
{
x ∈ X : ||Anx|| ≥ k for every n ∈ N

}
.

We shall show that Ek (for k ∈ N) is closed. If x ∈ Cl(Ek), then there
is a sequence {xi}i∈N in Ek such that xi → x (i → ∞). Thus we obtain,
since An ∈ B(X,Y ), the following inequality ||Anx|| ≥ k, which means that
x ∈ Ek, i.e., Ek is a closed subset in X.

Since X = ∪∞k=1Ek, applying Baire’s theorem for lower transversal spa-
ce (see: Tasković [7]), we have that there is k(0) ∈ N such that Ek(0) is a not
dense set. Since the set Ek(0) is a closed subset of X, hence there exists an
open ball K0 ≡ d(K(x0, r)) ⊂ Ek(0).

Let x ∈ X (x �= 0) and let z = x0 + λx, where λ = 2r/||x0||. From
||z−x0|| = λ||x|| = 2r we have z ∈ K0. Also, x0 ∈ K0 and K0 ⊂ Ek(0) implies
that

||Anz|| ≥ k(0) and ||Anx0|| ≥ k(0) for n ∈ N;

and hence, since X and Y are lower transversal normed space, we obtain the
following inequalities

||Anx|| =
1
λ
||An(z − x0)|| ≥

≥ 1
λ

min
{
||Anz||, ||Anx0||, d(

∣∣|Anz||, ||Anx0||
)}
≥

≥ 1
λ

min
{
||Anz||, ||Anx0||, d

(
min{||Anz||, ||Anx0||},min{||Anz||, ||Anx0||}

)}
≥

≥ 1
λ

min
{
||Anz||, ||Anx0||,min{||Anz||, ||Anx0||}

}
≥
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≥ 1
λ

{
k(0), k(0),min{k(0), k(0)}

}
=

=
k(0)
λ

=
k(0)
2r
||x||.

Thus we obtain ||An|| ≥ k(0)/2r for every n ∈ N, i.e., the following fact
holds

inf
n∈N

||An|| ≥
k(0)
2r

> 0,(7)

in the case card(J) = ℵ0. If card(J) > ℵ0 and infj∈J ||Aj || = 0, then there
exists an operator sequence An (n ∈ N) such that limn→∞ ||An|| = 0. But, it is
in contradiction with (7). Conversely is immediate since ||Ajx|| ≥ ||Aj || ||x||.
The proof is complete.

Theorem 5.26. (Form of convergence principle). Let X and Y are
lower transversal normed spaces with continuous lower norm and with a bi-
section function d ∈ D(R0

+), Y is a lower complete space and {An}n∈N the
sequence of lower bounded linear operators of X into Y such that:

1) ||An|| ≥ µ for every n ∈ N;
2) There exists limn→∞Anx for all points x ∈ D in a dense subset D

of a boll K := d(K(x0, r)) in X.
A brief proof of this statement may be found in: Tasković [7].
Lower total continuous operators. Let X and Y are lower tran-

sversal normed spaces. The linear operator A : X → Y is called lower total
continuous iff every lower bounded set in X maps in a relatively compact
set in Y .

Proposition 5.27. Let X and Y are lower complete lower transversal
normed spaces with the bisection function d ∈ D(R0

+) and let An : X → Y
(n = 1, 2, . . . ) be a sequence of lower total coninuous operators. If

||An −A|| → ∞ (as n→∞),

i.e., if the sequence of operators {An}n∈N lower uniformly converges to
A, then A is a lower total coninuous operator.

In further, we notice that with the help of Geometrical lemma (Propo-
sition 6) we now obtain the following statement.

Proposition 5.28. (Form of Fredholm alternative). Let X be a lower
complete lower transversal normed space and let A : X → X be a linear lower
total continuous operator. Then, or the equation

x−Ax = y

has a unique solution for every y ∈ X, or the equation x − Ax = 0 has a
nontrivial solution.
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A brief proof of this statement may be found in: Tasković [7].
Lower summability. In this section we shall consider an application

of the form of principle of uniform boundedness (Theorems 16 and 17) in
classical analysis. In this sense let A = (αmn) be a double sequence of real
numbers. A sequence (ζn) of real numbers is said to be lower A-summable
to the limit ζ iff the series

ηi =
∞∑

k=1

|αik|ζk

lower converges for each positive integer i and if the sequence (ηi) is lower
converges to ζ as i→∞. In this case denote that ζ = l(A− limi→∞ ηi).

A double sequence A = (αmn) is said to determine a lower regular
method of summability iff each lower convergent sequence (ζn) of real
numbers is lower A-summable to limn→∞ ζn.

Proposition 5.29. (Characterization of lower A-summable). A double
sequence A = (αmn) determines a lower regular method of summability if and
only if:

(a) limi→∞
∑∞

k=1 |αik| = 1
(b) {

∑∞
k=1 |αik|q}1/q ≥ µ > 0 for every i ∈ N, for 0 < p < 1 and

1/p + 1/q = 1.

This result is connected, de facto, with the classical result on regular
method of summability which is due to Toeplitz, see: Brown - Page [2, p. 315].
A brief proof of Proposition 10 may be found in: Tasković [7].

General annonation. For further applications of the preceding met-
hods of this paper see: Tasković [7].

6. Further facts

Let X be a linear space over K. The mapping x �→ ||x|| : X → R is
called an upper global transversal seminorm (or upper global seminorm)
iff: ||x|| ≥ 0 for every x ∈ X, ||λx|| = |f(λ)| ||x|| for all λ ∈ K and x ∈ X
where f : K→ K, and if there is a function ψ : (R0

+)2 → R0
+ such that (Nu).

Further, x �→ ||x|| is called an upper global transversal norm (or
upper global norm) iff in addition: ||x|| = 0 if and only if x = 0. An upper
global transversal normed space or upper global normed space (X, || · ||)
over K consists of a linear space X over K together with an upper global
transversal norm x �→ ||x||.

The mapping x �→ ||x|| : X → R is called a lower global transver-
sal seminorm (or lower global seminorm) iff: ||x|| ≥ 0 for every x ∈ X,
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||λx|| = |f(λ)| ||x|| for all λ ∈ K and x ∈ X where f : K → K, and if there is
a function d : (R0

+)2 → R0
+ such that (Nl).

Further, x �→ ||x|| is called a lower global transversal norm (or
lower global norm) iff in addition: ||x|| = 0 if and only if x = 0; also, x �→ ||x||
is called a limited lower global transversal norm (or limited lower global
norm) iff in addition: ||x|| = +∞ if and only if x = 0.

A lower global transversal normed space or lower global normed
space (X, || · ||) over K consists of a linear space X over K together with a
lower global transversal norm x �→ ||x||.

A limited lower global transversal normed space or limited lower
global normed space (X, || · ||) over K consists of a linear space X over K

together with a limited lower global transversal norm x �→ ||x||.
We notice that every upper transversal normed space (X, || · ||) is a

limited lower global transversal normed space of the form (X, 1/|| · ||).

Example 5. (The space lnp for 1 ≤ p <∞). Let p be a real number such
that 1 ≤ p <∞. We denote by lnp the space of all n-tuples x = (x1, x2, . . . , xn)
of scalars, with the limited lower global transversal norm defined by

||x||p =
1(

n∑
k=1

|xk|p
)1/p

.(8)

Example 6. (The space lp = l∞p for 1 ≤ p < ∞). We again consider a
real number p with property that 1 ≤ p <∞, and we denote by lp the space
of all sequences x = (x1, x2, . . . ) of scalars such that

∑∞
k=1 |xk|p < ∞, with

the limited lower global transversal norm defined by

||x||p =
1( ∞∑

k=1

|xk|p
)1/p

.(9)

Example 7. (The space Lp for 1 ≤ p < ∞). An Lp space essentially
consists of all measurable functions f defined on a measure space X with
measure m which are such that |f(x)|p is integrable, with

||f ||p =
1(∫

|f(x)|pdm(x)
)1/p

(10)

taken as the limited lower global transversal norm.
Since integration is a generalized type of summation, formulas (8) and

(9) are special cases of (10).
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Example 8. (Transversal locally convex spaces). An upper transver-
sal locally convex space (X, {pj}j∈J) consists of a linear space X over K

together with a system of upper transversal seminorms {pj}j∈J such that

pj(x) = 0 if and only if x = 0

for all j ∈ J . The set U in X is called upper open iff for every x0 ∈ U there
is an ε > 0 and there are finitely many indices j1, . . . , jn ∈ J such that the
set {

x ∈ X : pj(k)(x− x0) < ε, k = 1, . . . , n
}

is contained in U . These upper open sets form a topology τ , which makes X
into a separated (Hausdorff) tpological space.

A lower transversal locally convex space (X, {pj}j∈J) consists of a
linear space X over K together with a system of lower transversal seminorms
{pj}j∈J such that

pj(x) = 0 ( or pj(x) = +∞) if and only if x = 0

for all j ∈ J . The set U in X is called lower open iff for every x0 ∈ U there
is an ε > 0 and there are finitely many indices j1, . . . , jn ∈ J such that the
set {

x ∈ X : pj(k)(x− x0) > ε, k = 1, . . . , n
}

is contained in U . These lower open sets form a topology τ , which makes X
into a separated (Hausdorff) topological space.

Example 9. (Edges normed spaces). Let X be a linear space over K.
The mapping x �→ ||x|| : X → [a, b] for a < b (a, b ∈ R0

+) is called an upper
edges seminorm iff: ||λx|| = |λ| ||x|| for all λ ∈ K and x ∈ X, and if there
is a function ψ : [a, b]2 → [a, b] such that (Nu).

Further, x �→ ||x|| is called an upper edges norm iff in addition:
||x|| = a if and only if x = 0. An upper edges normed space (X, || · ||)
over K consists of a linear space X over K together with an upper edges norm
x �→ ||x||.

The upper edges convergence xn → x (n→∞) means that ρ[xn, x] =
||xn − x|| → a (n→∞). The former example 1 is a characteristic example of
an upper edges normed space.

The mapping x �→ ||x|| : X → [a, b] for a < b (a, b ∈ R0
+) is called a

lower edges seminorm iff: ||λx|| = |λ|||x|| for all λ ∈ K and x ∈ X, and if
there is a function d : [a, b]2 → [a, b] such that (Nl).

Further, x �→ ||x|| is called a lower edges norm iff in addition: ||x|| = b
if and only if x = 0. A lower edges normed space (X, || · ||) over K consists
of a linear space X over K together with a lower edges norm x �→ ||x||.
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The lower edges convergence xn → x (n→∞) means that ρ[xn, x] =
||xn − x|| → b (n→∞). The former example 2 is a characteristic example of
a lower edges normed space.

Example 10. (Transversal semi-inner spaces). A complex (real) vector
space X over K is called transversal upper semi-inner space if corre-
sponding to any pair of elements x, y ∈ X, there is defined a complex (real)
number [x, y] which satisfies the following properties: [x, x] > 0 for x �= 0,
[λx, y] = λ[x, y] for all x, y ∈ X and λ ∈ K, [x + y, z] = [x, z] + [y, z] for all
x, y, z ∈ X, and if there is a function ψ : K2 → K such that∣∣[x, y]∣∣2 ≤ max

{
[x, x], [y, y], ψ

(
[x, x], [y, y]

)}
for all x, y ∈ X. We put ||x|| = [x, x]1/2 and thus X is an upper transversal
normed space.

A complex (real) vektor space X over K is called transversal lower
semi-inner space if corresponding to any pair of elements x, y ∈ X, there
is defined a complex real number [x, y] which satisfies the following proper-
ties: [x, x] > 0 for x �= 0, [λx, y] = λ[x, y] for all x, y ∈ X and λ ∈ K,
[x+y, z] = [x, z]+[y, z] for all x, y, z ∈ X and if there is a function d : K2 → K

such that ∣∣[x, y]∣∣2 ≥ min
{
[x, x], [y, y], d

(
[x, x], [y, y]

)}
for all x, y ∈ X. We put ||x|| = [x, x]1/2 and thus X is a lower transversal
normed space.

For further facts on transversal semi-inner spaces see: Tasković [7].
Example 11. (Transversal normed algebras). An upper transversal

normed algebra X is a complex upper transversal normed space which is
also an algebra with identity 1, and in which the multiplicative structure is
related to the upper norm by the following requirements: ||1|| = 1 and there
is a function g : (R0

+)2 → R0
+ such that

||xy|| ≤ max
{
||x||, ||y||, g

(
||x||, ||y||

)}
for all x, y ∈ X. An upper transversal normed subalgebra of X is a closed
subalgebra of X which contains 1.

A lower transversal normed algebra X is a complex lower transver-
sal normed space which is also an algebra with identity 1, and in which the
multiplictive structure is related to the lower norm, by the following require-
ments: ||1|| = 1 and there is a function h : (R0

+)2 → R0
+ such that

||xy|| ≥ min
{
||x||, ||y||, h

(
||x||, ||y||

)}
for all x, y ∈ X. A lower transversal normed subalgebra of X is a closed
subalgebra of X which contains 1. (For further facts see: Tasković [7]).
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