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Effects of the ARA transform method
for time fractional problems

Süleyman Çetı̇nkaya, Alı̇ Demı̇r

Abstract. The aim of this study is to establish the solutions of time
fractional mathematical problems with the aid of new integral trans-
forms called the ARA transform. The fractional derivative is taken in
the sense of Liouville-Caputo derivative. The fractional partial differ-
ential equations are reduced into ordinary differential equations. Later
solving this fractional equation and applying inverse the ARA trans-
form, the solution is acquired. The implementation of this transform
for fractional differential equations is very similar to the implementa-
tion of the Laplace transform. However, the ARA transform allows
us to take the integral transform of some functions for which we can
not take the Laplace transform. The illustrated examples justify that
the implementation and efficiency of this method are better than any
other integral transforms to tackle time fractional differential equations
(TFDEs).

1. Introduction

Since fractional differential equations have taken an essential role in the
modelling of scientific processes in dynamical systems, fluid flow, biology,
electrical networks, reaction, signal processing, and advection–diffusion sys-
tems [5, 6, 12, 1], they attract the attention of various scientist in diverse
branches increasingly. As a result, a great number of techniques such as
[12, 1] have been improved to construct analytical and truncated solutions of
fractional differential equations. Integral transform methods, introduced by
the mathematician P.S. Laplace [16, 14], have great importance for solving
any kind of differential equation. Therefore, they are also utilized in order
to acquire the solution of fractional mathematical problems. By these trans-
forms, fractional differential equations are reduced into algebraic equations
which are easier to tackle with. In the literature, various integral trans-
forms such as Laplace, Fourier, Sumudu and Shehu, etc. transforms have
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been introduced to deal with differential equations [16, 14, 15, 9]. Some
fractional-order kinetic matrix equations are solved by Hadamard fractional
integral operator via Mellin integral transform [2]. Moreover, the solutions
of higher order fractional differential equations are established by the Shehu
integral transform [3].

The novelty of this study is that this is the one of the new studies in which
ARA transform method is utilized to established the solution of heat-like
fractional differential problem in Liouville–Caputo sense. In this research,
we investigate new powerful and versatile integral transform, called the ARA
transform, for the establishment of the solution of TFDEs.

The paper is designed as follows: fundamental notions of fractional cal-
culus are given in section 2. The ARA transform of some essential func-
tions, Liouville-Caputo derivative and Riemann-Liouville integral are given
in section 3. The algorithm of the method for fractional problems including
heat-like and wave-like equations is presented in section 4. Examples are
illustrated and analyzed in section 5. The conclusions of the method are
presented in final section.

2. Preliminary results

Fundamental definitions and their properties are presented in this subsec-
tion [7, 10, 13, 4, 8].

Definition 1. αth order of the time-fractional integral of u(t), a real valued
function, in Riemann-Liouville sense is defined as

Iαt u (t) =
1

Γ(α)

∫ t

0
(t− s)α−1 u(s)ds.

Definition 2. αth order of the fractional derivative of u(t) in Liouville-
Caputo sense is introduced as

Dα
t u (t) =

1

Γ(n− α)

∫ t

t0

(t− s)n−α−1 u(n)(s)ds, t ∈ [t0, t0 + T ] ,

where n− 1 < α < n and u(n)(t) = dnu
dtn .

Definition 3. The two parameterized Mittag-Leffler function is introduced
as follows [13]

Eα,β (λ (t− t0)α) =

∞∑
k=0

(λ (t− t0)α)k

Γ (αk + β)
, α, β > 0, λ ∈ R.
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For more information refer to [13]. As a result, the following functions
are introduced:

(1) sinα (λtα) =
Eα,1 (iλtα)− Eα,1 (−iλtα)

2i
=
∞∑
k=0

(−1)k (λtα)2k+1

Γ ((2k + 1)α+ 1)
,

and

(2) cosα (λtα) =
Eα,1 (iλtα) + Eα,1 (−iλtα)

2
=
∞∑
k=0

(−1)k (λtα)2k

Γ (2kα+ 1)
.

When α = 1, equations (1) and (2) are sin(λt) and cos(λt) respectively.
Moreover fractional hyperbolic functions are introduced in terms of Mittag-
Leffler function as follows:

coshα (λtα) =
Eα,1 (λtα) + Eα,1 (−λtα)

2
=
∞∑
k=0

(λtα)2k

Γ (2kα+ 1)
,

and

sinhα (λtα) =
Eα,1 (λtα)− Eα,1 (−λtα)

2
=
∞∑
k=0

(λtα)2k+1

Γ ((2k + 1)α+ 1)
.

It is clear above definitions that these functions become hyperbolic func-
tions at α = 1.

3. Introduction and features of the ARA transform

Definition 4. The nth order ARA transform of a continuous function g(t)
on (0,∞) is introduced as

Gn [g(t)] (s) = G (n, s) = s

∫ ∞
0

tn−1e−stg(t)dt, s > 0.

Definition 5. The inverse ARA transform is defined as

g(t) = G−1n+1 [Gn+1 [g(t)]]

=
(−1)n

2πi

∫ c+i∞

c−i∞
est
(

(−1)n
(

1

sΓ (n− 1)

∫ s

0
(s− x)n−1G (n+ 1, x) dx

+

n−1∑
k=0

sk

k!

∂kG(0)

∂sk

))
ds,

where G(s) =
∫∞
0 e−stg(t)dt, is (n− 1) times differentiable [11].

The examples of the ARA transform of some fundamental functions are
given as follows:
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Property 1.

Gn

[
tβ−1Eα,β (λtα)

]
(s) = s

∫ ∞
0

tn−1e−sttβ−1
∞∑
k

(λtα)k

Γ (αk + β)
dt

=

∞∑
k

λk

Γ (αk + β)
s

∫ ∞
0

e−sttn+β−2+αkdt

=

∞∑
k

λk

Γ (αk + β)
s

∫ ∞
0

tn−1e−sttβ−1+αkdt

=

∞∑
k

λk

Γ (αk + β)

Γ (β − 1 + αk + n)

sβ−1+αk+n−1

=
1

sβ+n−2

∞∑
k

λk

Γ (αk + β)

Γ (β + αk + n− 1)

sαk
.

For n = 1,

G1

[
tβ−1Eα,β (λtα)

]
(s) =

1

sβ−1

∞∑
k

λk

Γ (αk + β)

Γ (β + αk)

sαk

=
1

sβ−1

(
1

1− λ
sα

)
=
sα−β+1

sα − λ
.

Property 2.

G1 [cosα (λtα)] (s) = G1

[
Eα,1 (iλtα) + Eα,1 (−iλtα)

2

]
(s) =

s2α

s2α + λ2
.

G1 [sinα (λtα)] (s) = G1

[
Eα,1 (iλtα)− Eα,1 (−iλtα)

2i

]
(s) = λ

sα

s2α + λ2
.

G1 [coshα (λtα)] (s) = G1

[
Eα,1 (λtα) + Eα,1 (−λtα)

2

]
(s) =

s2α

s2α − λ2
.

G1 [sinhα (λtα)] (s) = G1

[
Eα,1 (λtα)− Eα,1 (−λtα)

2

]
(s) = λ

sα

s2α − λ2
.

Property 3. The ARA transform of tpα for p ∈ N is defined as follows:

Gn [tpα] (s) = s

∫ ∞
0

tn−1e−sttpαdt = Γ(pα+ n)

(
1

s

)pα+n
s =

Γ(pα+ n)

spα+n−1
.

Property 4. The ARA transform of Riemann-Liouville integral is defined
as follows:

Gn
[
RL
0 Iαt f(t)

]
(s) = Gn

[
1

Γ(α)

[
tα−1 ∗ f(t)

]]
(s).
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Property 5. The ARA transform of Liouville-Caputo derivative is defined
as follows:

Gn
[
C
0 D

α
t f(t)

]
(s) = Gn

[
RL
0 Im−αt f (m)(t)

]
(s).

For the substantial features of ARA transform refer to [4, 8, 11].

4. The implementation of the ARA transform
for some time fractional mathematical problems

4.1. The implementation of the ARA transform for heat-like equa-
tion. Let us consider the following heat-like equation with initial and ho-
mogenous Dirichlet boundary conditions:

C
0 D

α
t (u(x, t)) = D2

x (u(x, t)) ,(3)
u(0, t) = u(1, t) = 0,

u (x, 0) = ϕ(x),
(4)

where C0 Dα
t denotes the time fractional derivative in Liouville-Caputo sense,

0 < α ≤ 1, 0 < x < l, 0 < t ≤ T . Utilizing ARA transform for the equation
(3) leads to the following:

(5) D2
x [G1 [u (x, t)] (s)]− sαG1 [u (x, t)] (s) = −sαϕ(x).

Therefore, this differential equation has the following characteristic equa-
tion

r2 − sα = 0,

which leads to the solution of homogenous part of it:

G1c [u (x, t)] (s) = c1e
−
√
sαx + c2e

√
sαx.

As a result, the general solution of equation (5) becomes

G1 [u (x, t)] (s) = c1e
−
√
sαx + c2e

√
sαx +G1p [u (x, t)] (s) ,

where G1p [u (x, t)] (s) is the special solution of equation (5). In order to de-
termine the coefficients c1 and c2, we utilize the ARA transform of boundary
conditions:

u(0, t) = 0 ⇒ G1 [u (0, t)] (s) = 0

⇒ c1 + c2 +G1p [u (0, t)] (s) = 0,(6)
u(1, t) = 0 ⇒ G1 [u (1, t)] (s) = 0

⇒ c1e
−
√
sα + c2e

√
sα +G1p [u (1, t)] (s) = 0.(7)

Using equations (6) and (7), the coefficients c1 and c2 are determined. At
this stage to establish the solution of fractional mathematical problem, the
inverse ARA transform G−11 are applied:

u (x, t) = G−11

[
c1e
−
√
sαx + c2e

√
sαx +G1p [u (x, t)] (s)

]
.
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4.2. The implementation of the ARA transform for wave-like equa-
tion. Let us consider the following fractional problem including wave-like
equation

C
0 D

2α
t (u(x, t)) = D2

x (u(x, t)) + F (x),(8)
u(0, t) = u(1, t) = 0,

u (x, 0) = ut (x, 0) = 0,

where C
0 D

2α
t (u(x, t)) = C

0 D
α
t

(
C
0 D

α
t (u(x, t))

)
, 1 < α ≤ 2, 0 < x < l, 0 <

t ≤ T . Utilizing ARA transform for the equation (8) leads to the following
equation

(9) D2
x [G1 [u (x, t)] (s)]− s2αG1 [u(x, t)] (s) = −F (x).

Therefore, this differential equation has the following characteristic equa-
tion

r2 − s2α = 0,

which leads to the solution of homogenous part of it:

G1c [u (x, t)] (s) = c1e
−sαx + c2e

sαx.

As a result, the general solution of equation (9) becomes

G1 [u (x, t)] (s) = c1e
−sαx + c2e

sαx +G1p [u (x, t)] (s) ,

where G1p [u (x, t)] (s) is the special solution of equation (9). In order to de-
termine the coefficients c1 and c2, we utilize the ARA transform of boundary
conditions:

(10)
u(0, t) = 0 ⇒ G1 [u (0, t)] (s) = 0

⇒ c1 + c2 +G1p [u (0, t)] (s) = 0,

(11)
u (l, t) = 0 ⇒ G1 [u (1, t)] (s) = 0

⇒ c1e
−sα + c2e

sα +G1p [u (l, t)] (s) = 0.

Using equations (10) and (11), the coefficients c1 and c2 are determined.
At this stage to establish the solution of fractional mathematical problem,
the inverse ARA transform G−11 are applied:

u (x, t) = G−11

[
c1e
−sαx + c2e

sαx +G1p [u (x, t)] (s)
]
.

5. Illustrative examples

Example 1. Let us take the following time fractional problem including
heat-like equation

C
0 D

α
t (u(x, t)) = D2

x (u(x, t)) , 0 < α ≤ 1, 0 < x < 1, 0 < t ≤ T,(12)
u(0, t) = u(1, t) = 0, 0 < t ≤ T,
u (x, 0) = sin (2πx) , 0 < x < 1,
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which has the following ordinary differential equation after applying the
ARA transform

(13) D2
x [G1 [u (x, t)] (s)]− sαG1 [u (x, t)] (s) = −sαϕ(x).

As it explained in subsection 4.1, the solution of the homogenous part of
equation (12) is obtained as:

G1c [u (x, t)] (s) = c1e
−
√
sαx + c2e

√
sαx.

Based on the right hand side function, the special solution of equation (12)
take the following form:

(14) G1p [u (x, t)] (s) = λ1 sin (2πx) + λ2 cos (2πx) .

Substituting (14) into equation (12), the coefficients λ1 and λ2 are deter-
mined as:

λ2 = 0, λ1 =
sα

4π2 + sα
.

As a result, the special solution of equation (12) becomes

G1p [u (x, t)] (s) =
sα

4π2 + sα
sin (2πx) .

Consequently, the general solution of equation (12) take the following form:

G1 [u (x, t)] (s) = c1e
−
√
sαx + c2e

√
sαx +

sα

4π2 + sα
sin (2πx) .

As follows from subsection 4.1, the coefficients c1 and c2 are computed as

c1 = 0 = c2.

Hence, the following solution is obtained

(15) G1 [u (x, t)] (s) =
sα

4π2 + sα
sin (2πx) .

The inverse ARA transform of equation (15) leads to the solution of frac-
tional mathematical problem in the following form:

u (x, t) = Eα,1
(
−4π2tα

)
sin (2πx) ,

where the following inverse ARA transform is used

G−11

[
sα−β+1

sα − λ

]
= tβ−1Eα,β (λtα) .

It is evident from Figures 1 and 2 that the rate of decreasing of the analyt-
ical solutions decreases as the order of the fractional derivative α decreases.
As a result, it can be deduced that the diffusion rate decreases slower as α
decreases.
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Example 2. Let us take the following time fractional problem including
wave-like equation into consideration

C
0 D

2α
t (u(x, t)) = D2

x (u(x, t)) + sin(πx), 1 < α ≤ 2,(16)
u(0, t) = u(1, t) = 0, 0 < t ≤ T,
u (x, 0) = ut (x, 0) = 0, 0 < x < 1,

which has the following ordinary differential equation after applying the
ARA transform

(17) D2
x [G1 [u (x, t)] (s)]− s2αG1 [u(x, t)] (s) = − sin(πx).

As it explained in subsection 4.2, the solution of the homogenous part of
equation (16) is obtained as:

G1c [u (x, t)] (s) = c1e
−sαx + c2e

sαx.

Based on the right hand side function, the special solution takes the following
form:

(18) G1p [u (x, t)] (s) = λ1 sin (πx) + λ2 cos (πx) .

Substituting (18) into equation (16), the coefficients λ1 and λ2 are deter-
mined as:

λ2 = 0, λ1 =
1

s2α + π2
.

As a result, the special solution of equation (16) becomes

G1p [u (x, t)] (s) =
1

s2α + π2
sin(πx).

As a result, equation (16) have the following solution

G1 [u (x, t)] (s) = c1e
−sαx + c2e

sαx +
1

s2α + π2
sin(πx).

As follows from subsection 4.2, the coefficients c1 and c2 are computed as

c1 = 0 = c2,

which leads to the following

(19) G1 [u (x, t)] (s) =
1

s2α + π2
sin(πx) =

1

π2

(
1− s2α

s2α + π2

)
sin(πx).

Taking the inverse ARA transform of equation (19), we determine the solu-
tion of fractional mathematical problem in the following form:

u (x, t) = G−11

[
1

π2

(
1− s2α

s2α + π2

)
sin(πx)

]
=

1

π2
(1− cosα (πtα)) sin(πx).
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Figure 4. Analytic solutions of example 2 for various
values of α in 3D.

It is obvious from Figures 3 and 4 that the rate of increasing of the analyt-
ical solutions increases as the order of the fractional derivative α decreases.
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As a result, it can be deduced that the diffusion rate increases faster as α
decreases.

It is clear from Figures 1-4 that as α tends to 1, the solutions of time frac-
tional problems tend to the solutions of mathematical problems which has
ordinary differential equations. This results indicate that the ARA trans-
form method works for time fractional mathematical problems effectively.

6. Conclusion

In our present research, the fundamental properties and implementation
of the ARA transform for time fractional mathematical problems including
heat-like and wave-like equations are given. As in the case of all integral
transform, the problem is converted into a simpler form to tackle. Later,
solving the reduced problem, inverse ARA transform is utilized to obtain
the solution of fractional mathematical problem. It is clear from illustrative
examples that this method is a powerful and versatile method.

In the future studies, modified and improved version of this method will
be developed and utilized for the fractional mathematical problems.
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