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Impulsive fractional differential inclusions
with state-dependent delay

Khalida Aissani, Mouffak Benchohra∗

Abstract. In this paper, we prove the existence of mild solution for
impulsive fractional inclusions with state-dependent delay in Banach
spaces. Our study is based on the nonlinear alternative of Leray-
Schauder type for multivalued maps due to Martelli. An example is
provided to illustrate the main result.

1. Introduction

Fractional differential equations have been proved to be one of the most ef-
fective tools in the modeling of many phenomena in various fields of physics,
mechanics, chemistry, engineering, etc. For more details, see [1, 2, 31, 34,
41, 42, 48]. In order to describe various real-world problems in physical and
engineering science subject to abrupt changes at certain instants during the
evolution process, impulsive differential equations have been used to model
the systems. The theory of impulsive differential equations is an important
branch of differential equations, which has an extensive physical background
[9, 12, 33].

On the other hand, functional differential equations with state-dependent
delay appear frequently in applications as model of equations and for this
reason the study of this type of equations has received great attention in
the last few years, see for instance [4, 10, 23, 24, 25, 26, 27, 28, 44, 47] and
the references therein. The literature devoted to this subject is concerned
fundamentally with first-order functional differential equations for which
the state belongs to some finite dimensional space, see among other works,
[13, 15, 17, 22, 32, 36, 46]. The problem of the existence and uniqueness of
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solutions for fractional differential equations with delay was recently studied
by Maraaba et al. in [37, 38]. In [5], the authors provide sufficient conditions
for the existence of mild solutions for a class of fractional integro-differential
equations with state-dependent delay, where as in [7, 40] we investigate
the existence and controllability results for a class of impulsive fractional
evolution equations with state-dependent delay.

El-Sayed and Ibrahim initiated the study of fractional differential inclu-
sions in [19]. Recently several qualitative results for fractional differential
inclusion several results were obtained in [14]. In [6] we establish sufficient
conditions for the existence of mild solutions for fractional integro-differential
inclusions with state-dependent delay in Banach spaces.

In this work we establish the existence of mild solutions for the class of
impulsive fractional inclusions with state-dependent delay described by the
form

(1)

Dα
t x(t) ∈ Ax(t) + F (t, xρ(t,xt), x(t)), t ∈ Jk = (tk, tk+1], k = 0, 1, . . . ,m,

∆x(tk) = Ik(x(t−k )), k = 1, 2, . . . ,m,

x(t) = φ(t), t ∈ (−∞, 0],

where CDα
t is the Caputo fractional derivative of order 0 < α < 1, A : D(A) ⊂

E → E is the infinitesimal generator of an α-resolvent family (Sα(t))t≥0, F : J×B×
E −→ P(E) is a multivalued map (P(E) is the family of all nonempty subsets of the
separable Banach space (E, ‖ · ‖) and J = [0, T ], T > 0, and φ ∈ B with φ(0) = 0.
Here, 0 = t0 < t1 < . . . < tm < tm+1 = T, Ik : E → E, k = 1, 2, . . . ,m, are maps,
∆x(tk) = x(t+k ) − x(t−k ), x(t+k ) = limh→0 x(tk + h) and x(t−k ) = limh→0 x(tk − h)
represent the right and the left limit of x(t) at t = tk, respectively. We denote by
xt the element of B defined by xt(θ) = x(t+θ), θ ∈ (−∞, 0]. Here xt represents the
history of the state from −∞ up to the present time t.We assume that the histories
xt belongs to some abstract phase space B, to be specified later, and φ ∈ B.

2. Preliminaries

We will briefly recall some basic definitions and facts from multivalued analysis
that we will use in the sequel.
C = C(J,E) denotes the Banach space of continuous functions from J into E with
the norm

‖y‖C = sup { ‖y(t)‖ : t ∈ J }.

Let L(E) be the Banach space of all linear and bounded operators on E.
Let L1(J,E) be the space of E−valued Bochner integrable functions on J with the
norm

‖y‖L1 =

∫ T

0

‖y(t)‖dt.

Denote by Pcl(E) = {Y ∈ P (E) : Y closed}, Pb(E) = {Y ∈ P (E) : Y bounded},
Pcp(E) = {Y ∈ P (E) : Y compact}, Pcp,c(E) = {Y ∈ P (E) : Y compact, convex},
Pcl,c(E) = {Y ∈ P (E) : Y closed, convex}.
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A multivalued map G : E → P (E) is convex (closed) valued if G(E) is convex
(closed) for all x ∈ E. G is bounded on bounded sets if G(B) = dx∈BG(x) is
bounded in E for all B ∈ Pb(E) (i.e. supx∈B{sup{‖y‖ : y ∈ G(x)}} <∞).
G is called upper semi-continuous (u.s.c.) on E if for each x0 ∈ E the set G(x0)

is a nonempty, closed subset of E, and if for each open set U of E containing G(x0),
there exists an open neighborhood V of x0 such that G(V ) ⊆ U.
G is said to be completely continuous if G(B) is relatively compact for every

B ∈ Pb(E). If the multivalued map G is completely continuous with nonempty
compact values, then G is u.s.c. if and only if G has a closed graph (i.e. xn −→
x∗, yn −→ y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). For more details on multivalued
maps see the books of Deimling [18], Górniewicz [20] and Hu and Papageorgiou
[30].

Definition 2.1. The multivalued map F : J × B × E −→ P(E) is said to be
Carathéodory if

(i) t 7−→ F (t, x, y) is measurable for each (x, y) ∈ B × E;
(ii) (x, y) 7−→ F (t, x, y) is upper semicontinuous for almost all t ∈ J.

Definition 2.2. Let α > 0 and f ∈ L1(J,E). The Riemann–Liouville integral is
defined by

Iαt f(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds.

For more details on the Riemann–Liouville fractional derivative, we refer the
reader to [16].

Definition 2.3. [42]. The Caputo derivative of order α for a function f : J → E
is defined by

Dα
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n ds = In−αf (n)(t), t > 0, n− 1 ≤ α < n.

If 0 ≤ α < 1, then

Dα
t f(t) =

1

Γ(1− α)

∫ t

0

f ′(s)

(t− s)α
ds.

Obviously, The Caputo derivative of a constant is equal to zero.

In order to defined the mild solution of the problems (1) we recall the following
definition.

Definition 2.4. A closed and linear operator A is said to be sectorial if there are
constants ω ∈ R, θ ∈ [π2 , π],M > 0, such that the following two conditions are
satisfied:

(1)
∑

(θ,ω) := {λ ∈ C : λ 6= ω, |arg(λ − ω)| < θ} ⊂ ρ(A) (ρ(A) being the
resolvent set of A).

(2) ‖R(λ,A)‖L(E) ≤ M
|λ−ω| , λ ∈

∑
(θ,ω) .

Sectorial operators are well studied in the literature. For details see [24].

Definition 2.5. [8] if A is a closed linear operator with domain D(A) defined on
a Banach space E and α > 0, then we say that A is the generator of an α-resolvent
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family if there exists ω ≥ 0 and a strongly continuous function Sα : R+ →L(E)
such that {λα : Re(λ) > ω} ⊂ ρ(A)) and

(λαI −A)−1x =

∫ ∞
0

e−λtSα(t)xdt, Re λ > ω, x ∈ E.

In this case, Sα(t) is called the α-resolvent family generated by A.

Definition 2.6. (see Definition 2.1 in [3]) if A is a closed linear operator with
domain D(A) defined on a Banach space E and α > 0, then we say that A is the
generator of a solution operator if there exist ω ≥ 0 and a strongly continuous
function Sα : R+ →L(E) such that {λα : Re(λ) > ω} ⊂ ρ(A) and

λα−1(λαI −A)−1x =

∫ ∞
0

e−λtSα(t)xdt, Re λ > ω, x ∈ E,

in this case, Sα(t) is called the solution operator generated by A. For more details
see [36, 43].

In this paper, we will employ an axiomatic definition for the phase space B which
is similar to those introduced by Hale and Kato [21]. Specifically, B will be a linear
space of functions mapping (−∞, 0] into E endowed with a seminorm ‖ · ‖B, and
satisfies the following axioms:

(A1): If x : (−∞, T ] −→ E is such that x0 ∈ B, then for every t ∈ J,
xt ∈ B and

‖x(t)‖ ≤ C‖xt‖B,
where C > 0 is a constant.
(A2): There exist a continuous function C1(t) > 0 and a locally bounded
function C2(t) ≥ 0 in t ≥ 0 such that

‖xt‖B ≤ C1(t) sup
s∈[0,t]

‖x(s)‖+ C2(t)‖x0‖B,

for t ∈ [0, T ] and x as in (A1).
(A3): The space B is complete.

Example 2.1. The phase space Cr × Lp(g,X).
Let r ≥ 0, 1 ≤ p < ∞, and let g : (−∞,−r) → R be a nonnegative measurable

function which satisfies the conditions (g − 5), (g − 6) in the terminology of [29].
Briefly, this means that g is locally integrable and there exists a nonnegative, locally
bounded function Λ on (−∞, 0], such that g(ξ + θ) ≤ Λ(ξ)g(θ), for all ξ ≤ 0 and
θ ∈ (−∞,−r)\Nξ, where Nξ ⊆ (−∞,−r) is a set with Lebesgue measure zero.

The space Cr × Lp(g,X) consists of all classes of functions ϕ : (−∞, 0] → X,
such that ϕ is continuous on [−r, 0], Lebesgue-measurable, and g‖ϕ‖p on (−∞,−r).
The seminorm in ‖.‖B is defined by

‖ϕ‖B = sup
θ∈[−r,0]

‖ϕ(θ)‖+

(∫ −r
−∞

g(θ)‖ϕ(θ)‖pdθ
) 1
p

.

The space B = Cr × Lp(g,X) satisfies axioms (A1), (A2), (A3). Moreover,
for r = 0 and p = 2, this space coincides with C0 × L2(g,X), H = 1,M(t) =

Λ(−t) 1
2 ,K(t) = 1 +

(∫ 0

−r g(τ)dτ
) 1

2

, for t ≥ 0 (see [29], Theorem 1.3.8 for details).
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Let SF◦x be a set defined by

SF,x = {v ∈ L1(J,E) : v(t) ∈ F (t, xρ(t,xt), x(t)) a.e. t ∈ J}.

Lemma 2.1. [35]. Let F : J × B × E −→ Pcp,c(E) be an L1-Carathéodory mul-
tivalued map and let Ψ be a linear continuous mapping from L1(J,E) to C(J,E),
then the operator

Ψ ◦ SF : C(J,E) −→ Pcp,c(C(J,E)),

x 7−→ (Ψ ◦ SF )(x) := Ψ(SF◦x)

is a closed graph operator in C(J,E)× C(J,E).

The following is the multivalued version of the fixed-point theorem due to
Martelli [39].

Lemma 2.2. Let X be a Banach space, and N : X → Pcp,cv(X) be an upper
semicontinuous and completely continuous multivalued map. If the set

D = {u ∈ X : λu ∈ Nu for some λ > 1}
is bounded, then N has a fixed point.

3. Main results

Before going further we need the following lemma ([45]).

Lemma 3.1. Consider the Cauchy problem

(2)
Dα
t x(t) = Ax(t) + F (t), 0 < α < 1,

x(0) = x0,

if F satisfies the uniform Holder condition with exponent β ∈ (0, 1] and A is a
sectorial operator, then the unique solution of the Cauchy problem (2) is given by

x(t) = Tα(t)x0 +

∫ t

0

Sα(t− s)F (s)ds,

where

Tα(t) =
1

2πi

∫
B̂r

eλt
λα−1

λα −A
dλ,

Sα(t) =
1

2πi

∫
B̂r

eλt
1

λα −A
dλ,

B̂r denotes the Bromwich path. Sα(t) is called the α-resolvent family and Tα(t) is
the solution operator, generated by A.

Theorem 3.1. [11, 45] If α ∈ (0, 1) and A ∈ Aα(θ0, ω0), then for any x ∈ E and
t > 0, we have

‖Tα(t)‖L(E) ≤Meωt and ‖Sα(t)‖L(E) ≤ Ceωt(1 + tα−1), t > 0, ω > ω0.

Let
M̃T = sup

0≤t≤T
‖Tα(t)‖L(E), M̃s = sup

0≤t≤T
Ceωt(1 + tα−1),

so we have
‖Tα(t)‖L(E) ≤ M̃T , ‖Sα(t)‖L(E) ≤ tα−1M̃s.
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Let us consider the set of functions

B1 =
{
x : (−∞, T ]→ E such that x|J ∈ C(J,E) and there exist

x(t+k ) and x(t−k ) with x(tk) = x(t−k ), x0 = φ, k = 1, 2, . . . ,m
}
,

where x|J is the restriction of x to Jk = (tk, tk+1], k = 1, 2, . . . ,m.
From Lemma 3.1, we can define the mild solution of system (1) as follows:

Definition 3.1. A function x : (−∞, T ]→ E is called a mild solution of (1) if the
following holds: x0 = φ ∈ B on (−∞, 0] with φ(0) = 0,∆x|t=tk = Ik(x(t−k )), k =
1, 2, . . . ,m, the restriction of x(·) to the interval [0, T ] is continuous and there exists
v(·) ∈ L1(Jk, E), such that v(t) ∈ F (t, xt, x(t)) a.e. t ∈ [0, T ], and x satisfies the
following integral equation:

x(t) =



φ(t), t ∈ (−∞, 0];∫ t
0
Sα(t− s)v(s)ds, t ∈ [0, t1];

Tα(t− t1)(x(t−1 ) + I1(x(t−1 )))

+
∫ t
t1
Sα(t− s)v(s)ds, t ∈ (t1, t2];

...
Tα(t− tm)(x(t−m) + Im(x(t−m)))

+
∫ t
tm
Sα(t− s)v(s)ds, t ∈ (tm, T ].

(3)

Set
R(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤ 0}.

We always assume that ρ : J × B → (−∞, T ] is continuous. Additionally, we
introduce following hypothesis:

(Hϕ) The function t → ϕt is continuous from R(ρ−) into B and there exists a
continuous and bounded function Lφ : R(ρ−)→ (0,∞) such that

‖φt‖B ≤ Lφ(t)‖φ‖B for every t ∈ R(ρ−).

Remark 3.1. The condition (Hϕ), is frequently verified by continuous and bounded
functions. For more details, see for instance [29].

Remark 3.2. In the rest of this section, C∗1 and C∗2 are the constants

C∗1 = sup
s∈J

C1(s) and C∗2 = sup
s∈J

C2(s).

Lemma 3.2. [28] If x : (−∞, T ]→ X is a function such that x0 = φ, then

‖xs‖B ≤ (C∗2 + Lφ)‖φ‖B + C∗1 sup{|y(θ)|; θ ∈ [0,max{0, s}]}, s ∈ R(ρ−) ∪ J,
where Lφ = supt∈R(ρ−) L

φ(t).

Let us introduce the following hypotheses:
(H1) The semigroup S(t) is compact for t > 0.
(H2) The multivalued map F : J × B × E −→ P(E) is Carathéodory with

compact convex values.
(H3) There exist a function µ ∈ L1(J,R+) and a continuous nondecreasing

function ψ : R+ → (0,+∞) such that

‖F (t, x, y)‖ ≤ µ(t)ψ (‖x‖B + ‖y‖E) , (t, x, y) ∈ J × B × E,
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with

ω2

∫ T

0

µ(s)ds <

∫ +∞

v(0)

du

ψ(u)
,(4)

where

ω2 =
β2M̃sT

α

α(1− M̃T )
,

v(0) = ω1 = β1 +
β2M̃TΩ

1− M̃T

,

and

β1 = (C∗2 + Lφ)‖φ‖B, β2 = C∗1 + 1.

(H4) The functions Ik : E → E are continuous, and send bounded sets into
bounded sets.

Set

Ω = max
1≤k≤m

sup {‖Ik(x)‖, x ∈ B} ,

where B is a bounded set of E.

Theorem 3.2. Assume that assumptions (Hϕ), (H1) − (H4) hold. If M̃T < 1,
then the IVP (1) has a mild solution on (−∞, T ].

Proof. We transform the problem (1) into a fixed-point problem. Consider the
multivalued operator N : B1 −→ P(B1) defined by N(h) = {h ∈ B1} with

h(t) =



φ(t), t ∈ (−∞, 0];∫ t
0
Sα(t− s)v(s)ds, t ∈ [0, t1];

Tα(t− t1)(x(t−1 ) + I1(x(t−1 ))) +
∫ t
t1
Sα(t− s)v(s)ds, t ∈ (t1, t2];

...
Tα(t− tm)(x(t−m) + Im(x(t−m))) +

∫ t
tm
Sα(t− s)v(s)ds, t ∈ (tm, T ].

It is clear that the fixed points of the operator N are mild solutions of the problem
(1). Let us define y(·) : (−∞, T ] −→ E as

y(t) =

 φ(t), t ∈ (−∞, 0];

0, t ∈ J .

Then y0 = φ. For each z ∈ C(J,E) with z(0) = 0, we denote by z the function
defined by

z(t) =

 0, t ∈ (−∞, 0];

z(t), t ∈ J .
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Let xt = yt + zt, t ∈ J. It is easy to see that x(·) satisfies (3) if and only if z0 = 0
and for t ∈ J , we have

z(t) =



∫ t
0
Sα(t− s)v(s)ds, t ∈ [0, t1];

Tα(t− t1)
[
y(t−1 ) + z(t−1 ) + I1(y(t−1 ) + z(t−1 ))

]
+
∫ t
t1
Sα(t− s)v(s)ds, t ∈ (t1, t2];

...
Tα(t− tm) [y(t−m) + z(t−m) + Im(y(t−m) + z(t−m))]

+
∫ t
tm
Sα(t− s)v(s)ds, t ∈ (tm, T ],

where v(s) ∈ SF,yρ(s,ys+zs)+zρ(s,ys+zs) . Let

B2 = {z ∈ B1 such that z0 = 0}.

For any z ∈ B2, we have

‖z‖B2
= sup

t∈J
‖z(t)‖+ ‖z0‖B

= sup
t∈J
‖z(t)‖.

Thus (B2, ‖ · ‖B2
) is a Banach space. We define the operator P : B2 −→ P(B2) by:

P (z) = {h ∈ B2} with

h(t) =



∫ t
0
Sα(t− s)v(s)ds, t ∈ [0, t1];

Tα(t− t1)
[
y(t−1 ) + z(t−1 ) + I1(y(t−1 ) + z(t−1 ))

]
+
∫ t
t1
Sα(t− s)v(s)ds, t ∈ (t1, t2];

...
Tα(t− tm) [y(t−m) + z(t−m) + Im(y(t−m) + z(t−m))]

+
∫ t
tm
Sα(t− s)v(s)ds, t ∈ (tm, T ],

where v(s) ∈ SF,yρ(s,ys+zs)+zρ(s,ys+zs) .
It is clear that the operator N has a fixed point if and only if P has a fixed point.
So let us prove that P has a fixed point. We shall show that the operators P
satisfy all conditions of Lemma 2.2. For better readability, we break the proof into
a sequence of steps.

Step 1: P is convex for each z ∈ B2.
Indeed, if h1 and h2 belong to P (z), then there exist v1, v2 ∈ SF,y+z such that, for
t ∈ J, we have

hi(t) =



∫ t
0
Sα(t− s)vi(s)ds, t ∈ [0, t1];

Tα(t− t1)
[
y(t−1 ) + z(t−1 ) + I1(y(t−1 ) + z(t−1 ))

]
+
∫ t
t1
Sα(t− s)vi(s)ds, t ∈ (t1, t2]; (i = 1, 2)

...
Tα(t− tm) [y(t−m) + z(t−m) + Im(y(t−m) + z(t−m))]

+
∫ t
tm
Sα(t− s)vi(s)ds, t ∈ (tm, T ].
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Let d ∈ [0, 1]. Then for each t ∈ [0, t1], we get

dh1(t) + (1− d)h2(t) =

∫ t

0

Sα(t− s) [dv1(s) + (1− d)v2(s)] ds.

Similarly, for any t ∈ (ti, ti+1], i = 1, . . . ,m, we have

dh1(t) + (1− d)h2(t) = Tα(t− ti)
[
y(t−i ) + z(t−i ) + Ii(y(t−i ) + z(t−i ))

]
+

∫ t

ti

Sα(t− s) [dv1(s) + (1− d)v2(s)] ds

Since SF,yρ(s,ys+zs)+zρ(s,ys+zs) is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ P (z).

Step 2: P maps bounded sets into bounded sets in B2.
Indeed, it is enough to show that for any r > 0, there exists a positive constant
` such that for each z ∈ Br = {z ∈ B2 : ‖z‖B2

≤ r}, we have ‖P (z)‖B2
≤ `. Let

h ∈ P (z), and using (H2) we have for each t ∈ [0, t1],

‖h(t)‖ ≤
∫ t

0

‖Sα(t− s)‖‖v(s)‖ds

≤ M̃S

∫ t

0

(t− s)α−1µ(τ)ψ(‖yρ(s,ys+zs) + zρ(s,ys+zs)‖+ ‖y(s) + z(s)‖)ds

≤ M̃S
Tα

α
ψ
(
(C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r

) ∫ t

0

µ(s)ds

≤ M̃S
Tα

α
ψ
(
(C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r

)
‖µ‖L1 .

Moreover, when t ∈ (ti, ti+1], i = 1, . . . ,m, we have the estimate

‖h(t)‖ ≤ ‖Tα(t− ti)
[
z(t−i ) + Ii(z(t

−
i ))
]
‖+

∫ t

ti

‖Sα(t− s)‖‖v(s)‖ds

≤ M̃T (r + Ω)

+ M̃S

∫ t

ti

(t− s)α−1µ(τ)ψ(‖yρ(s,ys+zs) + zρ(s,ys+zs)‖+ ‖y(s) + z(s)‖)ds

≤ M̃T (r + Ω) + M̃S
Tα

α
ψ
(
(C∗2 + Lφ)Lφ)‖φ‖B + (C∗1 + 1)r

)
‖µ‖L1

≤ `.

Hence P (Br) is bounded.
Step 3: P maps bounded sets into equicontinuous sets of B2.
Let τ1, τ2 ∈ [0, t1], with τ1 < τ2, we have

‖h(τ2)− h(τ1)‖ ≤
∫ τ1

0

‖Sα(τ2 − s)− Sα(τ1 − s)‖‖v(s)‖ds

+

∫ τ2

τ1

‖Sα(τ2 − s)‖‖v(s)‖ds

≤ Q1 +Q2,
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where

Q1 =

∫ τ1

0

‖Sα(τ2 − s)− Sα(τ1 − s)‖‖v(s)‖ds

≤ ψ
(
(C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r

)
‖µ‖L1

∫ τ1

0

‖Sα(τ2 − s)− Sα(τ1 − s)‖ds.

Since ‖Sα(τ2 − s) − Sα(τ1 − s)‖L(E) ≤ 2M̃s(t1 − s)α−1 ∈ L1(J,R+) for s ∈ [0, t1]
and ‖Sα(τ2 − s)− Sα(τ1 − s)‖ → 0 as τ1 → τ2. This implies that

lim
τ1→τ2

Q1 = 0.

Q2 =

∫ τ2

τ1

‖Sα(τ2 − s)‖‖v(s)‖ds

≤ M̃s(τ2 − τ1)α

α
ψ
(
(C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r

)
‖µ‖L1 .

Hence, we deduce that
lim
τ1→τ2

Q2 = 0.

Similarly, for τ1, τ2 ∈ (ti, ti+1], i = 1, . . . ,m, we have

‖h(τ2)− h(τ1)‖ ≤ ‖Tα(τ2 − ti)− Tα(τ1 − ti)‖
[
‖z(t−i )‖+ ‖Ii(z(t−i ))‖

]
+Q1 +Q2

≤ ‖Tα(τ2 − ti)− Tα(τ1 − ti)‖(r + Ω) +Q1 +Q2.

Since Tα(t) is also strongly continuous, so ‖Tα(τ2−ti)−Tα(τ1−ti)‖ → 0 as τ1 → τ2.
Thus, from the above inequalities, we have

lim
τ1→τ2

‖h(τ2)− h(τ1)‖ = 0.

So, P (Br) is equicontinuous.
Step 4: The set (PBr)(t) is relatively compact for each t ∈ J, where

(PBr)(t) = {h(t) : h ∈ P (Br)}.

For all t ∈ [0, t1], by the strong continuity of Sα(·) and conditions (H1), (H2), that
the set {Sα(t− s)v(s), t, s ∈ [0, t1]} is relatively compact in E. Moreover, from the
mean value theorem for the Bochner integral, we obtain

(PBr)(t) ∈ tconv{Sα(t− s)v(s) : s ∈ [0, t1]}.

On the other hand, for t ∈ (ti, ti+1], i = 1, . . . ,m, using the continuity of the oper-
ator Tα(·), it follows that (PBr)(t) is relatively compact in E, for every t ∈ [0, T ].
As a consequence of Step 2 to 3 together with Arzelá-Ascoli theorem we can con-
clude that P is completely continuous.
Step 5: P has a closed graph.

Suppose that zn → z∗, hn ∈ P (zn) with hn → h∗. We claim that h∗ ∈ P (z∗).
In fact, the assumption hn ∈ P (zn) implies that there exists
vn ∈ SF,ynρ(s,yns+zns)+znρ(s,yns+zns) such that, for each t ∈ [0, t1],

hn(t) =

∫ t

0

Sα(t− s)vn(s)ds.
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We will show that there exists v∗ ∈ SF,y∗ρ(s,y∗s+z∗s)+z∗ρ(s,y∗s+z∗s) such that, for
each t ∈ [0, t1],

h∗(t) =

∫ t

0

Sα(t− s)v∗(s)ds.

Consider the following linear continuous operator:

Υ : L1([0, t1], E) −→ C([0, t1], E)

v 7−→ (Υv)(t) =

∫ t

0

Sα(t− s)v(s)ds.

By virtue of Lemma 2.1, we know that Υ◦SF is a closed graph operator. Moreover,
for every t ∈ [0, t1], we get

hn(t) ∈ Υ(SF,ynρ(s,yns+zns)+znρ(s,yns+zns)).

Since zn → z∗ and hn → h∗, it follows, that for every t ∈ [0, t1],

h∗(t) =

∫ t

0

Sα(t− s)v∗(s)ds,

for some v∗ ∈ SF,y∗ρ(s,y∗s+z∗s)+z∗ρ(s,y∗s+z∗s).

Similarly, for any t ∈ (ti, ti+1], i = 1, . . . ,m, we have

hn(t) = Tα(t− ti)
[
yn(t−i ) + zn(t−i ) + Ii(yn(t−i ) + zn(t−i ))

]
+

∫ t

ti

Sα(t− s)vn(s)ds.

We must prove that there exists v∗ ∈ SF,y∗ρ(s,y∗s+z∗s)+z∗ρ(s,y∗s+z∗s) such that, for
each t ∈ (ti, ti+1],

h∗(t) = Tα(t− ti)
[
y∗(t

−
i ) + z∗(t

−
i ) + Ii(y∗(t

−
i ) + z∗(t

−
i ))
]

+

∫ t

ti

Sα(t− s)v∗(s)ds.

Now, for every t ∈ (ti, ti+1], i = 1, . . . ,m, we have∥∥∥(hn(t)− Tα(t− ti)
[
yn(t−i ) + zn(t−i ) + Ii(yn(t−i ) + zn(t−i ))

])
−
(
h∗(t)− Tα(t− ti)

[
y∗(t

−
i ) + z∗(t

−
i ) + Ii(y∗(t

−
i ) + z∗(t

−
i ))
])∥∥∥

→ 0 as n→∞.
Consider the linear continuous operator:

Υ : L1((ti, ti+1], E) −→ C((ti, ti+1], E)

v 7−→ (Υv)(t) =

∫ t

ti

Sα(t− s)v(s)ds.

From Lemma 2.1, it follows that Υ ◦SF is a closed graph operator. Also, from the
definition of Υ, we have that, for every t ∈ (ti, ti+1], i = 1, . . . ,m,(

hn(t)− Tα(t− ti)
[
yn(t−i ) + zn(t−i ) + Ii(yn(t−i ) + zn(t−i ))

])
∈ Υ(SF,ynρ(s,yns+zns)+znρ(s,yns+zns)).
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Since zn → z∗, for some v∗ ∈ SF,y∗ρ(s,y∗s+z∗s)+z∗ρ(s,y∗s+z∗s) it follows that, for
every t ∈ (ti, ti+1], we have

h∗(t) = Tα(t− ti)
[
y∗(t

−
i ) + z∗(t

−
i ) + Ii(y∗(t

−
i ) + z∗(t

−
i ))
]

+

∫ t

ti

Sα(t− s)v∗(s)ds.

Hence the multivalued operator P is upper semi-continuous.
Step 6: A priori bounds.
Now it remains to show that the set

E = {z ∈ B2 : λz ∈ Pz, for some λ > 1}

is bounded.
Let z ∈ E be any element, then there exists v ∈ SF,yρ(s,ys+zs)+zρ(s,ys+zs) such that

z(t) = λ−1



∫ t
0
Sα(t− s)v(s)ds, t ∈ [0, t1];

Tα(t− t1)
[
y(t−1 ) + z(t−1 ) + I1(y(t−1 ) + z(t−1 ))

]
+
∫ t
t1
Sα(t− s)v(s)ds, t ∈ (t1, t2];

...
Tα(t− tm) [y(t−m) + z(t−m) + Im(y(t−m) + z(t−m))]

+
∫ t
tm
Sα(t− s)v(s)ds, t ∈ (tm, T ].

Then for each t ∈ [0, t1] we have,

‖z(t)‖ ≤
∫ t

0

‖Sα(t− s)‖‖v(s)‖ds

≤ M̃s

∫ t

0

(t− s)α−1‖v(s)‖ds,

for t ∈ (ti, ti+1], i = 1, . . . ,m, we get

‖z(t)‖ ≤ ‖Tα(t− ti)‖
(
‖z(t−i )‖+ ‖Ii(z(t−i )‖

)
+

∫ t

ti

‖Sα(t− s)‖‖v(s)‖ds

≤ M̃T ‖z(t−i )‖+ M̃TΩ + M̃s

∫ t

0

(t− s)α−1‖v(s)‖ds.

Then for all t ∈ [0, T ], we have

‖z(t)‖ ≤ M̃TΩ

1− M̃T

+
M̃sT

α

α(1− M̃T )

∫ t

0

µ(s)ψ
(
(C∗2 + Lφ)‖φ‖B + (C∗1 + 1)‖z(s)‖

)
ds

≤ M̃TΩ

1− M̃T

+
M̃sT

α

α(1− M̃T )

∫ t

0

µ(s)ψ (β1 + β2‖z(t)‖) ds.

Then

β1 + β2‖z(t)‖ ≤ β1 +
β2M̃TΩ

1− M̃T

+
β2M̃sT

α

α(1− M̃T )

∫ t

0

µ(s)ψ (β1 + β2‖z(s)‖) ds

≤ ω1 + ω2

∫ t

0

[µ(s)ψ(β1 + β2‖z(s)‖)] ds.
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Let
m(t) := sup {β1 + β2‖z(s)‖ : 0 ≤ s ≤ t} , t ∈ J.

By the previous inequality, we have

m(t) ≤ ω1 + ω2

∫ t

0

[µ(s)ψ(m(s))] ds.

Let us take the right-hand side of the above inequality as v(t). Then we have

m(t) ≤ v(t) for all t ∈ J,
with

v(0) = ω1,

and
v′(t) = ω2µ(t)ψ(m(t)), a.e. t ∈ J.

Using the nondecreasing character of ψ we get

v′(t) ≤ ω2µ(t)ψ(v(t)), a.e. t ∈ J.
Integrating from 0 to t we get∫ t

0

v′(s)

ψ(v(s))
ds ≤ ω2

∫ t

0

µ(s)ds.

By a change of variable we get∫ v(t)

v(0)

du

ψ(u)
≤ ω2

∫ t

0

µ(s)ds.

Using the condition (4), this implies that for each t ∈ J, we have∫ v(t)

v(0)

du

ψ(u)
≤ ω2

∫ t

0

µ(s)ds ≤ ω2

∫ T

0

µ(s)ds <

∫ +∞

v(0)

du

ψ(u)
.

Thus, for every t ∈ J, there exists a constant Λ such that v(t) ≤ Λ and hence
m(t) ≤ Λ. Since ‖z‖B2

≤ m(t), we have ‖z‖B2
≤ Λ.

This shows that the set E is bounded. As a consequence of the Lemma 2.2, we
deduce that the operator P has a fixed point which gives rise to a mild solution of
the problem (1). �

4. An Example

We consider the impulsive fractional integro-differential problem:

(5)

∂qt
∂tq

v(t, ζ) ∈ ∂2

∂ζ2
v(t, ζ) +

∫ s

−∞
η(s, τ − s, ζ)G(τ, v(τ − σ(v(τ, 0)), ζ))dτds,

v(t, 0) = v(t, π) = 0

v(t, ζ) = v0(θ, ζ), −∞ < θ ≤ 0

∆v(tk)(ζ) =

∫ tk

−∞
pk(tk − y)dy cos(v(tk)(ζ)),

where 0 < q < 1, t ∈ [0, T ], σ ∈ C(R, [0, T ]), ζ ∈ [0, π], pk : R → R, k = 1, 2, . . . ,m,
and G : [0, T ] × B → P (R) is an u.s.c. multivalued map with compact convex
values.
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Set E = L2([0, π]) and define A by

D(A) = {u ∈ E : u′′ ∈ E, u(0) = u(π) = 0},

Au = u
′′
.

It is well known that A is the infinitesimal generator of an analytic semigroup
(S(t))t≥0 on E. For the phase space, we choose B = Bγ defined by

Bγ :=

{
φ ∈ C((−∞, 0], E) : lim

θ→−∞
eγθφ(θ) exists in E

}
endowed with the norm

‖φ‖ = sup{eγθ|φ(θ)| : θ ≤ 0}.

Notice that the phase space Bγ satisfies axioms (A1)− (A3).
For t ∈ [0, T ], ζ ∈ [0, π] and ϕ ∈ Bγ we set

x(t)(ζ) = v(t, ζ),

φ(θ)(ζ) = v0(θ, ζ),

F (t, ϕ, x(t))(ζ) =

∫ 0

−∞
η(t, θ, ζ)G(t, ϕ(0, ζ))dθ,

ρ(t, ϕ) = t− σ(ϕ(0, 0)),

Ik(x(t−k ))(ζ) =

∫ 0

−∞
pk(tk − y)dy cos(x(tk)(ζ)), k = 1, 2, . . . ,m.

We can show that problem (5) is an abstract formulation of problem (1). The
following result is a direct consequence of Theorem 3.2.

Proposition 4.1. Let ϕ ∈ B be such that (Hϕ) holds, and let t→ ϕt be continuous
on R(ρ−). Then there exists a mild solution of (5).
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