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TAUBERIAN THEOREMS FOR SEQUENCES
WITH MODERATELY OSCILLATORY
CONTROL MODULO

Mehmet Dik

Abstract. We introduce a general control modulo of the oscillatory
behavior or order m of {u,}, which leads new Tauberian conditions and
consequently new Tauberian theorems. Also the notion of moderately
oscillatory and regularly generated sequences is presented and studied.
In the first section we give basic definitions, notations and a brief survey
of classical results. Next we establish Tauberian theorems by using the
general control modulo. The proofs of these theorems are based on the
classical and neoclassical Tauberian results, in a particular on the corol-
lary to Karamata’s Hauptsatz. Finally in the last section we consider the
class of moderately oscillatory regularly generated sequences and prove
some theorems similar to Tauberian theorems.

1. Introduction

1.1 Definitions and notations

In the classical and neoclassical Tauberian theory, the convergence re-
storation problem of {u,} out of the existence of the limit

(1) 21_1}{1_(1 - m);unz

and some additional properties of {u,} reduces to proving that

[e e}
. Y _ n
(2) 117rlnun = I1_1{{1_(1 x)zounm .
n=
These additional conditions on {u,} are so-called Tauberian conditions which
control the behavior of {Au,}, i.e., they control the oscillatory behavior of

{ua}.
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The following denotations will be frequently used in what follows. For
a real or complex sequence u = {u,}, denote for some integer m > 0,

(m~-1)
m Ve A
01(1m)(u)= Zk 00 1) u)_uo+2k l_kﬂ formzl
Un form=0
where
— Y ka(m 1)(Au) form>1
—1 Ek:o ]CA’U,k form=20
and

_J upn~up-y forn>1
Dup = { Uo forn=20

and a,(Lm)(u) — gim ) (u) = n(m)(Au).

The Kronecker identity

(3) up — o8 () = V) (L),

will be also used in the various steps of the proofs. It can be rewritten as
ARION

(4) = VO (Au) + kzl # + U,

The above form of {u,} is more suitable to set conditions on the generator
sequence {V,fo)(Au)} of {un} rather than the sequence itself.

The concept of slowly oscillating sequences such as {u,}, {V,EO)(AU)}
or others, plays an important role in obtaining (2) from the existence of the
limit (1). The definition of slow oscillation given by Landau [1] and later by
Schmidt [2] are rather cumbersome for proving our results. In our work we
shall use a more suitable definition of slow oscillation given in [3]. However,
as noticed in [4] we can define slow oscillation in normed linear spaces. Let
be a normed linear space with norm |[.|

Definition 1. A sequence {u,} from B is slowly oscillating in norm,
(or ||.||-slowly oscillating) if

lim lim max uj —uj—1|| = 0.
A-1l+ 7 ntl<k<[An] Z () = w1
j=n+l
From (4) we may redefine slow oscillation of {u,} via its generator

sequence {V,fo) (Au)}. Namely we shall say that a sequence {u,} in B is
slowly oscillating in norm if and only if .

(i) Vi (bu) =0(1), n— oo
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and
(i) {V9(Au)}

is slowly oscillating in norm.

Clearly, the above definition of slow oscillation in norm and (i) and
(ii) hold for real or complex sequences {un}. In our work we shall study
real or complex sequences. If (i) and (ii) hold, {u,} is slowly oscillating due
to the representation (4). On the other hand, if {u,} is slowly oscillating,
it is shown in [5] that {V; (o)(Au)} is bounded. Indeed, for A > 1, define

A) = max k_ Au-| and rewrite the finite r_1 kO
wn(u, A) = b1 ohe ] Z]—n+1 J I ite sum D%y kOuy
as the series 322, 3,  kAwu. Hence

5741 Sk<gy

oo o0
<SS ko< (Z%) SAr] N <
7=0 | s <k< gy =0
o~ 1
nCi ) o =2nCy =nC,
j=0

where C > 0. Consequently we have 1A )(Au) _EZ=1 kAu, = 0O(1),

3 VO (Au ) . o
n — oo. Therefore {0 (W} =<u+>r, ——k— is slowly oscillating.
Thus {V,So)(Au)} is also slowly oscillating.
Hardy and Littlewood [6] conjectured that
(5) ) (| Aul, p) kamukv’ =0(1), n—oo, p>1

together with the existence of the limit (1) implies (2). This conjecture was
proved later by Szasz [7]. The condition (5), the Hardy-Littlewood condition,

is of considerable interest in this dissertation. Observe that if (5) holds, then
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the sequence {u,} is slowly oscillating. Indeed,

k [An)

Au;| < =0
n+1<}c<[/\n] ;H Au] n+1<k< An] Z y qu ; ;_1] -

{An] [An]

. [An]-n 1 ,

JlDus| = > jlow

n+1 Pl n+1 [/\n]—-njzn+1

1

(An] P

an|—n 1 ,
cotze (8 o)
(M) —n)p \j=n+1

W= oy

1
n+ j=n+1 j=n+1

1
1-1 /7 D [An) P
_(An]=n)" P (Z 7P| Ou P ([)\Z]Jrl) (Z 'p|Auj‘p>

1 1
where — + — = 1.
P q

3 e

_ ([(An] —n) ([/\n] +1)

1
1 % P
7P| AuylP
[An] +1 =

Taking limsup of both sides, we get

k
Z A’u]'

=n-+1

(25 () % (i e

o (222’ (25 o e )

11
<(A-=1)aarC,

(n+ 1)‘1 (n+ 1)%

lim max
n n+1<k<[An]

R

1

I
=
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where C is the constant from (5). Finally we have

. k 11
lim im  max | > Au;| <C lim (A—1)9AP =0.
A—=1+ 7 nt1<k<[An] jentl A—14

For p =1, (5) becomes
VO (o)) = VO (|Aul, 1) = —ZklAukV’— 1), n- oo,

which is no longer a Tauberian condition [8] In (8] this situation was illus-
trated by the following example. Consider the sequence defined by

1 if n=27 m=12...,

Dup={ -1 if n=2"+1, m=1,2...,

0 otherwise
which is the sequence of the first backward differences of the sequence {uy}.
Then the sequence {Vn(o)(lAuD} is bounded. This follows from the way that
the sequence {Auy,} is constructed. Indeed, for n = 2°, we have Vo )(|Au|) =

> 2;1(2.21' + 1)+ 1 < 4. Clearly, {Vz(fi1(|Au|)} is also bounded. Next

we have to show that the limit (1) exists. Consider the series f(Au,z) =
o2 1 Dupz™, where {Auy,} is defined as above. We may rewrite this series
as f(Au,z) = 300, (22" — 22"+1). Notice that if 0 < z < 1, then f(Au,z) >

0. Hence it follows that lim, ,;_f(Au,z) > 0. Also observe that from the
rewritten form of f(Au,z) we have

f(Au,z) = (1—m)2z (1-2) (:z: +2t+z +Z:c )
n=4
<(1-=z) (x2+:1:4+x8+/ ztzdt)
0

=(1-1x) (:I:2+m4+x8+/oooe( " ) dt)

=(1-z)|z®+a2* +2%+
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— 1
Thus we obtain limz_,1— f(Au,z) < 0 because In (;) ~l—zasz— 1-.

Finally limg_,1— f(Qu,z) = limgz—,1-(1 — z) Y o0 ; upz™ = 0. But it is clear
from the construction of {Au,} that the sequence {u,} diverges.
In (8] it is also shown that for p = 1, limu, = limz 1 (1—2) Y oo upz™
n

provided that lifrln V,fo)(|Au)) exists. Since (5), for p = 1, is not a Tauberian

condition for recovering convergence of {u,} from the existence of the limit
(1), this situation motivated a new way to study the control devices of oscil-
latory behavior of {u,}, more general than the slow oscillation.

Definition 2. A sequence {u,} is moderately oscillatory [8] if, for A\>1,

lim A
17rln n+1<k<[/\n] ;_1 uj| < 0
For instance, in [9] it is shown that zf
VO (|Aul) = V(| Aul, 1) ] ZkIAUkI 0(1), n— oo,

then the sequence {un} is moderately osczllatory. Assuming the existence of
the limit limg_1_ (1 — ) S 0 o) (u)a™ together with Vi (|Aul) = O(1),
n — 00, it is shown in [10, 11] that u, = O(1), n — oo.

Now we shall introduce a new device for the control of the oscilla-
tory behavior of the sequence {u,}. Denote by w7(l°) = nlu,, the classi-
cal control modulo of the oscillatory behavior. For each integer m > 1,
and for all positive integers n, define recursively as in [12, 13| w,(lm)(u) =
wim Y (uw) — a&l)(w(m‘l) (u)), the general control modulo of the oscillatory
behavior of order m, which generates new Tauberian conditions, and conse-
quently new Tauberian theorems.

In [12, 14] the notion of regularly generated sequences is introduced as
follows.

Definition 3. Let L be any linear space and let B be a class of se-
quences {Bp} from L. The class consisting of sequences defined by

"B
(6) un:Bn'f'Z_E‘f‘uo

for all nonnegative integers n, is the class of all regularly generated sequences
{un} by the class B and it is denoted by U(B). For instance, if B is the class
of all bounded slowly oscillating sequences, then U(B) is the classical class of
all slowly oscillating sequences.
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In (3], for A > 1, the de la Vallee Poussin means of {u,} are defined as
follows

(An]

(7) Tn,[An] (u) = [)\n] Z Uk-

A sequence {u,} is summable to K in the sense of the above means if

lim 1 K| =
i, 1rrln|7' ny(w) — |=0

Consider a slowly oscillating sequence {u,}. Then

[An] [An] k

1 1
and ’Tn,[/\n](u) - un, < +1<k<[)\n] ,Zk =n+1 Aqu

Taking limsup in n of both sides of the above inequality and then taking
limit of both sides as A — 1+, we have

i, T g 00 v < i Tn_ ma > o =0,

for {u,} is slowly oscillating. In the sense of the de la Vallee Poussin means,
slowly oscillating sequences ( not necessarily convergent) are as close as pos-
sible to their means in the limiting case. It is shown in [3] that if {u,} is
(C,1)-summable to K, then it is summable to K in the sense of the de la
Vallee Poussin means. Indeed, for A > 1, since

(Pl + Dopy (@) — (n+ 1ol (w)
Tn,[An](u) = [/\n] —n )

we have

1 A
imo® 2 gz
_1111{11‘71; (u) = o 1K )\K K.

. A
h}}”’n,[/\n](u) =y oq lim a[(;i]( ) —

We will now establish the two important identities [3, 12] which will be
indispensable and often used in the crucial steps of the various proofs in this
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dissertation. Consider for A > 1,

1 [An]
Up = 'rn,[,\n](u) - _[)\TL] ey Z (uk - ’Un) =
k=n+1
1 [An] k
T, am) (&) = D] —n Z Z Dy
k=n+1j=n+1
( (1) 1 "y
_ 1 1
= (Tn,[/\n](u) - an)(u)) t oy (‘U,) - [/\n] —-n Z Z Auj'
k=n+1j=n+l1

We now compute the first term in the last expression as follows. From

(An]
([An) +1) a[/\n] (u) — (n+ 1ol () = Z Uk,
k=n+1
after multiplying both sides by —1—, we have
[An] —n
(Do) + Dofy@) ~(n+1ollw) 1 L
[xn] —n “wl-n, 2 =T ()
=n+1
Therefore
(1) (1)
i (u) _ 0_(1)(u) ([An] + 1)0-[,\ ]( ) (n + 1) ( ) _ o‘(l) (u)
n,[An] n [/\’I'L] —n n
an|+1
= [[An]] — (oo @ - oV w).
Finally
An]+1

tn = 0 (u) + [[/\n} (a[(ii] (@) — ol (u)) _

(8) Dl k
[/\n — Z Z Auj, A>1,
k=n+1 j=n+1

which is the first important identity.

On the other hand, for 1 < A < 2, using the following version of the

1
de la Vallee Poussin means 7y,_xnjn(u) = [ D=7 }:k —on—[n]+1 Wk, We will
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obtain the second important identity. We begin with the following identities.

Up = 7'2n—[,\n],n(u) + (un - TZn—[/\n],n(u)) =

1 :
Tonpafn(W) + —— > (un — )

[rn] —n k=2n—[An]+1

1 n n
= Ton—[rn),n () + m Z Z Auj

k=2n—[,\n]+1 j=k+1

1 n n
= (Tan-antn(8) = O2n-pre) () + 93,y (8) + 7 M] > ) by
k 2n—[an]+1 j=k+1
The first term on the right hand side of the last expresswn can be computed
as follows (n + 1)07(3)('“,) (2n [An] + 1)‘72n [/\n] = pe —2n—[An]+1 Wk, and
multiplying both sides by W—n’ we get
(n+ D)ot (u) = (2n — ] + Dofh_ () 1 Z": .
k-
n] —n "Dl k=2n—[An]+1
Hence
n+1 1
on () = 73 ay (0) = o (O (W) = 03, ()
Finally
(Y ntl (1)
tn = 03 pp oy () + ] = D] 7 (O% () = 930y ()
9) 1

Z ZA'LL]', 1<A<2

+__—
[An] - k=2n—[\n]+1 j=k+1

From (8) it follows that if{u,} is slowly oscillating and lim oM (u) exists, then

lim u, = lim o (u)
n
The identity (9) was obtained by the author in the Graduate Research
Seminar, University of Missouri-Rolla, Spring 1999.

1.2 A brief survey of classical results

In most classical Tauberian theorems the sequence {w,(to) (u)} plays an
important role in obtaining Tauberian conditions. For instance, [15], for a real
sequence {uy}, if

(10) wO (1) = nAu, =0(1), n— oo
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and the limit (1) exists, then limu, = limz1-(1 — z) > 2 juna™. Indeed,
n

[3], choose a positive integer N(z) in such a way that N(z) —» oo as z — 1—
and
N(z)

(11) ZAunm —ZAun—o , T—1-—.

Since nAu, = 0(1), n — 00, given € > 0 there is an integer n,(¢) such that
n|Au,| < € whenever n > n,(€). Rewrite the expression on the left side of

(11) as

N(z) N(z) N(z)
ZAuna} — Z Au, = Z Au, ™ + Z Au,z"™ — Z Auy,
m=N(z)+1
N(z)
= Z Aun:c —ZAun ].—.’L‘ 51—52.
m=N(z)+1

It remains to estimate each of the above sums S; and S;. The estimate
for S in (0,1) is

o0 o0

z" 1 1
< n - - - -
|S1] < Z |Auplz™ < € Z n<EN(a:)+11—a:<E
m=N (z)+1 m=N(z)+1
1
for N(z) = [l—_—x} The estimate for Sy is obtained in a similar way for
n > n,(€)
N(z) N(z)
12 < Y [Aun|(1 — 2n) < (1 —2) Y nlAuy|
n=0 n=1
1 N(z) 1 N(z) 1 N(z)
= Z n|Auy| < ———= Z n|Auy| = —— n|Auy,| < €.
P> LT 5w X
11—z l-2z

This completes the proof that (10) and the existence of the limit (1)
imply (2). For a different approach to this proof see also [5, 16, 17).

There is an immediate generalization of (10) due to Tauber [15]. It can
be shown that it suffices to assume o\ )( ©) (u)) = (o)(Au) =o0(1l), n —
and the existence of the limit (1) to obtain (2).

Theorem 1. (Tauber [15]) For a real sequence {u,}, let the limit (1)
exist. If
(12) VO (Au) =o(1), n— oo,
then hrxtn Up = limg 1 (1 —2) Y07 g unz™.
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In order to prove this theorem, the original Tauber theorem, the Taube-
rian condition (12) is reduced to the Tauberian condition (10), 5, 16, 17].

Proof. Let v, = > p_; kAug = (n + l)V,l(o)(Au), n > 1, and v, = 0,
then we have Au, = ;(vn — VUp-1), > 1, and
> v had Un—1
- n_n n-l n _
f(a:)—u0+Z;x —Z "=

n=1 n=1
00

o)
V. .
T DL D
n=1 n=1
00

From (12) it follows that v, = o(n),n — oo and (1—-z) > 7, %z” — 0,

as z — 1—. Hence limg—,1— f(z) = ug + limg—1— Zozl n(nv—n-i—l)an’ where
v
limg_,1- f(z)=limz—1-(1-z) Y22 | u,z"™ =s. Hence we have Y oo W:—l)z"

1
— $—U,, a8 £ — 1— by the previous result of Tauber since _ U o|—1,
n(n + 1)

n — oo, the condition (12). Observe that
N

li ——: 1 n =
NgvnooZ (TL+1) Ngnoozv (n n+1)
N
lim ¢y Pt NS = im ZAun.
n N+1 N—ﬂmn=1

N—ooo
n=1

This completes the proof of the original Tauber theorem.

Later a substantial generalization of the condition (10) was found by
Littlewood [18].

Theorem 2. For a real sequence {u,}, let the limit (1) exist and
nAu, = 0O(1), n — co. Then 1i75r1 Up = limy_1-(1 — 2) Y o2 g unz™

In Theorems 1 and 2 although the sequence {u,} is assumed to be
real, these theorems can be proved for complex {u,}. In the case of complex
sequences we need to consider the limit (1) where z — 1— must be taken
along any path in the unit disk passing through z = 1. However, as in [17,
19], in order to prove Theorems 1 and 2 we have to choose the curve p =

C?cosf—-C .
2%— which has two branches through z = 1. Each branch passing
through z = 1 of the above curve makes an angle arccos (é) with the real

axis.
The following is the Littlewood theorem for complex sequences {un}.
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Theorem 3. Let lim,_1_(1—2) > o> (un2™ ezist, that is, the limit ez-
ists as z — 1— along a curve as above. If nAu, = O(1), n — oo, then

limup, = lim,— (1 — 2) Y oo g un2™.
7n

Schmidt [2] redefined Landau’s concept of slow oscillation in the follow-

ing way. A sequence {u,} is slowly oscillating if  lim  (uny —up) = 0.
N>M—oco
o
The proof of the Tauberian theorem that Schmidt proposed [2] using his
definition of slow oscillation contained some minor errors. This theorem is also
known as the generalized Littlewood theorem. Vijayaraghavan [20] gave the
corrected proof of the Schmidt Tauberian theorem. See {9] for an interesting
proof of the Schmidt Tauberian theorem.
Theorem 4. Let the limit (1) exist and lim  (uy —upm) = 0.
N>M—o0

N
n !

Then (2) holds.

In the previous section we showed that if (5) holds, then {u,} is slowly
oscillating. Consequently if the limit (1) exists and (5) holds, then clearly (2)
holds.

The one-sided boundedness of {nAu,} was first introduced by Landau
[1]. A real sequence {u,} is one-sidedly bounded if u, > —C for some C > 0
and for all nonnegative integers n. In the real case the Littlewood condition,
nAu, = 0(1), n — oo, may be generalized as nAu, > —C for some C > 0
and for all nonnegative integers n. Landau proved the following Tauberian
theorem.

Theorem 5. For a real sequence {u,}, let lim ag)(u) exist and
nAu, > —C for some C > 0 and for all nonnegati?)e integers n. Then
li}lnun = lirrln afll)(u).

By assuming the existence of the limit (1), Hardy and Littlewood [6]
later proved the following generalization of Theorem 5.

Theorem 6. Let the limit (1) ezxist and nAu, > —C for some C >0
and for all nonnegative integers n. Then (2) holds.

The proofs of Theorems 3, 5, and 6 remained very complicated until the
ingenious method of Karamata [21]. A truly profound proof of the corollary
to Karamata’s Hauptsatz [21] not only reduced the previous proofs to their
essentials, more importantly it also opened new avenues for obtaining various
Tauberian theorems involving the general moduli of the oscillatory behavior

of {un}.
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Theorem 7. (Corollary to Karamata’s Hauptsatz [21]). For a real se-
quence {un}, let the limit (1) exist and un, > —C for some C > 0 and for all
nonnegative integers n. Then lim agl)(u) = limg1-(1 — ) 307 s upz™.

n

Proof. The proof [3, 19, 21] of the corollary to Karamata’s Hauptsatz
depends on the well-known theorem of Weierstrass, that we can approximate
uniformly any continuous function on a closed set by a sequence of polyno-
mials. For instance, let g be a continuous function on [0,1]. Then given any
e > 0, there are two polynomials p and P such that on [0, 1]

(13) p(z) < g(z) < P(2),

and

1 1
() [l -seid<s [ (P@)- o)) <e

1
This is clearly true if p and P differ by at most € from g(z) — %e and

g(z) + 18 respectively. We may even consider a function g on [0,1] with a
discontinuity at z = ¢ € (0,1) of the first kind and construct polynomials
satisfying (13) and (14). For example, let g(c — 0) < g(c + 0) and let f(z) =
g(:c)+§e for x < c— & and for z > ¢; for c — § < z < ¢, define f(z) =

1
max {l(x),g(x) + ZE}’ where [ is the linear function of z such that i(c —

§) =glc—98)+ %6, l(c) =g(c+0) + %5. Then we see that f is continuous,
and f(z) > g(z). Hence for small enough 4, a polynomial P approximating
sufficiently closely f has the required properties. Similarly we may construct
p. The first step in the proof is to show that

00 ©0 1
(15) xgql_u—x);)unxnp(x )=(21ix{1_(1—z)§)unzn) /0 P(t)dt

holds for any polynomial P. It is sufficient to consider the case Pp,(z) = z™.
Since

oo o0
1—
(=) wna™ ™ = oy {(1 —x’"“)Zun(w’"“>"} ,
n=0

n=0
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taking the limit £ — 1— of both sides we get

o0
11m (1l-2 Zunz"+mn =
z—1-—

l1—-z m+1 > (m+1)n
L s L {‘1 ~a" e

n=0

1 ! m H - V{3
1 {ml_lgl_ (1-1x) Zunx } (/0 z da:) xli'r{l_(l—z)Zuna: .

n=0

Since by the Weierstrass approximation theorem any continuous func-

tion g on [0, 1] can be approximated by a sequence of polynomials uniformly,
it follows that

oo o 1
(16) zl_igl_(l - x);unm"g(xn) = {xl_l'r{l_(l —z) T;una:"} = /0 g(t)dt

for any continuous function g on [0, 1] or any function g with a discontinuity
at £ = ¢ € (0,1) of the first kind.
The second step in the proof of the theorem is the choice of the function

g. Let
g(t) = {
Then clearly

(17) /Olg(t)dt - /1 % ~1.

1 1
Furthermore g(z") = 0 if z" < ot that is, if nln (;) >lorn >

for 0<t<el
for e71<t<1

Hence from (16) we get

lim (1 —x) Z un;r:—zlim(l—x) Z Up =

9:—»1— z—1—

<—(17 ns@

In

ol

zl_i}{l_l—z Z Up = lim_l—a: Zunx

n=0
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Next step is the choice of the function N(z) such that N(z) — oo as
1

1
xz — 1—. Letting N(z) = _ orz=e NG sincel—e N@) ~ LI
(l) N(z)
In| - .
z
—m as N(m) — 00, WE have
1\ IN@) 1 [N(v:)]
im (1—e N(z)) v =
1
1—
N N@ 11 Z“" A (1-2 :L_;u”m

This completes the proof of the corollary to Karamata’s Hauptsatz.

2. Intrisic Tauberian conditions

2.1 Introduction

In the Tauberian theory, the conditions for the convergence recovery
of the sequence {u,} out of the existence of the limit (1) were essentially
based on the classical modulo w,(LO)(u) = nlu, that controls the oscillatory
behavior of {uy}. These conditions were restricting the order of the magnitude
of the sequence {Au,} both in the classical sense and Landau’s sense [1]. For
instance, as proved on page 65, if

(18) wO(u) = nAuy, = o(1), n— o0
and the limit (1) exists, then lim,, u, = limgy_,1-(1 — x) > o 0 UnZn. From the
immediate generalization, that is, ol )(w(o) (w)) = Au) = 0(1),n — oo, of

(18) we see that it is natural to set conditions on (C 1)-means of the classical

modulo w,(lo)( ) of {u,} instead of setting conditions on itself, WS (u) This
indicates that some weaker conditions could be found for the convergence
recovery of the sequence {u,} out of the existence of the limit (1) provided
that other moduli of oscillatory behavior of {u,} are defined. Recall that we
already introduced on page 62 the general control modulo of the oscillatory
behavior of order m [12, 13|. For m = 1, we have

wP () = O (w) - o0 (WO () = nbun ~ VO (Au) =
(VO () - V% (Aw)).

Now we will generalize the Littlewood condition, w(’ ) (u) =0(1), n —
oo [18], by assuming that {wn (v)} is moderately oscillatory.



72 Mehmet Dik

Theorem 8. For a real sequence {un}, let the limit (1) ezist. If {nAun}
is moderately oscillatory, then limy, u, =limz_,1_(1 — ) Yo7 [ upz™.

Proof. Since {w,(f)) (u)} is moderately oscillatory, we have
wM (@) = nAu, — VO(Aw) = 0(Q1), n— oo
and
{ 1)(w(°) } = {V(O Au)}

is slowly oscillating. Taking (C, 1)-means of both sides and of all corresponding
terms of the previous asymptotic equality, we obtain

VO (Auw) — VO (Aw) = n(VO (Aw) — v, (Aw) = 0(1), n — 0.
Hence for some C' > 0 and for all nonnegative integers n, we have
(19) nAVI(Au) > -C.
On the other hand, from the existence of the limit (1) it follows that

lim (1 —z) Z VO (Au)z™ = hm (1-2) Z — oM (u))z™ = 0.

.’L‘—bl—

Therefore limg_,1— (1 — ) > 2. v (Aw)z™ = 0.

n=0
From the corolla.ry to Karamata’s Hauptsatz, we have

—_lﬁ S kav(au) = o(1), n - oo.
k=0

But this is the original Tauber condition on {V,sl)(Au)}. Hence V,S”(Au) =
o(1), n — oo. Since {V,SO)(Au)} is slowly oscillating, from the identity (8)

VO (L) = VO (Bu) + [[j"]] L0 (00 - VO (o))
[An)
L Z VO (au) - VO, (Aw)
Pl -n k=n+1j=n+1

it follows that V% (Au) = o(1), n — oco. Therefore from the original Tauber
theorem we have limy, un = limg 1 (1 — ) > o0 jupz™

We could have obtained this conclusion as follows using the corollary
to the original Tauber theorem. From AR (Au) = o(1), n — oo we first show
that lim, ol (u) exists and lim,, 07(11)(11.) = limg—,1-(1 — ) )2y usz™. Notice
that from the Kronecker identity we have

un = o (u) = n(eP(w) — o' (w)) = VO (Lu) = o(1), 7 — oo,
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Since the existence of the limit (1) implies that limz_1_(1—2) > o2 jon )(u)
exists, the corollary to the original Tauber theorem yields lim, 0(1)(u) =
limz—1-(1 — z) Y pogunz™. Finally it follows from the Kronecker identity
that limp, up = limg_1-(1 — ) Y 02 junz™

In the above proof, after obtaining v )(Au) = o(1), n — o0, one could
use Theorem 4 and get immediately v, (Au) = o(1), n — oo, because
{ Au )} is slowly oscillating and limg—1-(1 — ) 3o V(O)(Au) =0.
However this dissertation is written around Karamata’s Hauptsatz and its
corollary because Karamata’s method is the most efficient tool and is com-
patible with my usage of the general control modulo of higher order. We
could also utilize the Littlewood theorem or the Hardy-Littlewood theorem
to conclude that V,gl)(Au) = 0(1), n — oo in the above proof, but the only
intelligent proof of the Littlewood theorem or Hardy-Littlewood theorem is
the corollary to Karamata’s Hauptsatz. Therefore we often prefer using the
corollary to Karamata’s Hauptsatz in this dissertation.

The proof of Theorem 8. suggests that the existence of the limit (1) can
be weakened by assuming that

oo
- ©) ()™
(20) ml_l'r{l_(l x nz:oan (u)x
exists and using higher order {V,Sm) (Au)}, in particular {V,Sz)(Au)}.
Theorem 9. For a real sequence {un}, let the limit (20) exist. If
{wf(LO) (v)} is moderately oscillatory, then

hmun = xl_l’m (1-z) Za D(u
n=0

Proof. It is sufficient to show that the limit (1) exists from the con-
ditions of Theorem 9. Since {w,(LO)(u)} is moderately oscillatory, nAu, —
V,fo)(Au) = O(1), n — oo. Taking (C,1)-means of both sides and of all
corresponding terms of the above asymptotic equality, we get V,,(O)(Au) —
Vi (Au) = 0(1), n — oo and again ViV (Aw) — Vi (Aw) = n(VP (Au) —
Vn(z)l(Au)) = 0(1), n — oo. Hence for some C > 0 and for all nonnegative
integers n, we have nAVZ )(Au) > -C.

On the other hand, the existence of the limit (20) implies that

oo

lim (1-2)) VP(Auw)z" = lim (1-2)Y (6 — 6@ (u))z" = 0.
n=0

z—1- T—1—
n=0



74 Mehmet Dik

Therefore lim,_,1— (1 — ) n—o 2 (Au)z™ = 0. Thus it follows that

lim (1 - 2) Z(V,51>(Au) — V. (Au))z™ = 0.
T n=0
Hence by the corollary to Karamata’s Hauptsatz, we have:

—= Zk(vk(?) Au) = VP (Aw) = o(1), n — oo.

Consequently by the original Tauber theorem V2 (Au) = o(1), n — oo.
Therefore we have:

of(w) ~ o (u) = n(oP(w) ~ 0,2 () = VP (Bu) = o(1), n— co.
Since this is a special case of the original Tauber condltlon and since the
existence of the limit (20) implies limz_1_(1 —z) > o2, )(u)x exists, we
get
hm o (u) = l_lgl (1-2z) 0(1) (w)z™.

Since {wy(LO)(u)} is moderately oscillatory, the sequence {V,S )(Au)} is slowly
oscillating. Therefore {V,El)(Au)} is also slowly oscillating. But {V,gl)(Au)}
is (C, 1)-summable to zero since V,$2)(Au) =0(1),n — o0

Thus from the identity (8) we have V,El)(Au) = o(1), n — oo. From
07(12)( ) =on )(u) +V (2)(Au), we get

o
li}ln c@(u) = xl_igl_(l - ) Z of)(u)z™

and from
oM () = oP(w) + ;N (L)

it follows that lim, a(l)(u) =limg_-(1—2)> 7 Oo,(ll)( )z™. But the exis-

tence of the limit limy, oi )( ) implies the existence of the limit (1), which is
proved in [3]. Finally

i — n = i — (1) n
Il_lgl_(l a:)Zun:z: II_I'I{L(]. x)zoan (u)z™.

n=0
Therefore from Theorem 8. it follows that
o0 o0
hm Up = x&r?_(l — ) z;) oD (u)z"™ = IEI?_(I - x) Z U™
n=

Since every slowly oscillating sequence is moderately oscillatory, we have
the following important corollary to Theorem 9.
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Corollary 3. Let the limit (20) exist. If {w,(LO)(u)} is slowly oscillating,
then

[ o]
. T 1 n
hrrbnun = a:1_1»r{1_(1 - T) T;a,(, )(u)z™.
Theorem 9. and consequently Corollary 26. are further generalizations
of the Littlewood theorem.
In Theorems 8. and 9. we have assumed that the sequence {un} is
real. However, if we do not use the corollary to Karamata’s Hauptsatz but

rather the Littlewood theorem, we can have both theorems for complex {un}.
Indeed, for a complex {uy}, let the limit (20) exist. If {w,(lo) (u)} is moderately

oscillatory, then

) o _ 1) n
le{nun = ml_lgl_(l z)Zoorn (u)2".
The proof is relatively short. Since {w,(,o)(u)} is moderately oscillatory, we
have w,(Ll)(u) = nlu, — V,go)(Au) = 0(1), n — oo.
Taking (C, 1)-means of both sides and of all corresponding terms of the
above asymptotic equation we get

V(o) = V() = (VO (bw) = V1 (Bu) = O(1), n— oo
Also from the existence of the limit (20) it follows that

z2—1—

[o.e] [o ]
lim (1 —2) Z VI (Au)" = zl_i.rfl_(l —2) Z(a,(ll)(u) —o@w))" =0,
n=0 n=0

Hence by the Littlewood theorem Vn(l)(Au) = o(1), n — oo. Therefore
{V,SO)(AU,)} is (C,1)-summable to zero. But {V,fo)(Au)} is slowly oscillat-

ing since {w,(lo)(u)} is moderately oscillatory. Thus from the identity (8) it
follows that , ,SO)(AU) = 0(1), n — oo. Hence as in Theorem 8. it follows
that limp up = lim, (1 —2) Y .0, aﬁl)(u)z".

In the above argument if the existence of the limit (1) is assumed, the
proof becomes even shorter.

2.2 Intrinsic Tauberian theorems for sequences with moder-
ately oscillatory control moduli
In the rest of this thesis, we will continue exploring Tauberian theorems
by using the general control moduli w,(;m)(u) of order m of the oscillatory
behavior of {u,} as defined on page 62.
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Notice that the control modulo of the oscillatory behavior of order one
w,(ll)(u) can be obtained from u, — ot = V,SO)(Au) by taking backward dif-
ferences in n of each term in both sides of the Kronecker identity. That is,

(un = un1) = (0 (w) = o1, (w)) = VIO (L) = V) (L)
After multiplying by n both sides of the above identity, we obtain
n(ttn — Un-1) — (e () = o'V, () = nAu, — VO(Aw) = nVO(Aw).
Thus
WP (w) = nlun = VIO (Du) = 0P (w) - oD (WO (w) = VI (8w O (w)

n

Later in this section we will apply this procedure in which we have
obtained w,(})(u) to get Tauberian theorems for {a,(lm)(u)}, m 2> 0.

In Theorem 8. it is assumed that {w,(lo)(u)} is moderately oscillatory to
obtain convergence of {u,} out of the existence of the limit (1). In the follow-
ing theorem we see that the condition {wﬁbo)(u)} being moderately oscillatory
can be further weakened and convergence of {u,} still can be obtained out of
the existence of the limit (1).

Theorem 10. For a real sequence {u,}, let the limit (1) exist. If

{w,(})(u)} is moderately oscillatory, then limy, u, = limg 1 (1—x) 307 unz™.

Proof. Since {w,(ll) (u)} is moderately oscillatory, {aﬁl)(w(l)(u)} is slowly

oscillating. Therefore
oD (WM () ~ oP(wD(w)) =
(0P (M) - 02 (W) = (1), n— oo
Observe that
oMW (W) = VO () -V (Bu)
and
0P (M (w) = VI (L) - VI (L),
Hence for some C > 0 and for all nonnegative integers n, we have
(21) (oD (W) - o2y (0D (w)) 2 -C
Also from the existence of the limit (1) it follows that
[o o]
lim (1-2)Y oM (wW(w)z" =

z—1—
n=0

o0
Jim (1~ 2) Z()(v,ﬁ‘”mu) ~ VI (Au))z" =0
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Therefore
(22) lim (1 - z) > (e () ~ oD (WM (w)))e™ = 0.
= n=0

From (21) and (22), the corollary to Karamata’s Hauptsatz yields

nilijmdwd“w»—dﬂwﬂkm»=oux n — co.
k=0

But this is the original Tauber condition. Hence

e (wD(w)) = VI (Aw) - VP (Au) = 0(1), n — .
Since {or,(Ll)(w(l)(u)} is (C, 1)-summable to zero and is slowly oscillating, it
follows from the identity (8) that

(23) oM(wM(u)) = VO(Au) - VD (Au) =0(1), n— oo,

ie., n(V,Sl)(Au) - V,fi)l(Au)) = 0(1), n — oo. By the corollary to the original
Tauber theorem we have V,Sl)(Au) = 0(1), n — oo. Thus from (23) it follows
that V-,SO)(A’U,) = 0(1), n — oo. Hence by the original Tauber theorem we have

o0
. o n
hvrlnun = zl_x’r?_(l — ) gunm .

Theorem 8. can be proved for complex {u,} by using the Littlewood
theorem rather than the corollary to Karamata’s Haupsatz as in the previous
section.

We also consider the one sided-boundedness of the control modulo
w,(f)(u) of order one to recover convergence of {u,} out of the existence of

the limit (1). Notice that
(24) WM (u) = WO () - 6D (WO (u)) =
nAu, — VO (Au) = nAVO(Au) > -C

for some C' > 0 and for all nonnegative integers n. However, in this case, {u,}
must be strictly real.

Theorem 11. For a real sequence {u,}, let the limit (1) exist. If for
some C > 0 and for all nonnegative integers n, nAV,SO)(Au) > —C, then

[e o]
lirrln Up = xl_igx_(l —zx) Zunm‘".

n=0
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Proof. Taking (C, 1)-means of both sides of (24), we have V(O)(Au)
(1)(
n

Au) > —C for all nonnegative integers n and for some C > 0. Also from
the existence of the limit (1) it follows that

- _ 0) v
Jim (1-2 Z(V (Aw) — VD (Au))z™ = 0.

Therefore by the corollary to Karamata’s Hauptsatz, we have limn(V(l) (Au)—
ViD(Aw) = 0, ie, Vi(ow) — Vi (Aw) = nAVD (Aw) = o(1), n — oo.
Hence from the corollary to the original Tauber theorem we have V,\® (Du) =
o(1), n — oo, for the existence of the limit (1) implies that limg (1 —
T) Y, V,EZ)(Au)x” = 0. Therefore V,Sl)(Au) = 0o(1), n — oo. It remains

to show that V,fo)(Au) = 0(1), n — oo. To prove this we need the following
identities

(28)  VO(bu) = VO (A )+%(v§,§]m W) - VO(Aw)
] Mf 3 (1O (a0) - VO o)),
[/\7’1,] -n k=n+1 j=n+1

for A>1 and

VO (Au) = V(l_[/\n](A )+ [/\n]+1
(26) 1 V(O) A 0) A
+[/\'ﬂ]———” Z Z (Au) = V21 (L)),

k=2n—[An]+1 j=n+1

(VD (Au) = Vi) (),

fori<A<.

Since {V«,SO)(AU,)} satisfies —(Vj(o)(Au) —Vj(g)l(Au)) < g}— for all positive
integers j, from the identity (25) we obtain the following inequality

An|+1
VO (o) < v (ow) + 0 n(V&Z}(Au) -

Vi (o)) + [/\n]—-n Z Z j

k=n+1 _7—71+1

[an]

An|+1 1

< V) + o VB0 - VO +C: Y 1
k=n

< V() + G ) - Vi) + g (B
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Taking limsup in n of both sides of the last inequality, we get

hm(V( )

B (B) = VD (Aw) + CrIg A

EmV, 9 (Au) < EﬁV(l)(Au) +
n

Since V! )(Au) = o(1), n — oo, the ﬁrst two terms on the right-hand
side of the above inequality vanish. Thus hrnnV,S )(Au) < Cj lg A. Taking the
limit of both sides as A — 1+, we obtain

(27) lim,, V{9 (Au) < 0.
Applying a similar procedure to the identity (26), we have the following in-
equality

n+1
[An] —

lnn
—WZZ

k=2n—[An]+1 j=k+

VO (L) > VD (D) + — (VIO (L) = V) (D)

n+1
] —n

e 1

L (VA - Vi B = C >

k=2n—[An]+1
[An]

> V(l) [/\n](Au)

(1) n+1 _y® — E
2 VI g (80) 4 T (VD (B0) = V(8 C2k_2n§n]+lk
n+1

> Va1 (B0) +

2n—

[M]_n(vy)(m) V,_,(Q[A [(Bu) = Cp 1%%) :

Taking the liminf in n of both sides term by term of the last inequality, we
have:

lim, V.O(Av) > limnVZ(i)_ [,\n](Au) +
1 A
' (1) -y
— lhmn(vn (Au) 2n_[/\n](Au)) Cylg (2 /\)

Since V,fl)(Au) = 0(1), n — oo, the first two terms on the right-
hand-side of the above inequality vanish as n — oo. Hence li_mnV,gO) >

A
Ig m) Finally, after taking the limit of both sides of the last in-
equality as A — 1, we have
(28) lim, V{9 (Au) > 0.

Hence from (27) and (28) it follows that lim, V,SO)(Au) = 0. Finally we have
limy, uy = limg1_ (1 — )Y po g unz™
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The method used i m Theorem 9. to show that V,fo)(Au) =o(1l),n — o0
from the existence of V! )(Au) = 0(1), n — oo, works fine in the situations

where one-sided boundedness of the sequences {un}, {w,(LO)(u)}, or others, is
involved, even though it is a long process. However, we can give a much shorter
proof of Theorem 9. as follows. Since nAVY (Au) > —C for some C > 0 and
for all nonnegative integers n and since the existence of the limit (1) implies
limg_1—(1—2) Y 22,V O)(Au) = 0, from the Hardy-Littlewood theorem

we have V% (Au) = o(1), n — oo. Therefore convergence of {u,} follows
from the original Tauber theorem.

In Theorem 8. we can weaken the condition that the limit (1) exists by
assuming the existence of the limit (20).

Theorem 12. Let the limit (20) exist. If {w (w)} is moderately oscil-
latory, then limp, up = limg 11 (1 —2) > o2, o) (u)z™

Proof. Since {w(l)(u )} is moderately oscillatory, it follows that
{0(1)(w(1) (u))} is slowly oscillating. Hence

o (WP (W) — oD (WM(w)) =
(@ (M (w)) - 0P, (WD (w))) = 0(1), n - oo,
Since the limit (20) exists and since
o PD(w(w) = VI (Au) - VD (Aw),
it follows that

Jim (1-2) 3 oD (w)e” =

n=0

zl_igl_(l - 1) i(Vél)(Au) - VO (Auw)z" = 0.

Hence from the Littlewood theorem we have lim,, 052 (W (u)) = 0. That is,
29) VD(Aw) - VO(Aw) = n(VO(Au) — VI (Au)) = o(1), n — co.

Since the existence of the limit (20) implies that
llm (1-z) Z V@ (Au)z™ = 0,
z=l1= n=0
we obtain from the corollary to the original Tauber theorem that V(z)(Au) =
o(1), n — oco. Thus from (29) we get

(30) V(Aw) = o(1), n — oo.
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Therefore from the fact that {07(11) (w(u))} is slowly oscillating, that is,
{V,EO)(AU) - ,Sl)(Au)} is slowly oscillating, we have {V,go)(Au)} is slowly
oscillating. Hence from (30) and the identity (8), we have Vn(o)(Au) = o(1),
n — oo. From

Uy — a,(ll)(u) = n(a,(ll)(u) - 07(11_)1(u)) = Vn(o)(Au) =0(1), n — oo,

it follows by the corollary to the original Tauber theorem that lim, a,(,l) =

limg-(1—-2) ) 22, or,(,l)(u)x”, which completes the proof.

In the proof of Theorem 10. first we could have shown that the limit
(1) exists from the conditions of the theorem by showing that lim,, 0'7(,,1)(’11,) =
limg—1—(1 — 2) Y oy aﬁl)(u)m" from V,El)(Au) = 0(1), n — oo and used
Theorem 8. to complete the proof.

Theorem 9. is also generalized as in Theorem 10. and is proved in a
similar way.

Theorem 13. For a real sequence {un}, let the limit (20) exist. If for

some C > 0 and for all nonnegative integers n, w,(,l)(u) =nlu, — V,fo)(Au) >
—C, then

o
li1rlnun = zl_igl_(l —z) Z e (w)z™.
n=0
We will give a detailed proof of Theorem 11. in the next chapter.
If the condition that {w,(,l)(u)} is moderately oscillatory is replaced with
some stronger conditions in the above theorems, the following corollaries are

obtained.

Corollary 4. Let the limit (20) exist. If {w,(})(u)} is slowly oscillating,
then

o0
) T _ 1) n
117131Un Il_l'r{l_(l x)nz_oan (w)z™.

Corollary 5. Let the limit (20) exist. Ifw,(Ll)(u) = O(1), n — oo, then

111rlnun = zl_lgl_(l x) Zoan (w)z™.
n=

When the condition that {w£l)(u)} is moderately oscillatory is replaced
by a weaker condition that {dﬁl)(w(l)(u))} is slowly oscillating, in Theorem
10. convergence of {u,} is still recovered out of the existence of the limit (20).
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Theorem 14. Let the limit (20) exist. If {0(1) wM(u))} is slowly os-
cillating, then

[o o]
1i7§nun = ml_i’r{l_(l —z) 2;) ol (u)z™.
n=
The proof is similar to the proof of Theorem 10. Since we have had
Tauberlan theorems for the classical control modulo of the oscillatory behav-

1or Wn, )(u) and the control modulo of the oscillatory behavior of order one,

wr, )(u), in a very similar way we can have a generalization of Theorem 10.
by conditioning the higher order control modulo of the oscillatory behavior

of {un}, in particular, {w,(LZ) (u)}. It is proved in the same way, but the proof
is longer. By assuming the existence of the limit (1) instead of the existence
of the limit (20), the proof can be made shorter.

Theorem 15. Let the limit (20) exist. If {w,(l2) (uw)} is moderately oscil-
latory, then

- _ Dy
hmun m&m_ 1-z Z;Ja
If we replace (0)(u) by the iterated modulo w(o)(w(o)(u)) = nAwl (u),
then we have the following theorem.

Theorem 16. Let the limit (1) exist. If {w,(LO)(w(O)(u))} is moderately
oscillatory, then

lirrln Up = Il_i’x{x_(l —z) gunz".
Proof. Since {wn )(w(o)( ))} is moderately oscillatory and since
oD OO w)) = VIO(BwOw) = ufDw),

{w (u)}, is slowly oscillating. Hence from the corollary 26 it follows that

11m up = lim (1-2) E Un ™.
:c—bl— 0
n=

The modulo nAw,(lo)(u) can also be used in one-sided fashion for real
sequences {uy}.

Theorem 17. For a real sequence {un}, let the limit (1) exist. If
w,(,O) (WO (u)) > —C for some C >0 and for all nonnegative integers n, then

o]
. L _ n
117111111,,-,_ = zl_1g1_(1 x) E UnZ

n=0
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Proof. Since {w,(lo)(w(o) (u))} implies that
oMW (wO®(w))) = VO (2w (u)) = w(u) > -C,
from Theorem 11. it follows that

o0
limu, = lim (1 —z) Zunzn.
n z—1—
n=0

In Theorem 10. replacing {w,(ll)(u)} by {w,&l)(w(o) (u))}, we can still re-
cover convergence of {u,} out of the existence of the limit (1).

Theorem 18. Let the limit (1) exist. If {w,(ll) (wO(u))} is moderately
oscillatory, then

oo
limu, = lim (1 - z) E Unz™.
n T—1- 0

n=

Proof. Since {w,(Ll)(w(O) (u))} is moderately oscillatory,
oD (@D (WO (W) = VO8O () - VO (AwO(u) =
(W) ~ oD O w) = o @)

is slowly oscillating. Hence by Theorem 13. we obtain

(o0}
. o n
111rlnun = zl_lgl_(l —z) ;unm .

The existence of the limit (1) can be replaced by the existence of the
limit (20) in all the above theorems. A generalization of Theorem 16. can also
be given for real {u,}, that is, if we assume one-sided boundedness of the
iterated modulo wf(tl)(w(o)(u)) = nAV,fo)(Aw(O)(u)) and the existence of the
limit (1) or (20), then convergence of {u,} is recovered.

We will finish this section by generalizing some of the previous theorems
to obtain Tauberian theorems for {a,(Lm)(u)}, for any integer m > 0.

Theorem 19. For some integer and for real {u,}, let

(31) zl—i.r{l—(l - z) 7;) o {mH) () z™
exist. If
(32) {VO(20™ (w) - VD (D0 ™ ()}

is moderately oscillatory, then

Il_igl_(l —z) Z ol (u)z™ = zl_i’z?_(l - x) ZO oM+ )z,

n=0
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Proof. Observe that
VO(Ae™ () - VIV (A0 (w)) = V™ (Au) - VI (Aw)
because :

o{™(w) = o™ (u) = VO (A0 (w) = V™ (L),

Since {V,Sm)(Au) - V,EMH)(Au)} is moderately oscillatory, (C, 1)-means of
this sequence is slowly oscillating, that is,

(33) {VImD(Aw) - VD (L)}
is slowly oscillating, and
(Vi (Du) = VD (D)) —

(34) eV (Aw) — VI (AL)) = O(1), n — oo
Also

(m+1) u) — (m+2) -
(35) (Va0 (D) = V™2 (D))

eV (Ay) — VD (Au)) = O(1), n — o
and (31) implies that
oo
o (1=2) 3 (V™D (bw) = VD (e = 0
From (35) it follows that
nAe BV (Ay) — VM) (Ay)) > ~C

for some C > 0 and for all nonnegative integers n. Thus applying the corollary
to Karamata’s Hauptsatz we obtain

n
S kAP (A0 - VD (Aw) = of1), 1 o,
k=0

but this is the original Tauber condition. Therefore
eV (Aw) — VD (A)) = o(1), n— oo
Hence from (33) it follows that
36) VM (Aw) - VI (Aw) = n(AVHD (AW) = 0(1), 1 — oo

Since

[ o] o0
: _ (m+1) n_ s B (m+2) n_
zl_l_gl_(l z) ; Va (Au)z 21_131_(1 z) HZ_O |74 (Au)z™ =0,

by the corollary to the original Tauber Theorem, we have
(37) VD (Au) = o(1), n— oo.
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Hence from (36) we get

(38) Vm ) (Au) = o(1), n— oco.

Since { V™ (Au)— AR (Au)} is moderately oscillatory, we have from (33),
(37), and (38) V,Em)(Au) = 0O(1), n — oo and

lim (1 —z) Z V. (Au)z™ = 0.

z—1—
n=0

Therefore o{™ (u) — a,(,m+l)(u) = Vn(m)(Au) implies that

o0 o}
i — (m) LN, H _ (m+1) n
zl_l..r{l_(l z) nz=00'n (Du)x Il_lgl_(l ) ;an (Au)z™.

In the above theorem {u,} does not have to be real as in the previous
theorems. By the Littlewood theorem, we can prove it for complex sequences

{un}.
Theorem 20. For some integer m > 0 and for real {u,}, let the limit
(81) exist. If {nAa,(lm)(u) - éo)(Aa(m)(u))} is moderately oscillatory, then
o o]
lirrln o™ (u) = Il_igl_(l —z) ZO oD (),

Proof. From Theorem 17. it follows that

o] [o el
lim (1 —z) Z o™ (u)z™ = lil‘{l (1-2) ZGT(:"H)(u)a:".
n=0 n=0

z—1—

Since {nAa,(zm) (u) - v (Ao(™)(u))} is moderately oscillatory, (C, 1)-

means of this sequence is slowly oscillating. That is,
VO (20 w) - V(™ (W)}
is slowly oscillating. But observe that
VO™ (w) = V(8™ (u) = V™ (Au) — VI (Aw)
because
o (W) = o™ (w) = VIO (8™ (w) = V™ (5a).
Hence we have : .
) (V™ (D) = V™) (b)) -
oMV (Au) — VD (Aw)) = O(1), n — o

Therefore
(40) nAc (VI (Au) — VI (Av)) > ~C
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for some C' > 0 and for all nonnegative integers n. Since (31) implies that

(oo}
lim (1 - z) Z(V,S”H'l)(Au) — V™2 (Au))z™ =0,
T—1— yrd _

applying the corollary to Karamata’s Hauptsatz, we get

n:_ : ZkAal(cl)(V(m)(Au) — V™) (Ag)) = o(1), n — oo,
k=0

But this is the original Tauber condition. Therefore
(41) Vm)(Av) — VM) (Aw) = 0(1), 7 — oco.

Since {V,Em)(Au) S (Au)} is slowly oscillating, we have from (41) and
the identity (8) for {V\™(Au) — V™™ (Au)} that

(42) Vi (Auw) = VD (AW) = o(1), n— oo.
That is, nAV,Sm-H)(Au) = 0(1), n — oo. Since we have
oo
1 — (m) _ y7(m+1) n_
lim (1 -r)nz_%(vn (D) — V™ (Aw))a™ = 0,

it follows from the corollary to the original Tauber theorem that yim+D) (Au)=
o(1), n — oo. Thus (42) implies that V,fm)(Au) = o(1), n — oco. Hence from
the identity

(43) o™ (u) — o™ (w) = VIO (D0 ™ () = V™ (Au) = o(1), n — oo

we have nAg{™ Y (u) = o(1), n — oco. Again from the corollary to the original

Tauber theorem we have

oo o0
liTrln ot () = zl_i)r}l_(l - ) Z()U,(lmﬂ)(u)a:" = IEI?_(I - ) Zoaflm)(u)z".
Finally from (43) we obtain lim,, a,(lm)(u) =limz1-(1-2) > 22, o,(zmﬂ)(u):v".
3. Tauberian theorems for moderately oscillatory regularly gen-
erated sequences

3.1 Introduction

Regularly generated sequences will be studied using Tauberian concepts
and techniques. In the classical Tauberian theory, the common generator se-
quence of is the sequence of {u,} the Kronecker sums {V,go)(Au)} of {un}.
In [12, 14] it is shown that if instead of the sequence the sequence of the
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Kronecker sums {V,SO) (Au)} we consider any sequence with some Tauberian-
like conditions, then we could obtain certain non-classical Tauberian condi-
tions. This motivated the concept of regularly generated sequences defined on
page 63. :

Let L be any linear space and let 3 be a class of sequences {f,} from
L. The class of all sequences {un} from L such that for some {3,} from 8
and for all nonnegative integers n

(44) unzﬂn+;%+uo,

is called the class of all regularly generated series () by the class 3.

For instance, if 3 is the class of all slowly oscillating sequences, then
the class U(3) is not a classical class, but it is easy to show that if the limit
(1) exists for a sequence {u,} from U(B3), then (2) holds. Indeed, from (44),
for all nonnegative integers n, it follows that

(45) “nhu, — VO (Au) = nAB,
Taking (C, 1)-means of both sides in all corresponding terms of (45), we have
(46) VO (u) - V(D) = VO(AB),
Due to the existence of the limit (1), it follows that
o0
(47) lim (1- ) > (VO (Aw) - VI (Au))z™ =0
S n=0
and for the same reason
o0
i — (1) n_
(48) lim (1-2) ;)Vn (Au)z™ =0

Since {£,} is slowly oscillating, {V,fo)(A,H)} is bounded and slowly oscillating.
Thus we have
(49)  V(Au) — VI (Au) = nAVID (Au) = VO(AB) = 0(1), n— oo
Hence from (48) and (49) we have by the Littlewood theorem

VID(Au) =o(1), n— .

Since
1 n
() = E -
V2o (Au) —— 2 kAug = 5,

and

{vioaw}
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is slowly oscillating, from the identity (8), it follows that
V(Au) =0(1) n— oco.

Hence the original Tauberian theorem

o0
. _ n
hmun Il_lgl_(l z) ;unz )

This result can be also obtained by replacing the existence of the limit
(1) with the existence of the limit (20) for real or complex sequences {un}
from U(B).

Consider now a real sequence {u,}. Observe that from (49) it follows
that
(50) V9(Au) — VIV (Au) = nAVD(Aw) > -C
for some C' > 0 and for all nonnegative integers n. Now instead of using
the Littlewood theorem in the previous proof we may use the corollary to
Karamata’s Hauptsatz to obtain
VI)(Au) = o(1), n— .

Hence from (47) and (50) we obtain by the corollary to Karamata’s Hauptsatz
that

(1) —
n+1ZkA (Au) =o0(1), mn— o0.
Consequently the sequence {V,f )(Au)} converges to zero by the original
Tauber theorem. That is,
(51) hmv(l)(Au) = lim (1-2) Zv(l) Au)z™ =0

:z:—»—
n=0

Observe that at this stage of the proof, again we could use the fact that
{V,So)(Au)} is slowly oscillating and obtain the same result as above. How-

ever, we will prove that V,go)(Au) = 0(1), n — oo in a different way.

Recall that for A > 1, de la Vallee Poussin means of {V,EO) (Au)} are

defined as
1 [An] ©
[
T (VEOBW) = o D VT (B,
k=n+1
From (51) it follows that

(52) /\l-lﬁl+ hrrzn'r Pm](V(")(Au)) =0
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and from the inequality

vi(Auw) — VO(AR)| < [V (AL) — 7 g (VO (Aw))
n n n 1[ ]

T an) (VO (A2)) = VO (A
Taking first limsup of both sides in n of the above inequality and then taking
limit in A — 1+ we obtain

lim Tim ‘V,S”(Au) - V,f")(Au)l = m[v,?)(Au) - V,S")(Au)l
-1+ n n

+

< lim T | ViO(Aa) = 7, g (VO (80)

k
. = (o) (o)
+lim i | 2 0578~ V5 (8w
The first term on the right hand side of the last expression is zero because of
the limit (52), and the second term is also equal to zero because of a more
convenient definition of slow oscillation given in [3]. Consequently, we have
V,So)(Au) = o(1), n — oo. Finally, as before it follows that (2) holds.

Let {u,} be a complex sequence and let the limit (20) exist. Since

{V,fo)(Au)} = {B,} and since {3,} is slowly oscillating, {V,So)(Au)} is slowly
oscillating. Thus V,gl)(Au) is also slowly oscillating. From the existence of
the limit (20) it follows that

Jim (-9 U e =0

Therefore by Theorem 4. V,Sl)(Au) = 0(1), n — oo. Hence {V,So)(Au)} is
(C, 1)-summable to zero. Since { ,go)(Au)} is slowly oscillating, from the

identity (8), we have V,So)(Au) = 0(1), n — oo. Finally convergence of the
sequence {un} follows as in previous proofs. As an alternative way here we
have utilized Theorem 4. This shows that we could have used this theorem
in our previous proofs. However, as mentioned after Theorem 8 we would
prefer using the original Tauber theorem and its corollary and the corollary
to Karamatas Hauptsatz since these are the essentials of the classical and
neoclassical Tauberian theory.

3.2 Tauberian theorems for regularly generated sequences

Let 8 be the class of all moderately oscillatory sequences {8,} and let
B* be the class of all sequences {8} such that for some {3,} from 3, and
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for all nonnegative integers n, 85 = Z ﬂk . The class U(B*) is the class of
k=1
regularly generated sequences by §* if for any {u,} € U(B*) there ex1sts a

sequence{[;} € B* such that for all nonnegative integers n u, = 5+ Z 'Bkk

u,. After considering the class of moderately oscillatory regularly generated
sequences, we will prove some theorems similar to Tauberian theorems.

Theorem 21. Let the limit

[e o]
. 1
(53) lim (1-2) Zoa,g N(w)z
exist. If {un} € U(B*), then
[o o]
limu, = lim (1 - x) Z V)
n=0
Proof. Since
k
B;
k k °
k=1 k=1

1 n
ViAW) = = 3~ kAue = o{(8) + o O("),
k=0

(54)  nbuy - VO(Au) = o+ (B~ o{(87) ~ ol (8) = B
Since {B,} is moderately oscillatory, { (2 )(ﬂ)} is slowly oscillating. From
(54) we have V(o)(Au) V(l)(Au) = ol )(,6) Hence {Vno)(Au) V(l)(Au)}
is slowly oscillating. Therefore
VO(Au) - VI (Aw) - (VI(Aw) - VD (Aw)) = 0(1), n— oo,
that is,
(55) nAV,Y (Au) — VA(Au) = 0(1), n— oo
Observe that, from the existence of the limit (20) it follows that

[e o]

(56) lim (1-2)) " (V(Aw) - V,D(Au))z™ =0

z—1—
n=0
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Now from (55) and (56) the Littlewood theorem yields

(57) Vi (Au) — VB (Au) = nAVP (Au) = o(1), n — o
Thus from the corollary to the original Tauber theorem, we have
(58) VA (Au) = o(1), n— .

Hence from (57) and (58), we get

(59) VI (Au) =0(1), n — oco.

From the fact that { V,fo)(Au) - V,Sl)(Au)} is slowly oscillating and (59), it

is clear that {V,fo)(Au)} is slowly oscillating. Thus V,So)(Au) =o(l),n —

00, from (59) and slow oscillation of { ,So)(Au)}. by the identity (8). Since
7go)(Au) = o(1), n — oo, it follows that

. ERT _ n_ 1 _ (1) n
thLnun—Il_lgl_(l m)nz_ounx zl_l'r{l_-(l x);on (u)x™.

From (54) we see that {w,(ll)(u)} is moderately oscillatory since {G,}

is moderately oscillatory. Therefore we could use Theorem 10 to conclude
Theorem 21.

Next we will consider the class of one-sidedly regularly generated se-
quences [12,14] and prove a Tauberian theorem similar to the classical one-
sidedly Tauberian theorems. Let 8 be the class of all real sequences {8}
such that for every 3, there exists some Cz > 0 so that for all nonnegative

n
integers n, B, > —Cpg. Now define 5 = Y %, for all nonnegative integers n.

k=1
Denote the class of all sequences {3}} by 8*. The class U(8*) is the class of
all one-sidedly regularly generated sequences by 8* if for every {u,} € U(8*),
there exists a sequence {f;} € B* such that for all nonnegative integers n

Un = Bp + kz gkh
=1

In [12] it is shown that if the limit (1) exists and {u,} € U(B*), then (2)
holds. In the following theorem we will show that if the existence of the limit
(1) is replaced by the existence of the limit (20) in Theorem 21 convergence
of {u,} € U(B*) is still recovered.

Theorem 22. For a real {u,}, let the limit (20) ezist. If {u,} € U(B*),
then

oo
1i1£nun = lim (1 -2z) Za,(ll)(u)x".

z—o]1—
n=0
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Proof. Recalling (54) we see that Wl (u) = nAu, — V(O)(Au) = Ln.
Since {8} is one-sidedly bounded,

(60) wiu) =, > ~Cg

for some Cg > 0 and for all nonnegative integers n. Now if we can show that
the limit (1) exists from the assumptions of Theorem 22 then we will obtain
the result of this theorem from Theorem 9. Taking (C, 1)-means of (60), we

have Vno)(Au) - V,fl)(Au) > —Cp for some Cg > 0 and for all nonnegative
integers n. If we again take (C, 1)-means of this last inequality, we get

(61) VI (Au) — VP (Au) = nAVP (Au) > —Cp

for some Cp > 0 and for all nonnegative integers n. On the other hand, from
the existence of the limit (20) it follows that

(62) hm (1-2x) Z (VI (Au) - VP (Au))z™ = 0.

z—1-
n=0

From (61) and (62) we obtain by the corollary to Karamata’s Hauptsatz

v Zk( (2) (2)1(Au)) =o0(1), .n— oo.
Thus by the orlgmal Tauber theorem it follows that
(63) VB(Auw) — VO (Au) = nAV,O(Au) = o(1), n — oo.
The corollary to the original Tauber theorem yields
(64) VO (Au) =0(1), n— oo
From (63) and (64) we have
(65) ViD(Au) = 0(1), n — oo.

Since op )(u) 0(3)(u) = nAa(3)(u) v (Au) = o(1), n — oo, by the corol-

lary to the original Tauber theorem, hm o (u) = hm  (1~-z Z o u)x
n=0

which implies that the limit (1) exists [17] and equal to the limit (20).
Finally from (61) and the existence of the limit (1), we have by Theorem

9. hmun = hm L (1—x) Z ol u)x

=0
We could use the Hardy-thtlewood theorem to give another proof of
Theorem 22 as follows. From the existence of the limit (20) we have

: _ 1 no__
(66) Jim (1 -z) > v(Au)z™ =0.

n=0
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Since

(67) V9 (Auw) - VI (Au) = nAVD (Au) > —Cp

for some Cg > 0 and for all nonnegative integers n, from (66) and (67) the
Hardy-Littlewood theorem yields V,El)(Au) = o(1), n — oco. Hence we have

o0
. 2 1 _ (1)
h}ln o (u) = z1_1‘1{1_(1 x) ZO oy (w)z™

Therefore

oo
i (1) — 15 _ (1) n
hTanan (u) = 21_1}{1_(1 x) z_;)an (u)z
which implies that the limit (1) exists and equal to the limit (20).
In Theorems 21 and 22 letting 3}, = O(1), n — oo, we can easily obtain
convergence of {u,} out of the existence of the limit (1) or (20).
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