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Positive periodic solutions of second-order
nonlinear neutral differential equations

with variable coefficients

Hocine Gabsi, Abdelouaheb Ardjouni∗, Ahcene Djoudi

Abstract. In this paper, we use Krasnoselskii’s fixed point theorem
to establish the existence of positive periodic solutions of second-order
nonlinear neutral differential equations. Our techniques can be used and
applied to study other classes of problems and extension some results.

1. Introduction

Neutral functional differential equations are not only an extension of or-
dinary delay differential equations but also provide good models in many
fields including Biology, Mechanics and Economics. For example (see [4],
[11], [18]) population dynamics, since a growing population consumes more
(or less) food than a matured one, depending on individual species, this leads
to neutral functional equations. Periodicity and stability of solutions of dif-
ferential and difference equations have been studied extensively in recent
times. We refer to the references (see [1]–[15], [17] and [18]) and references
therein for a wealth of information on this subject. In this paper, we study
the existence of a positive periodic solution of the neutral differential equa-
tion. The study on neutral functional differential equations is more intricate
than ordinary delay differential equations, that is why comparing plenty of
results on the existence of periodic solutions for various types of first-order
or second-order ordinary delay differential equations, studies on periodic so-
lutions for neutral differential equations are relatively less, and most of them
are confined to first-order neutral differential equations (see [4], [6], [7], [8],
[9], [12]–[14], [18]). Very recently, in [18], Wu and Wang discussed the second
order neutral delay differential equation

(x (t)− Cx (t− δ))
′′

+ a (t)x (t) = λb (t) f (x (t− τ (t))) ,

where λ is a positive parameter, δ and C are constants with |C| < 1.
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In [8], existence of positive periodic solutions of

(x (t)− Cx (t− τ (t)))′′ = a (t)x (t) + f (t, x (t− τ (t)))

and

(x (t)− Cx (t− τ (t)))′′ = −a (t)x (t)− f (t, x (t− τ (t))) ,

where τ ∈ C (R,R+), a ∈ C (R, (0,∞)), f ∈ C (R,R+ × R+) and a, are τ ω-
periodic functions and f is ω-periodic in the first variable, were investigated
with |C| < 1.

In this article, we investigate the existence of positive periodic solutions
for the following two types of second-order neutral functional differential
equations with mixed–delays

(1) (x (t)− C (t)x (t− δ (t)))′′ = a (t)x (t) + f (t, x (t− τ (t)))

and

(2) (x (t)− C (t)x (t− δ (t)))′′ = −a (t)x (t)− f (t, x (t− τ (t))) ,

where

(H1) a : R → R+, f : R × R → R and for an arbitrary C : R → R, Also
we as sum that a, C, δ, τ are ω-periodic functions and f (t+ ω, x) =
f (t, x).

We offer existence criteria for the positive periodic solutions of (1) and
(2). The interest of the paper the case when |C (t)| > 1. So to circumvent
the difficulties we choose conditions for the delay δ and f so that (1) and
(2) has positive periodic solutions.

Special cases of (1) and (2) have been considered and investigated by
many authors. For example, Cheung, Ren and Han in [8], using the main
tool employed Krasnoselskii’s fixed point theorem dealing with a sum of
two mappings, one is a contraction and the other is completely continuous.
The same thing, in this paper, we obtain various sufficient conditions for
the existence of positive periodic solutions of (1) and (2) by employing two
available operator and applying Krasnoselskii’s fixed point theorem. The
main features of this exposition are the following. In section 2, we introduce
some notations, and state some preliminary results needed in later sections,
then we give the Green’s function of (1) and (2), which plays an important
role in this paper. Also, we present the inversions of (1) and (2), and Kras-
noselskii’s fixed point theorem. For details on Krasnoselskii’s theorem we
refer the reader to [16]. In the last sections, we present our main results on
existence of positive periodic solutions of (1) and (2). We our work extends
and improves previous results in the literature such as, Cheung, Ren and
Han [8].
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2. Preliminaries

To describe the main result we use the following notations. For ω > 0, let
Cω be the set of all continuous scalar functions x, periodic in t of period ω.
Then (Cω, ‖·‖) is a Banach space with the supremum norm

‖x‖ = sup
t∈R
|x (t)| = sup

t∈[0,ω]
|x (t)| ,

define
C+
ω = {x ∈ Cω|x > 0}

and
C−ω = {x ∈ Cω|x < 0} .

In the following we denote by

M = sup {a (t) |t ∈ [0, ω]} , m = inf {a (t) |t ∈ [0, ω]} , β =
√
M.

Theorem 2.1 ([16]). LetM be a closed bounded convex nonempty subset of
a Banach space (X, ‖·‖). Suppose that A and B mapM intoM such that

(i) x, y ∈M, implies Ax+ By ∈M,
(ii) A is compact and continuous,
(iii) B is a contraction mapping.

Then there exists x ∈M with x = Ax+ Bx.

Then there exists x ∈M with x = Ax+ Bx.
To apply Theorem 2.1, we need to define a Banach space X, a closed

convex subset Ω of X and construct a mapping is a completely continuous.
So, we let (X, ‖·‖) = (Cω, ‖·‖) and Ω = {ϕ ∈ Cω : l ≤ ϕ ≤ L} , where
L is non-negative constant and l is positive constant. In this section we
obtain the existence of a positive periodic solution of (1) by considering the
two cases primary |C (t)| > 1 and secondary |C (t)| < 1. We begin with
|C (t)| > 1. In order to obtain the ω–periodic solution of (2), we define the
function F : R× Cω → R by

F (t, x) := f (t, x (t− τ (t))) + a (t)C (t)x (t− δ (t)) .

In such case we require that a some hypotheses.
(H2) The function σ (t) = t − δ (t) is strictly increasing and r (·) is its

inverse.
(H3) We assume that F : R× Cω → R+ is a positive continuous function

on R× Cω that is

F (t, x) ≥ 0, for all x ∈ Cω and t ∈ R.

(H4) Suppose F : R × Cω → R− is a negative continuous function on
R× Cω, that is

F (t, x) < 0 for all x ∈ Cω and t ∈ R.
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Denote

C0 := min
t∈R

1

|C (r (t))|
and C1 := max

t∈R

1

|C (r (t))|
.

3. Existence of positive periodic solution for (1)

Similar to the results in [8] we have the following lemmas.

Lemma 3.1. The equation

d2 y

d t2
−My (t) = h(t), h ∈ Cω,

has a unique ω–periodic solution

y (t) = (T1h) (t) :=

∫ t+ω

t
K1 (t, s) (−h (s)) d s,

where

K1 (t, s) =
exp (−β (s− t)) + exp (β (s− t− ω))

2β (1− exp (−βω))
, s ∈ [t, t+ ω] .

Clearly, one can, by a change of variables, we have

y (t) = y (t+ ω) .

Lemma 3.2. K1 (·, ·) has the properties

1)
∫ r(t)+ω
r(t) K1 (r (t) , s) d s =

1

M
for all t ∈ [0, ω], s ∈ [r (t) , r (t) + ω] .

2) 0 <
exp (−βω/2)

β (1− exp (−βω))
≤ K1 (r (t) , s) ≤ 1 + exp (−βω)

2β (1− exp (−βω))
.

3) K1 (r (t+ ω) , s+ ω) = K1 (r (t) , s) .

The following lemma is essential for our results on existence of periodic
solution of (1).

Lemma 3.3. Assume that all hypotheses (H1) and (H2) hold true. If x ∈ Cω
then x is a solution of equation (1) if and only if

(3)
x (t) =

1

C (r (t))
x (r (t)) +

1

C (r (t))
(I −A)−1

×
∫ r(t)+ω

r(t)
K1 (r (t) , s) [a (s)C (s)x (s− δ (s)) + f (s, x (s− τ (s)))] d s,

where

(Ay) (t) =

∫ t+ω

t
K1 (t, s) [M − a (s)] y (s) d s.

Proof. Let x ∈ Cω be a solution of (1) so (1) it can be rewritten as

(4)
d2

d t2
(x (t)− C (t)x (t− δ (t)))−M (x (t)− C (t)x (t− δ (t)))

= −M (x (t)− C (t)x (t− δ (t))) + a (t)x (t) + f (t, x (t− τ (t))) .
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Taking
y (t) = x (t)− C (t)x (t− δ (t)) .

Then (4) is transformed into

d2

d t2
y (t)−My (t)

= −My (t) + a (t) y (t) + a (t)C (t)x (t− δ (t)) + f (t, x (t− τ (t)))

= (a (t) y (t)−My (t))− a (t) y (t) + a (t)x (t) + f (t, x (t− τ (t)))

= − (M − a (t)) y (t) + a (t)C (t)x (t− δ (t)) + f (t, x (t− τ (t)))

= − (M − a (t)) y (t) + F (t, x (t)) := h (t) .

Since h ∈ Cω from Lemma 3.1, we have

y (t) =

∫ t+ω

t
K1 (t, s) (−h (s)) d s

=

∫ t+ω

t
K1 (t, s) (M − a (s)) y (s) d s

+

∫ t+ω

t
K1 (t, s) (−F (s, x (s))) d s

= (Ay) (t) +

∫ t+ω

t
K1 (t, s) (−F (s, x (s))) d s

= (Ay) (t) + T1 (a (t)C (t)x (t− δ (t)) + f (t, x (t− τ (t)))) .

This yields

(I −A) y (t) = T1 (a (t)C (t)x (t− δ (t)) + f (t, x (t− τ (t)))) .

Therefore, since ‖A‖ ≤ 1− m
M < 1 then

y (t) = (I −A)−1 T1 (a (t)C (t)x (t− δ (t)) + f (t, x (t− τ (t)))) .

Obviously

x (t) = C (t)x (t− δ (t))

+ (I −A)−1 T1 (a (t)C (t)x (t− δ (t)) + f (t, x (t− τ (t))))

= C (t)x (r (t))

+ (I −A)−1 T1 (a (t)C (t)x (t− δ (t)) + f (t, x (t− τ (t)))) .

In fact that t = r (σ (t)) and since A is a linear operator, so (I −A)−1 it is
also a linear operator. This yields

x (r (t)) = C (r (t))x (t)

− (I −A)−1
∫ r(t)+ω

r(t)
K1 (r (t) , s)

× (a (s)C (s)x (s− δ (s)) + f (s, x (s− τ (s)))) d s.
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Consequently,

x (t) =
1

C (r (t))
x (r (t))

+
1

C (r (t))
(I −A)−1

∫ r(t)+ω

r(t)
K1 (r (t) , s)

× (a (s)C (s)x (s− δ (s)) + f (s, x (s− τ (s)))) d s. �

Remark 3.1. It is not difficult to check that any function x(t) that satisfies
(3) is also a ω-periodic.

• The case C (t) > 1.
To simplify notations we define the operators S,B1, Q1 : Cω → Cω by

(5)

(Sx) (t) :=
1

C (r (t))
x (r (t)) ,

(B1x) (t) :=

∫ r(t)+ω

r(t)
K1 (r (t) , s)F (s, x (s)) d s,

and

(6) (Q1x) (t) :=
1

C (r (t))
(I −A)−1 (B1x) (t) .

In view of (5), (6), and the above analysis, the existence of periodic solutions
for (1) is equivalent to the existence of solutions for the operator equation

Sx+Q1x = x.

Lemma 3.4. Suppose that (H1) and (H2) hold. If S is given by (5), then
the operator S : Cω → Cω is a contraction.

Proof. For any φ, ϕ ∈ Cω, it is easy to see that

|(Sφ) (t)− (Sϕ) (t)| =
∣∣∣∣ 1

C (r (t))

∣∣∣∣ |φ (r (t))− ϕ (r (t))| ≤ 1

|C (r (t))|
‖φ− ϕ‖ ,

which implies that
‖Sφ− Sϕ‖ ≤ C1 ‖φ− ϕ‖ .

Since C1 < 1, then S is a contraction operator. �

Lemma 3.5. Suppose that (H1)–(H3) hold, then Q1 is completely continu-
ous and satisfies

0 < C0 (B1x) (t) ≤ (Q1x) (t) ≤ C1
M

m
‖(B1x) (t)‖ for t ∈ R, x ∈ Cω.

Proof. For x ∈ Cω. By Neumann expansion of (I −A)−1B1, we have

(7)
(I −A)−1B1 =

[
I +A+A2 + · · ·+An + · · ·

]
B1

= B1 +AB1 +A2B1 + · · ·+AnB1 + · · ·
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Moreover, since C (r (t)) > 1 and by condition (H3), having in mind (7), we
get for all t ∈ R, and x ∈ Cω

(Q1x) (t) =
1

C (r (t))
(I −A)−1 (B1x) (t) ≥ 1

C (r (t))
(B1x) (t) > 0.

On the other hand, recalling that ‖A‖ ≤ 1 − m
M and by (H3), we see that

for all t ∈ R, and x ∈ Cω

(Q1x) (t) =
1

C (r (t))
(I −A)−1 (B1x) (t)

≤ C1

∥∥∥(I −A)−1
∥∥∥ ‖(B1x) (t)‖

≤ C1
1

1− ‖A‖
‖(B1x) (t)‖

≤ C1
1

1− 1 + m
M

(B1x) (t) = C1
M

m
‖(B1x) (t)‖ .

Consequently,

0 < C0 (B1x) (t) < (Q1x) (t) ≤ C1
M

m
‖(B1x) (t)‖

for all t ∈ R, and x ∈ Cω.
Since A and B1 are completely continuous, so is Q1. �

Let
Ω := {ϕ ∈ Cω : l ≤ ϕ ≤ L} ,

where L is non-negative constant and K is positive constant and we assume
that there exist positive constants k1 and k2 such that

(8) k1 ≤ F (t, x) ≤ k2 for all t ∈ R and x ∈ Ω.

So we have the following Theorem.

Theorem 3.1. Under the hypotheses (H1)–(H3) and the condition (8). In
addition suppose that

l =
C0

M
k1 and L =

C1

m (1− C1)
k2.

Then (1) has at least one positive ω-periodic solution x, with l ≤ x ≤ L.

Proof. Let Ω := {ϕ ∈ Cω : l ≤ ϕ ≤ L}. It is obvious that Ω is a bounded
closed convex set in Cω. Moreover, for any ϕ, φ ∈ Ω, it is easy to verify that
S1+Q1 is continuous and (Sϕ) (t+ ω)+(Q1ϕ) (t+ ω) = (Sϕ) (t)+(Q1ϕ) (t).
Next, we claim that Sϕ + Q1φ ∈ Ω for all ϕ, φ ∈ Ω. Since C (·) > 0 and
0 < k1 ≤ F (t, x) ≤ k2, then for any ϕ, φ ∈ Ω, in view of Lemmas 3.4, 3.5
and the condition (8) that

(Sϕ) (t) + (Q1φ) (t) ≤ 1

|C (r (t))|
‖ϕ‖+

M

m
C1 ‖(B1x) (t)‖
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≤ C1L+
M

m
C1

∫ r(t)+ω

r(t)
|K1 (r (t) , s)F (s, φ (s))| d s

≤ C1L+ C1
M

m

k2
M

≤ C1L+
C1

m

m (1− C1)L

C1
= L.

On the other hand, by Lemmas 3.4, 3.5 and condition (8) we have

(Sϕ) (t) + (Q1φ) (t) ≥ (S1ϕ) (t) + C0 (B1φ) (t)

≥ (S1ϕ) (t) + C0

∫ r(t)+ω

r(t)
K1 (r (t) , s)F (s, φ (s)) d s

≥ C0l + C0

∫ r(t)+ω

r(t)
K1 (r (t) , s)F (s, φ (s)) d s

≥ C0k1

∫ r(t)+ω

r(t)
K1 (r (t) , s) d s ≥ C0k1

1

M

≥ C0
lM

C0

1

M
= l.

Thus Sϕ+Q1φ ∈ Ω , that is, (S +Q1) (Ω) ⊂ Ω. Clearly, all the hypotheses
of the Theorem 2.1 are satisfied. Then, there exists a fixed point x ∈ Ω such
that Sx+Q1x = x. By lemma (3.3) it is also positive ω–periodic solutions
for (1). �

• The case C (t) < −1.
Note that the case C (t) > 1 and the case C (t) < −1 differ only by a

sign. So the treatment is the same as the first case by the small change of
the hypothesis between (H3) and (H4). Then, we have the following result
can be proved by a similar way.

Lemma 3.6. Suppose that (H1), (H2) and (H4) hold. Then,
(i) The operator S : Cω → Cω is a contraction.
(ii) Q1 is completely continuous and satisfies

0 < C0 |(B1x) (t)| ≤ (Q1x) (t) ≤ C1
M

m
‖(B1x) (t)‖

for t ∈ R, x ∈ Cω.

Proof. We use (H4) recalling that C (t) < −1 on R and the fat that A is a
linear operator we get for t ∈ R, x ∈ Cω.

1

C (r (t))
(I −A)−1 (B1x) (t)

=
1

C (r (t))
(I −A)−1

∫ r(t)+ω

r(t)
K1 (r (t) , s)F (s, x (s)) d s
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=
−1

C (r (t))
(I −A)−1

∫ r(t)+ω

r(t)
K1 (r (t) , s) [−F (s, x (s))] d s

=

(
−1

C (r (t))

)
(I −A)−1

∫ r(t)+ω

r(t)
K1 (r (t) , s) [−F (s, x (s))] d s

≥ C0

(∫ r(t)+ω

r(t)
K1 (r (t) , s) [−F (s, x (s))] d s

)

= C0

∣∣∣∣∣
∫ r(t)+ω

r(t)
K1 (r (t) , s)F (s, x (s)) d s

∣∣∣∣∣
≥ C0 |(B1x) (t)| .

Also we have

(Q1x) (t) =
1

C (r (t))
(I −A)−1 (B1x) (t) ≤ C1

M

m
‖(B1x) (t)‖ .

Hence, 0 < C0 |(B1x) (t)| ≤ (Q1x) (t) ≤ C1
M
m ‖(B1x) (t)‖ for t ∈ R, x ∈

Cω. �

Let Ω := {ϕ ∈ Cω : l ≤ ϕ ≤ L} where L is non-negative constant and l is
positive constant and we assume that

(9) M ≤ −F (t, x) ≤ m

C1
for all t ∈ R, x ∈ Ω.

So we have the following Theorem.

Theorem 3.2. Under the hypotheses Lemma 3.6 and the condition (9).
Suppose that

l = 0 and L = 1.

Then (1) has at least one positive ω-periodic solution x with. 0 < x ≤ 1.

Proof. Let Ω := {ϕ ∈ Cω : 0 ≤ ϕ ≤ 1}. It is obvious that Ω is a bounded
closed convex set in Cω. Moreover, for any ϕ, φ ∈ Ω, it is easy to verify that
S+Q1 is continuous and (Sx) (t+ ω)+(Q1x) (t+ ω) = (Sx) (t)+(Q1x) (t),
that is, (S +Q1) (Ω) ⊂ Cω.

Next, we claim that Sϕ + Q1φ ∈ Ω for all ϕ, φ ∈ Ω. Since 0 < M ≤
−F (t, x) ≤ m

C1
, then for any ϕ, φ ∈ Ω, by Lemma 3.6, we have

(Sϕ) (t) + (Q1φ) (t) =
1

C (r (t))
ϕ (r (t))

+
1

C (r (t))
(I −A)−1

∫ r(t)+ω

r(t)
K1 (r (t) , s)

× [a (s)C (s)φ (s− δ (s)) + f (s, φ (s− τ (s)))] d s

≤ 1

|C (r (t))|

∥∥∥(I −A)−1
∥∥∥∫ r(t)+ω

r(t)
K1 (r (t) , s) |F (s, φ (s))| d s
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≤ C1
M

m

1

M

m

C1
= 1.

On the other hand, by Lemma 3.3 and condition (9)

(Sϕ) (t) + (Q1φ) (t) =
1

C (r (t))
ϕ (r (t))

+
1

C (r (t))
(I −A)−1

∫ r(t)+ω

r(t)
K2 (r (t) , s)F (s, φ (s)) d s

=
1

C (r (t))

[
ϕ (r (t)) + (I −A)−1

∫ r(t)+ω

r(t)
K1 (r (t) , s)F (s, φ (s)) d s

]

≥ −1

C (r (t))

[∫ r(t)+ω

r(t)
K1 (r (t) , s) (−F (s, φ (s))) d s− ϕ (r (t))

]

≥ −1

C (r (t))

[∫ r(t)+ω

r(t)
K1 (r (t) , s) [−F (s, φ (s))] d s− ϕ (r (t))

]

≥ −1

C (r (t))

[
1

M
k1 − 1

]
= 0.

Thus Sϕ + Q1φ ∈ Ω for all ϕ, φ ∈ Ω. Clearly, all the hypotheses of the
Theorem 2.1 are satisfied. Thus there exists a fixed point x ∈ Ω such that
Sx + Q1x = x. By lemma (3.3) it is also positive ω-periodic solutions for
(1). �

4. Existence of positive periodic solution for (2)

Note that the (1) and (2) differ only by a sign in the first equation. So
the treatment is the same as the first case. So, the below procedure can
be carried out to obtain the positive periodic solution of (2) by the small
change of the hypothesis between (H3) and (H4) also Lemma 4.2 is obtained
by replacing Lemma 3.1 by Lemma 4.1. Then, we have the following result
can be proved by a similar way as in Section above.
• The Case C (t) > 1.

Similar to the results in [8] we have the following lemmas

Lemma 4.1. The equation

d2 y

d t2
+My (t) = h(t), h ∈ Cω,

has a unique ω–periodic solution

y (t) = (T2h) (t) :=

∫ t+ω

t
K2 (t, s)h (s) d s,

where

K2 (t, s) =
cosβ

(
ω
2 + t− s

)
2β cos βω2

, s ∈ [t, t+ ω] .
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Lemma 4.2. K2 (., .) has the properties

1)
∫ r(t)+ω
r(t) K2 (r (t) , s) d s =

1

M
for all t ∈ [0, ω], s ∈ [r (t) , r (t) + ω] .

2) If M <
(π
ω

)2
then

0 <
cos (βω/2)

2β sin (βω/2)
≤ K2 (r (t) , s) ≤ 1

2β sin (ωβ/2)
.

3) K2 (r (t+ ω) , s+ ω) = K2 (r (t) , s) .

The following lemma is essential for our results on existence of periodic
solution of (2).

Lemma 4.3. Assume that all hypotheses (H1) and (H2) hold true. If x ∈ Cω
then x is a solution of equation (2) if and only if

x (t) =
1

C (r (t))
x (r (t))

+
1

C (r (t))
(I − P )−1

∫ r(t)+ω

r(t)
K2 (r (t) , s)

× [a (s)C (s)x (s− δ (s)) + f (s, x (s− τ (s)))] d s,

where

(Py) (t) =

∫ t+ω

t
K2 (t, s) [M − a (s)] y (s) d s.

Proof. From Lemma 4.1, and a similarly as in the prove of Lemma 3.3. �

Define operators S,B2, Q2 : Cω → Cω by

(10)

(Sx) (t) :=
1

C (r (t))
x (r (t)) ,

(B2x) (t) :=

∫ r(t)+ω

r(t)
K2 (r (t) , s)F (s, x (s)) d s

and

(11) (Q2x) (t) :=
1

C (r (t))
(I − P )−1 (B2x) (t) .

In view of (10), (11), and the above analysis, the existence of periodic so-
lutions for (2) is equivalent to the existence of solutions for the operator
equation

Sx+Q2x = x.

Remark 4.1. Notice that S in this section is defined exactly the same as
that in (5). Hence Lemma 3.4 still holds true.

Lemma 4.4. Suppose that (H1), (H2) and (H3) hold.
(i) If S is given by (10), then the operator S : Cω → Cω is a contraction.
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(ii) Under the properties of K2 (., .) in Lemma 4.2. Q2 is completely
continuous and satisfies

0 < C0 (B2x) (t) ≤ (Q2x) (t) ≤ C1
M

m
‖(B2x) (t)‖ ,

for all t ∈ R, x ∈ Cω.
Let

Ω := {ϕ ∈ Cω : l ≤ ϕ ≤ L} ,
where L is nonnegative constant and l is positive constant. and we assume
that there exist positive constants k1 and k2 such that

(12) k1 ≤ F (t, x) ≤ k2 for all t ∈ R and x ∈ Ω.

So we have the following Theorem.

Theorem 4.1. IfM <
(
π
ω

)2 and (12) hold. Under the hypotheses of Lemma
4.4. In addition suppose that

l =
C0

M
k1 and L =

C1

m (1− C1)
k2.

Then (2) has at least one positive ω-periodic solution x with l < x ≤ L.
• The case C (t) < −1.

Here we recall the hypothesis (H4) and we assume that (H1), (H2) and
(H4) hold. It follows, we denote

Ω1 := {ϕ ∈ Cω : 0 < ϕ ≤ 1} .
Lemma 4.5. (i) If S is given by (10), then the operator S : Cω → Cω

is a contraction.
(ii) Under the properties of K2 (., .) in Lemma 4.2. Q2 is completely

continuous and satisfies

0 < C0 |(B2x) (t)| ≤ (Q2x) (t) ≤ C1
M

m
‖(B2x) (t)‖ ,

for all t ∈ R, x ∈ Cω.
Suppose that

(13) M ≤ −F (t, x) ≤ m

C1
for all t ∈ R and x ∈ Cω.

Theorem 4.2. If M <
(
π
ω

)2. Under the hypotheses of Lemma 4.5. If
suppose (13) hold. In addition suppose that

l = 0 and L = 1.

Then (2) has at least one positive ω-periodic solution x with 0 < x ≤ 1.

Remark 4.2. Under the hypotheses (H1) and (H2). We assume that
|C (t)| > 1 and M <

(
π
ω

)2. If either the hypotheses (H3), (8) and (12)
or (H4), (9) and (13) hold true. Then, (1)–(2) has at least one Positive
ω-periodic solution x ∈ Ω ∩ Ω1.
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Remark 4.3. It is obvious that the theorems 3.1, 4.2 which remains valid
even when by letting δ (t) and C (t) which are constant thus, our work
extends and improves previous results in the [8]. Nevertheless, we show that
these new idea can be used to extend and improve [11] and [4].

We recall now the second case |C (t)| < 1. Here we distinguish between
two case the first if c (t) is a constant so it is proved in [8] but the last case we
can concluded by result as in [4] when the terms

∫ 0
−∞ k (r) g (t, x (t+ r)) d r

is replaced by C (t)x (t− δ (t)) in [4]. That is this turns out to be a special
case of the general problem in [4].

5. Conclusion

In this paper, we provided the existence of positive periodic solutions with
sufficient conditions for second-order nonlinear neutral differential equations.
The main tool of this paper is the method of fixed points. However, by intro-
ducing new fixed mappings, we get new existence conditions. The obtained
results have a contribution to the related literature, and they improve and
extend the results in Cheung, Ren and Han [8] from the cases of variable
coefficient with |C| < 1 to that variable coefficient cases with |C (t)| < 1
and |C (t)| > 1.
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