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Convolutions Involving the Exponential Function
and the Exponential Integral

BRIAN FISHER AND FATMA AL-SIREHY

ABSTRACT. The exponential integral ei(Az) and its associated func-
tions eit(Az) and ei_(Az) are defined as locally summable functions
on the real line and their derivatives are found as distributions. The
convolutions z" eif (z) * °e and z" eiy(x) * 2°e” are evaluated.

1. INTRODUCTION AND RESULTS

The exponential integral ei(x) is defined for > 0 by

(1) ei(z) = / T uletdu,

see Sneddon [8], the integral diverging for x < 0. It was pointed out in [1]
that equation (1) can be rewritten in the form

@) 6i(z) = /OO w e — B — w)]du— H(1 — )],

where H denotes Heaviside’s function. The integral in this equation is
convergent for all z and so we use equation (2) to define ei(z) on the real
line.

More generally, see [1], if A # 0, we define ei(A\x) in the obvious way by

3) i) = /:o wM e — H(1 —w)] du— H(1 — ) In [\,

T

Further, we define the functions eiy(Ax) and ei_(A\z) by
eiy(Ax) = H(x)ei(Az), ei_(Ax) = H(—=z)ei(\x)

so that

(4) ei(Ax) = eiy (Ax) + ei_(Az).

In particular, if A > 0, we have

5)  ei(hx) = /OO w e B = x)]du— H( — Az)In Az,
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(6) eiy(Az) = / u e Mdu, x>0,
’ 0
(7)) eio(Ax) = —y(N) +/ e —-1)du—Inz_, z<0,

where
Y(A) =7+ 1n Al
and -
v = —/ u e ™™ — H(1 — \u)]du
0

is Fuler’s constant.
The derivatives of these functions are given by

lei(Az)) = —e ML,
®) el ()] = —e 25! — 4 (N)6(2),
[ei-(A2)) = e =t +4(N)6 (),
for all A # 0.

In particular, we have

ei(m):/oou1[6“—H(l—u)]du—H(l—x)ln|:1:|,
(9) ei+(37):/ooule"du, x>0,

0
ei_(:::):—y—i—/ u e —1)du—lnz_, 2<0,

where -
'y——/ u e —H(1—u) du
0

is Euler’s constant.
The derivatives of these functions are given by

[ei(2)] = —e~"a 7",

(10) i (2)) = —e "y —78(a),
—1

lei_(z)] =e "z
The classical definition of the convolution of two functions f and g is as

follows:

Definition 1. Let f and g be functions. Then the convolution f * g is
defined by

(9@ = [ " f()glx— 1) d

for all points x for which the integral exist.
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It follows easily from the definition that if f *x g exists then g x f exists
and

(11) frg=gxf
and if (fxg) and fx ¢’ (or f’*g) exists, then
(12) (fx9) = fxg'(or ['xg).

Definition 1 can be extended to define the convolution f * g of two distri-
butions f and g in D’ with the following definition, see Gel’fand and Shilov
[7].

Definition 2. Let f and g be distributions in D’. Then the convolution
f * ¢ is defined by the equation

(f*9)(x), ) = (f(y), (g(x), p(z +y)))

for arbitrary ¢ in D, provided f and g satisfy either of the conditions

(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side.

It follows that if the convolution f % g exists by this definition then equa-
tions (10) and (11) are satisfied.
The locally summable functions e? and e? are defined by

el = H(x)e" e = H(—x)e".

In the following we need the following lemma, which is easily proved by
induction.

Lemma 1.
v, ko
the 'dt = — —ute " 4+ k!
/0 e Zi!ue + k!,
=0
R a k! i_—2u k!
/Ote dt:—gwue +W,
fork=0,1,2,....

We now prove the following theorem.
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Theorem 1. The convolution x" eiy(x) x x°e? exists and

x"eiy(x) x x°ef =

e T+k(z>( o [“ =1, _(z'—_l)!ei]

i—j5l4 170
Pt = 2i=73) ] 2!
13 -
(13) + (Z) (=1)*(r + k)lz**[e” eiy (27) — ¥ ey (x) + In2e%]
k=0
s s r+k l‘i
Y (F)ente e [T - e eia)
k=0 i=1
forr,s=0,1,2,... and r,s not both zero.

In particular,

x"eiy () * % r‘i Z(i_l je_x—@_l)!e“”
(@) xel = 27l ;! 2]+

i=1 j5=0
(14) +rlle” eiy(22) — e®eiy(x) +1In2el]
T ‘:6'7‘
— 7! [Z ? + (1 — ex)} ei+($),
i=1
forr=1,2,... and
(15) eiy(z) x el = —eip(x) +eeiy(22) +In2ef.

Proof. The convolution " eit (x) * z°e% = 0 if x < 0 and so when z > 0, we
have

X o
x"eiy (x) x 2’e = / t"(x — t)sex_t/ u e " dudt
0 t

‘ -1 _x—u “ T s —t
= u e t"(x —t)’e "dtdu
(16) /o /0

[ee] €T
+/ u_lem_“/ t"(x—t)etdtdu
T 0
:II+IQ>

where

_ ~ (s kos—k [k —t
= -1 t dt
a7) <k>< por [k
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and in particular when r = s =0,

(18) / e tdt=—e"+1,
0

on using the lemma.
Hence

(19) r+k

:—Zr+k; Z<k>( 1)k x/oxuzle%du
_Z< Jvt e [ - e van

Further, we have

i—1

Tttt (i—1) . (i — 1)
— _ j ., —2z
20) /0 e du= Jz; ST
on using the lemma, and
x
/ w e ™ — H(l —u)]du =
0

= /Ooul[e“—H(l —u)|du
0

—/ ule“du—i—/ w H(1 —u)du

o0

= —y —eiy(z) —|—/ w H(1 —u)du.

Similarly

(22) /Off u e —H(1—2u)|du = —7—ei+(2$)—|—/oo uw L H[1 —2u]du.

It follows from equations (21) and (22) that
/ uw e —e ) du =
0

= el (22) —ely(z) + /Ooo w H(1 —u) — H(1 —2u)]du

=eiy(2x) —eiy(x) + In2.

(23)
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In particular, when r = s = 0, we have
(24) Iy = [eiy (22) — eip(x) 4 In2]e’.

Next, as in equation (17), we have

/ t'(x—t)Setdt =
0

25) o
:-Z() Br + k)l [Z%eﬂ”—i—(e*z—l)}
and so -
~ (s k s—k - NP
(26) L= —kzo <k>(—1) (r + &)z [;i!—i-(l—e )} el (2).
In particular, when r = s = 0, we have
(27) L= (e — 1) /OO wletdu = (¢F — 1) eis (x).

Equation (13) now follows from equations (20), (21), (22), (25) and (26).
Equation (14) follows on putting s = 0 in equation (13) and equation (15)
follows on putting r = 0 in equation (14). O

In the corollary, the distribution z? is defined by 27? = (v1')" and not
as in Gel'fand and Shilov.

Corollary 1.1. The convolutions (e “z7')*e% and (e_$x4__2) xell exist and
(28) (e "2 ') x €% = —e”eiy (22) — v(2)e”.
(29) (e "2 %) * % = 2¢” eiy (22) + 2v(2)e” — e “x .
Proof. The convolution (e‘“az;l) * e exists by Definition 2, since e‘xmf
and e are both bounded on the left. From equation (12), we have
lei () * %) = —[e "2 +~o(z)] * €%

= —(e_xa:jrl) * el —yell

= eip(x) * [e] + 6(z)]

=e"ei; (22) + In2ef

and equation (28) follows.
From equatlons (12) and (28), we now have

(e ail) xel] = —(e "' + e "a]%) x e}
= e (20) + Y (2)el — (e Tag) 5 e
— (e« [+ 8(2)
-1

= —e"ei  (22) —y(2)el +e x
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and equation (29) follows. O

Theorem 2. The convolution x" iy (z) * z°e” exists and

s r+k T—i—k)
x"eiy(x) x z%e” ZZ( )st_kex

(30) k=0 i=1
—i—Z( ) P In2(r + k)laFe®,
forr,s=0,1,2,... and r, s not both zero.
In particular
T
|
(31) ey (z) ket ==Y 2’;%‘69” +1In2rle”,
i=1 ’
forr=1,2,... and
(32) eip(z) xe® =In2e”
1
(33) eiy(z) x xe® =In2zxe” —In2e” + 5633.

Proof. We have
[e.e] o0
x"eip(z) x z’e” = / t"(x — t)sext/ u e " dudt
0 t

o u
:/ u_lex_“/ t"(x—t)Se tdtdu
0 0

s r+k
:_Z@)( DF(r + k)l ’”Z/ Lo du
k=0
—Z <Z>(—1)k(r+k‘). sk x/ (ute " —ule ™) du
k=0 0
LN () CDR R
- 2\ ) oip
k=0 i=1
+ Z) (—=1)FIn2(r + k)lz**e®
k=0

on making use of equation (17), the lemma and noting that

/ u e —e ) du = / Inu(2e” —e ) du
0 0
=T/(1)-In2-T'(1) = —n2,

proving equation (30).
Equation (31) follows on putting s = 0 in equation (30) and equation (32)
follows on putting » = 0 in equation (31).
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Equation (31) follows on putting »r = 0 and s = 1 in equation (30). O

Corollary 2.1. The convolution (e~"x ") * €* exists and

1 n2n71
3 e = e
forn=1,2,....
In particular,
1
(35) el x we® = —y(2)we” — 569”.

Proof. Differentiating equation (32), we get
[—e "t —y0(z)] x ¥ = —(e Tx ) x e” — ye” = In2e”

and we see that equation (34) is true when n = 1.
Now assume that equation (34) is true for some n. Then differentiating
equation (34), we get

(—e "2 " —ne 2" ) ke = (e ") x e”.
It follows that
ne—xxJ—rn—l %% = —2(6_901';”) % e
(_1)n+12n
= WV(Q)Gx

and so equation (33) is true for n+1. Equation (34) now follows by induction.
Differentiating equation (33), we get

1
[—e *z ! — ~0(2)] * ze” = In2ze” + gex
and equation (35) follows. O

For further results involving the exponential integral, see |2, 3, 4, 5] and
[6].
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