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Stability and boundedness of nonautonomous
neutral differential equation with delay

MOUSSADEK REMILI*, LINDA D. OUDJEDI

ABSTRACT. We consider the nonautonomous neutral differential equa-
tion with delay

74/

[p®) () () + Brot = 1)) | +a(t) (2" (1) + Boa” (¢ = 72)

+b(8) (2 (1) + B3’ (t = 73)) + (W) f((t = 7)) = e(t, , 2", 2").
Using the method of Lyapunov, we give conditions for the uniform as-
ymptotic stability and uniform boundedness and square integrability of
solutions for the considered system. Our theorems generalize and ex-
tend some related results known in the literature. Example is given to
show our results.

1. INTRODUCTION

In our paper, we study the asymptotic uniform stability of the nonau-
tonomous neutral differential equation with delay and coefficients of the
form

[p@) (a®) (@) + Bra(t —r1))) ] +a(t) (@ () + B’ (t = 1))
(1) b)) + Bsa'(t = r3)) + c(t) f(x(t — o)) =0,
and the boundedness and the square integrability of

[p(t) <q(t) (z(t) + Brz(t — n))') ,] + a(t) (2" (t) + Poz” (t — r2))

(2)  Hb(O)(2'(t) + B3 (t —13)) + c(t) f(x(t — 0)) = e(t,z, 2, 2"),

for all t > t; = to+7, where 7 = sup{o, r;}, 5; are constants with 0 < 3; <1
and o, 7, >0 (Vi =1,2,3).

p(.),q(.),a(.),b(.),c(.),e(.) and f(.) are continuous functions depending only

2010 Mathematics Subject Classification. Primary: 34D05; Secondary: 34D20;
Thirdary: 34K40.

Key words and phrases. Uniform ultimate boundedness, square integrability, Lyapunov
functional, neutral differential equation of third order.

Full paper. Received 1 February 2019, revised 20 December 2019, accepted 25 Decem-
ber 2019, available online 29 February 2020.

*Corresponding Author.

1 (©2020 Mathematica Moravica



2 STABILITY AND BOUNDEDNESS OF NONAUTONOMOUS NEUTRAL DIFFERENTIAL. . .

on the arguments shown. In addition, it is also supposed that the derivatives
p'(t) and ¢”(t) exist and are continuous.

By a solution of (2) we mean a continuous function z : [t;,00) — R such
that x(t) + B1z(t — r1) € C3 ([ts, 00), R) and which satisfies equation (2) on
[tz,00).

Several authors have investigated the uniform stability and boundedness
of solutions of certain differential equations of the third order. We can men-
tion in this direction, the works of Ayhan and Tung [2], Graef et al. [10, 11],
Mahmoud [16], Omeike [17], Oudjedi et al. [18], Remili et al. [19]-[30], where
the second Lyapunov method was used. This problem for neutral differential
equations has received considerable attention in recent years, Baculikova 3],
Mihalikova and Kostikova [4], Das and Misra [5], Dorociakova [6], Dosla and
Ligka |7, 8], Kulenovic et al. [15], Tian et al. [31], Li et al. [32], Yu et al.
[33], Yu Jianshe [34]. Many books dealt with the neutral delay differential
equation and obtained many good results, for example Arino et al. [1], Hale
[13, 14|, El'sgol’ts [9].

However, to the best of our knowledge from the literature, by this time,
no attention was given to the investigation of the uniformly asymptotic
stability / uniformly boundedness and square integrability in the systems of
nonlinear neutral differential equations of the third order with delay, using
the Lyapunov’s direct (or second) method, except the recent work in 2018
of Graef et al. [12].

Besides, this paper may be useful for researchers working on the qualita-
tive behaviors of solutions of third differential equations and completes that
in the literature. These cases show the novelty and originality of the present

paper.

2. ASYMPTOTIC STABILITY

Suppose that there are positive constants ag, a1, cg, b1, Po, P1, 90, q1, L, L, J,
d,M,A and B such that the following conditions are satisfied, Vt > t; =
to +7:

J()) 0<ag§a(t)§a1, 0<CQ§C(t)§b(t)§b1,
0<po<p(t)<p, 0<qo<qt)<q;
J1) 20p1q1 <d < ag, —L<U(t)<(t) <0,

<c
—L<p(t)<0, —L<q(t)<0

)
J2) f(0) =0, f )>M>O( #0), and |f/(x)] < § for all z;

J3) da'(t) + 200(p1£]15 1 + —d) + (Baa1 + B3b1)(d + LBip1)

+B1p1 (110 + b L + b1Q1(1 +B1) + L(ar — d)) + b1 fzny < —A < 0;
J4) ogo(2 — B1)(d — ao) + pra1 (Bib1 + B2ay + Bab1) (1 + B1)

+pi(a1 —d)(Biq1 + L(1 + B1)) + a1fenm < —B <0,

)
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where
ny=d+pi(1+B1)(L+q).
The equation (1) is equivalent to the following system

o=y
(3) y = =z
(p(1)2) = —a(t)z — Paa(t)z(t — r2) — b(t)y — Bab(t)y(t — r3)
—c(t)f(x(t) +ct) [ f(x(s))y(s)ds.

t—o

For the brevity, we put
Y (1) = qt) (y(t) + Byt —r)).
According to (3), we have
Vi) =2(t) = [o0) (s + i@ —r)]
= d0)(y®) + Byt — 1)) + a(t) (2(0) + Bzt — 1) ).

Theorem 1. Assume that all assuptions (Jo-Jy) hold. Then, the zero solu-
tion of (3) is asymptotically stable if

. A B
o < min , .
{b15(2d +p1(2L 4+ q1)(1 + 1)) bipraid(1 + B1) }
Proof. Define a Lyapunov functional W (¢, z,y, z) such that W (¢,0) = 0 and

(@) w=exp (<2 [ (5] +{6)as) v
where
_ b(OD(E) o 1
V = de(t)F(x) +c(t)pt)Y f(z) + T(t)ﬂ + §p2(t)22
6) o+ d(tZ + gda(t)y? + AQ)
such that
O s+ / st / s

t 0yt
+ 772/ y2(s)ds+)\/ / yQ(T)des,
t—rs3 —0o Jt+s

and F(x) = [ f(u)du. pi, n;,w and X are to be selected below suitably. The
functional V' defined in the equation (5) can be written in the form

c(t)p(t) (1

T 2
v o= e [ a- 2007 w)] s+ OEO Ly a0 5)
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4 MO0 (1 _ ) >y2 502+ dy)’ + Salt) — dyy? + A1),

q(t) 20(t)
Since
A(t) =0,
by (Jo) — (J2), it follows that
V> [d—2p1q16] z* + —Y? + = (p(t)Z + dy)” + 5 (a0 — d)y°.
2 40 2 2
Then, there exists k£ > 0 such that
(6) V> k@ +y + Y+ 27),
by (Jo, J1), we conclude that
(7) W > ko2 + 4> + Y2+ 22), ko = kew(Po-p1tao—a),

The derivative of the functional V along the trajectories of the system is
given by

V= do(t) +n(t) + e(t)n(t) + [pw)q(t) <d - a(t)) T uz] 2

| Sal(e) — db(t) + e(Op(a(t) 1 () i+ + /\a] g2 — et — )

t
2t — ) — Pt — 1) — 1yt — ) — A / v (s)ds,

t—o

where

o(t) = de' (1) F () + <c(t)p(t)) Yf(z)+ (b(zt(;]()t()t)> v

and

i(t) = Bre®p®)at)f (@)yy(t —r1) + frb()p)y(t —r1)Z

= (0 (Baa)ste = ra) + 00— 1)) (24 )

L op)d- a<t>>z<q'(t>y T B Oyt — ) + Bra(t)=(t — m)

Ua(t) = (P(O)Z+dy) [ f(x(s))y(s)ds.

t—o

If ¢ (t) < 0, the quantity 1o(t) can be written as,

/ o 9
o = o S0 v+

d(t)p(t)q(t) b(t)p(t)q'(t)
- ) -y
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C 2 62
ooy e S} -

by (Jo) and (J1) we observe that

/
0< W o1 ana o<W oy

b(t) — V()

thus

Yo(t) <

AN
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(8)

If ¢(t) = 0, then

do(t) = c(O)p' )Y f(z)+

OO
= T T 20 b(t)
N b !
g ;t;(%t) o) - <t>2pq<2t(>tq)<t>yg

(9) < —
Hence, on combining (8) and (9), we have

2
< biq1d

b
dolt) < LW ()l + 2 1d ()]Y

2q(2)
forallt >t;, x and Y.

From (Jp), (J2) and applying the estimate 2uv < u?+v?, it is not difficult
to proof the following,

Pi(t) < ;(515(75)])1(115 + p1ld ()| (B1b1 + B2a1 + B3by + (a1 — d))

B1p1

+ d(B2a1 + 5351))3/2 e <blql5 +b1L(1+ B3) + biqi (1 + B1)

+ prarLl + L(ay — d)>y2(t —71) + <p21(5151Q1 + B2a1q1 + B3biqa

+ Lar —d)(1+B1)) + %p(t)q(t)(a(t) - d)) 24 @ (Ml
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ﬁ?al

# B+ by (a1 = )22 )+ B (L )1+ )

B3b1

b d)20—ra)+ B (L )1+ 80+ )20~ o)

and

Pa(2)

)
< B <0 [(d + L)y + Bip Ly*(t — 1) + ;i 2® +

t

+Biprar 22 (t — 7‘1)]”1 /

t—o

yQ(s)ds>.

By (Jo) and (J1), we observe that V'’ can be replaced by

Vo< (500 +000mas (145 )~ d)+ (B + Batn) + m+

2
b16

+ U(AJF 2(d+P1L))>y2 + (POQO(d—a0)<1 - Bl) + p1 + o

2

+ 22((]1 (511)1 + Boay + B3b1 + b1(50) + L(a1 — d)(l + ,31)))2:2

2

B1p1
* (2

<b1Q15 + 01 L(1 + B3) + b1gi (1 + B1) + fear L + L(ay — d)

2

+ b15JL> - 771>y2(t —-7r1)+ <ﬁ1pl(]1 (5161 + [aa1 + [3b1

2

+ (a1 —d) + 6150> - u1>z2(t —r1) +a(t) + (ﬁzalm — m)

where
Ya(t) =

_|_

b b10 t
A=)+ (Pt = m )+ (=) [P
t—o
b1¢16> b
POy (0 + 1 O] (Y + (510 + a4
0
(a1 — d))y2>

<

such that k1 =

Let

Bip1qi

o=

b (1P (0)] + 14 ) ( I Y2>,

1 b
5 max {516]1527 %7]91 (B1b1 + Baar + B3b1 + (a1 — d))}~
0

(/3151 + Boay + PBsbr + (a1 — d) + 61(50)
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m = szl <b1L(1 +03) + 0110 + 1+ B1) + L(ar — d + Prar + b150)>
= alﬁ2n = %n A= @n
H2 2 15 2 2 15 2 1-
Now, in view of estimates of A, B and (6), this inequality becomes
1 k
Vi< g < — A+ 0b16(2d + p1(2L + q1)(1 + 61))>y2 + f(lp’(t)l +ld )V

1
+ 5 < — B+ bipiqioo(1l + 51)) 2.

We take w = ﬁ, thus
ky

W< éexp (_’2/0 (|p'(s)y+yq'(s)y)ds> <(—B+b1p1q150(1+61))z2

+(— A+ 0bi16(2d +p1(2L + q1)(1 + 51)))y2>.

If
< min{ 4 b }
o ’ ’
b16(2d + p1(2L + q1)(1 + B1)) " baiprid (1 + B1)
then
(10) iW(tvxuyuz) < - (y2 + 22), for some §; > 0.

dt
Thus, all the conditions of theorem are satisfied. This shows that the zero
solution of system (3) is asymptotically stable. The proof of Theorem 1 is
now completed. O

3. BOUNDEDNESS

To study the boundedness of solutions of (2), we would need to write (2)
in the form

11 = 2
212; (p(t)2) = —a(t)z — Baa(t)z(t —r2) — b(t)y — B3b(t)y(t —73)
—c(t) f(x(t)) + c(t) tj f(x(s)y(s)ds + e(t, 2y, 2).
For the next theorem, we impose the fgllowing conditions.
(13) le(t, @,y, 2)| < h(t),
and

(14) " |h(s)lds < D.

t1
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Theorem 2. If all the assumptions of Theorem 1 and (13)-(14) hold, then
there exists a positive constant N such that any solution of (11) satisfies
(15)

lz(®)] < N, [y(O)| <N, [Y(¢)| <N, [Z@)| <N, Vi=t >0.

Proof. Along any solution (x(t),y(t), Z(t)) of (11), we have

Whay =Wy exo (=2 [ (0O + 1 6))ds ) @+ p(O12)e(t,0.2).

t1
From (10), we obtain

Wiy < Kilh(@)] (lyl + 12])
where K| = exp (%(pl + q1)) max {d, p1 } . Now, the inequality (7),
lyl < y?+1land|Z] < Z%2+1, lead
W(/11) < Ky |h(®)](y* + 2° +2)
(16) < Ky fh(t)] W(t) + K2 [h(t)],

K
where K9 = max {k:l’ 2K1} . Integrating the above estimate from ¢; to ¢,
0
t > t1 = tg + 7, one can easily obtain
t t
W)~ W(t) < Kz | |h(s)|ds+ Kz | W(s) |h(s)|ds.
t1 t1

Thus
t

W(t) < W(t) + KoD + Ky | W(s)|h(s)| ds.

t1
Using Gronwall inequality, it follows that

t
(17) W (t) < (W(ty) + K2D) exp (Kg Ih(s)] ds) < Dy,
t1
where D; = (W(t1) + K2D)exp (KgD). This result implies that there
exists a constant N such that
() <N, Jy@) <N, [Y()| <N, [Z(H)| <N, Vt=>t.
This completes the proof of Theorem 2. O

4. SQUARE INTEGRABILITY

Our next result concerns the square integrability of solutions of equation
(2)-
Theorem 3. In addition to the assumptions of Theorem 2, if we assume
that

b
Js) coM — 51(1 + B3) > 0.
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+oo
J6) / ld’(s)|ds < a.

t1
Then all the solutions of (11) are elements of L2[t1,+oc).
Proof. Define U(t) as
t
(18) Ult) = W(t)+e / (22(s) + 42(s))ds, Vit > h,

t1
where € > 0 is a constant to be specified later. By differentiating U (t) along
the solution of system (11) and using (10) and (16) we obtain

Uty (8) < (£ = 61) (20 + () + Ko (W (1) + 1) [n(2)].
If we choose ¢ — N < 0, then from (17) we get
(19) Ul1y(t) < Kalh(t)],
where Ky = Ka(D; + 1). Integrating (19) from ¢; to ¢, and using condition
(14) of Theorem 2 we obtain
¢
Ut) - Ut) = / Ulyyy(3)ds < KD

t1

Using equality U(t;) = W (t1) we get
U(t) < KuD + W (t1).

We can conclude by (18) that

[ 676+ 2epas < T2 )

t1 €

9

which imply the existence of positive constants (; and (s such that

/t 2" (s)ds = /t 22(s)ds < (o

t1 t1

/t 2% (s)ds = /t y*(s)ds < (1.

t1 t1

and

By the fact that
t t—ry t1
/ x’2(s —ry)ds = / x’2(u)du < / x'2(u)du +G < k1 4G,
t1 to+T—"r1 to+7r—r1
and
t t—ry t1
/ 2"?(s —r)ds = / 2" (u)du < / 2" (u)du + ¢ < ko + (o,
t1 to+r—r1 to+7—r1

we deduce by using the estimate 2uv < u? + v? and (Jo), (J1), that

/ 7 = [ (¢ (') + 80’5 - )
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2

+ q(s) <£L‘”(S) + B2’ (s — 7‘1)>> ds
t
< QrmErn) [ (L6 + A=)

+ @ (2"(s) + Bz’ (s — rl))>ds

IN

1 +,61><L+q1>(L(<1 T Bk + Q)

+ q(G+ Pi(ke + Cz))) = (3.

We assert that f s)ds < 00, to prove this we multiply (2) by z(t — o),
we obtain

z(t — o) [p(t) <q’(t (2'(t) + Bra’ (t — 1)) + q(t) (2" (t) + Bz (t — m))ﬂ

+a(t)z(t — o) (2" (t) + Boa” (t — r2)) + b(t)z(t — o) (2/(t) + B3/ (t — 13))
(20)  +c(t)x(t —o)f(x(t —0)) = z(t — o)e(t,xz, 2", 2").

- =

Integrating (20) from ¢; to t, we have

(21) /t c(s)x(s —o)f(x(s —0))ds = A1(t) + Aa(t) + As(t),
where

Al = = [ ot =) (506) (¢ w0) + 51’5 = r0)
Fals)06) + 91”5~ ) ) ) .

2alt) = = [ (a(o)als = )a"(6) (s - 1)
FO(s)as = 0) ((6) + Bar'(s = 1) ).

t
Agt) = / (s — o)el(s, 2(s), 2/(s), 2 (5))ds.
t1
Integrating by parts and using the estimate 2uv < u? + v? we obtain

Mut) = (o)~ (e + | (p<s>q'<s>x (s — o) (& (s) + fr' (s — 1))

Tp(s)a(s)a (s — o) (a"(s) + Bra'(s m))ds
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IN

t
My () — My (02)] + / (|p<s>q’< )2/ (s — o) ('(s) + Bra’(s — )|
Hp(s)a(s)a' (s — o) (" (s) + pra’ <s_r1>)|>ds

IN

M (1) — Ml(tl)\—kplQL/t ((l—i-ﬁl)w/?(s—a)—i—x/z(s)

(s = r0)ds+ P8 [ (14 825 — o) +a™(5)
t1

+ 812" (s — rl))ds,
where
M) = —p(t)a(t — o) Z(2).
We remark by (Jo) and the inequalities (15) that

|M1(t) — Ml(tl)‘ < p1N2 + |M1(t1)| , for all ¢t > t1,

and
t t—o t
/ 2% (s — o)ds = / 2" (u)du < / 2 (u)du + G < kg + G,
t1 to+T—0 to+T—0
thus

Ai(t) < piN?+ |Mi(t)] + % <(1 + B1) ((L + q1) (k3 + C1) + LG + 1(2)

+ Bi(Lkr + Q1/€2)> = 1.

Similarly, we have
Ao(t) = —/t (a(s)m(s —0)(2"(s) + Baz”" (s — 12))

+b(s)a(s — o) (2'(s) + Bsa' (s — r;;)))ds

(
= —a(t)z(t — o) (a'(t) + Boa! (t — 12)) + Ma(t1)

t
+a(t) [ @'(s—o0)(a'(s) + B2'(s — r2))ds

+/t:a’(ls)w(s—a)( '(s) + Baz’ (s — r2))ds
_/tjaf(s) [/tIS;U(u_g)( () + Boa (u — 7o) )| ds

—/t b(s)x(s — U)(:L‘/(S) + B3’ (s — rg))ds,
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where Ms(t1) = a(t1)z(ty — U)(x’(tl) + Box (1 — 7"2)). Using

t t—ro t1
/ 2" (s — rp)ds = / 2" (u)du < / 2 (w)du + ¢ < kg + (1,
t1 t t

0+T—"r2 0+T—"r2
and
tx’Zs—r s = o 2" (u)du ! 2" (u)du K
/t; ( 3)d /t0+1”7‘3 ( )d S/t‘()«#rrg ( )d +C1§ 5+<1,
then
M) < a0 ras ><1+52>+52>+\M2<t1>|
+ G 8) [ 2 o)ds+ (1 ) + Bur)
o [ (st on (0] + it )
+ }a/(s)’ |: ts|x/(u—0')’(|x/(u)| +ﬁ2|x/(u—r2)|)du:| )dS
< ((N2+C1+,?)(1+52)+ﬁ21?>(a1+/t |d/(s)| ds)
+ 1Mt + (G0 Ba) + Bas) + o1+ Bo) [ 2o = ).
Next
As(t) < t [2(s — o) |e(s,z(s),2'(s),2"(s))| ds
< N t]h(s)|ds
< ]\TD.1

By (21) and conditions (Jg), (J2), we obtain

coM | 2*(s—o)ds < /t c(s)x(s —o)f(z(s —0o))ds

t1

IN

b t
K+ 248 [ o= o)ds,
t1
where

K = zl+<(N2+cl+”3

5 )(1+ B2) +ﬂ2ﬁ4> (a1 + )

b M) + 2 5 (Q(L+ Bs) + Bsws) + ND.
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Then .
[COM - %1(1 + ﬁg)] / 2%(s —o)ds < K.

t1

t
From condition (J5), it follows that / 2%(s — 0)ds < oo, hence
t1

+oo
/ 22(s)ds < oco. This fact completes the proof of theorem. O
t1

5. EXAMPLE

We consider the following third order non-autonomous delay neutral dif-
ferential equation

(L n i) (s
10+¢2 10 20 + ¢2
1 25 " !
+(=—arctant + —)(x" (t) + Baz" (t — 1r2))
27 4
1
442

1 4

+ D+ mate—ry) |

(22)  +( +5) (2 (t) + Bsa'(t — r3)) + ( +5)

1+12

7 st — o)+ z(t—o) B sint
10 I 2t )] T T+ 2+ + |+ 2

Now, it is easy to see that for all ¢ > tq,

3_<<t)_ L R
10 P=PU=I0 e T =10 P
3v3 —2t
—L=-0.021 = — <pt)= —+5 <0,
80\/10*“) (10 +¢2)%2 —
4 1 4 9
0 ©SI) = E TS T
3v3 —2t
L=-0021=—"Y" <d(t)=— " __ <0,
80\/10_(1() (20 +12)2 —
6 = ap < a(t) = — arctant + -2 < 20
=a a = — arctan —_— — =aQa
0= o 4 =4 b
1 1
d(t) =

1 1

1 7
I < I\ - 3 / < - =
10—M —10(1+1 2)Wl‘cha;;réO, and |f'(x)] 5—5,
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int 1
5 o < 5 = h(t), and
L+t2+ [z + [yl +[2] = 1+t
t m t 1
|h(s)|ds < — =D and ld'(s)]ds < = = a.
t1 2 t1 4

It is straightforward to verify for all ¢ > t1, that

25p1q1 =0504<d<6= ap,
da’(t) + 260 (P1Q15 <1 + ﬁ;) - d> + (,62(11 + /ngl)(d + Lﬁlpl)

+61p1 (0116 + b1 L + b1gi (1 + B1) + L(ar — d)) + bi1fzng < —1,7 <0,
1

170’
ZMQMQ-ﬁﬂ(d—%m)+4HQ1(ﬂﬂH-F5%M-%ﬁdh>(1%-ﬂﬂ

+p1(ar — d)(Brg1 + L(1 + B1)) 4 a1fany < —0.17 <0,

by 7 1 1
——1 = — — 1 _— = — .
coM — (14 63) = 5 3( +10> >0

for d=0.6 and §; =

All the assumptions of Theorem 3 are satisfied, we can conclude that
every solution of (22) are bounded and elements of L2[t, +00).
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