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Transversal Functional Analysis

Milan R. Tasković

Short survey. This paper provides an introduction to the ideas and
methods of transversal functional analysis based on the transversal sets
theory. A unifying concept that lies at the heart of transversal functional
analysis is that of a transversal normed linear space. I have developed
the theory far enough to include facts of have called the three new basic
principles of linear analysis as: Form of Hahn-Banach theorem, Form of
Principle of Uniform Boundedness (= Form of Banach-Steinhaus theo-
rem), and Form of Open Mapping theorem. In the classical functional
analysis fundamental fact is Riesz lemma. In transversal functional
analysis (on lower transversal normed spaces) its role play so-called Ge-
ometrical lemma! This paper presents applications of the Axiom of
Infinite Choice.

1. Transversal upper normed spaces

Let X be a linear space over K (:= R or C). The mapping x 7→ ||x|| :
X → [a, b] for some 0 ≤ a < b < +∞ or x 7→ ‖x‖ : X → [a, b) for some
0 ≤ a < b ≤ +∞ is called an upper transversal seminorm (or upper
seminorm) iff: ||x|| ≥ a for every x ∈ X, ||λx|| = |λ| ||x|| for all λ ∈ K and
x ∈ X, and if there is a function g : [a, b)2 → [a, b) such that

||x+ y|| ≤ max
{
||x||, ||y||, g

(
||x||, ||y||

)}
(Nu)

for all x, y ∈ X.
Further, x 7→ ||x|| is called an upper transversal norm (or upper norm)

iff in addition: ||x|| = a if and only if x = 0.
An upper transversal normed space (X, || · ||) over K consists of a

linear space X over K together with an upper transversal norm x 7→ ||x||.
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106 Transversal Functional Analysis

The function g : [a, b)2 → [a, b) in (Nu) is called upper bisection fun-
ction. From (Nu) it follows, by induction, that there is a function M :
[a, b)n → [a, b) such that

||x0 − xn|| ≤

≤ max
{
||x0 − x1||, . . . , ||xn−1 − xn||,M

(
||x0 − x1||, . . . , ||xn−1 − xn||

)}

for all x0, x1, . . . , xn ∈ X and for any fixed integer n ≥ 1. (The proof of this
fact it follows immediately from induction!)

It is easy to verify that every upper transversal normed linear space X is
a transversal upper space (see: Tasković [2005]) with respect to the upper
transverse ρ : X ×X → R0

+ defined by

ρ[x, y] = ||x− y|| for all x, y ∈ X;

thus we obtain ρ[x − z, y − z] = ρ[x, y] and ρ[λx, λy] = |λ|ρ[x, y] for all
x, y, z ∈ X and for every scalar λ ∈ K.

In this sense, an upper transversal normed space X is said to be upper
complete if it is upper complete as a transversal upper space. The upper
convergence xn → x (n→∞) means ||xn − x|| → a (n→∞).

We will in further denote by G([a, b]) the set of all upper bisection fun-
ctions g : [a, b]2 → [a, b] which are increasing satisfying g(t, t) ≤ t for every
t ∈ [a, b].

We notice that upper transversal norm x 7→ ||x|| is a general convex fun-
ction. The proof is simple. See this chapter of the book.

Example 1 (Upper intervally normed space). Let X be a linear space over K and
let G be the set of all nonincreasing, left continuous functions x 7→Mx : R→ [a, b]
for a < b (a, b ∈ R0

+), where inf Mx = a and supMx = b. Then (X,G) is an upper
transversal normed space if: Mx(0) = a for every x ∈ X, Mx = b for x ≤ 0 and
Mx = a for x > 0,

Mλx(σ) = Mx

(
σ

|λ|

)
for every x ∈ X

and for all σ ∈ R and λ 6= 0, and if there is a function g : [a, b]2 → [a, b] for
a, b ∈ R0

+ (a < b) such that the following ineuality holds in the form as

Mx+y(p+ q) ≤ max
{
Mx(p),My(q), g

(
Mx(p),My(q)

)}

for all x, y ∈ X and for all p, q ≥ 0.

The fundamental results of this section are the statements characterizing
finite dimensional spaces (as a Riesz’s theorem type), statement of separable
upper transversal normed spaces and a statement as the form of Riesz lemma
for upper transversal normed spaces. See brief proofs for this in: Tasković
[2005].

Also, in this part, we derive a general extension theorem, as a form of
Hahn-Banach theorem, for linear functionals on an arbitrary linear space.



Milan R. Tasković 107

In the next we can apply this theorem to the problem of the existence of
upper bounded linear functionals.

If in the preceding definition of transversal upper normed spaces the con-
dition of homogenity of the form: ‖λx‖ = |λ| ‖x‖ for all λ ∈ K and x ∈ X is
to exchange with the condition of the form: ‖λx‖ = |f(λ)|‖x‖ for all λ ∈ K,
x ∈ X, and a function f : K → K, then we have a transversal upper
global normed space (X, ‖ · ‖), where x 7→ ‖x‖ is a transversal upper
global norm. Adequate we obtain a transversal upper global semi-normed
space as and transversal upper global seminorm.

On the other hand, in an upper transversal normed space X with the
upper bisection function g ∈ G([a, b)), the following inequality holds as

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥ ≤
n∑

k=1

‖xk‖(1)

for all points x1, . . . , xn ∈ X, or in a precisely form as the following inequality
which is very practical in further as∥∥∥∥∥

n∑

k=1

xk

∥∥∥∥∥ ≤ max
{
‖x1‖, . . . , ‖xn‖

}
(1’)

for all points x1, . . . , xn ∈ X. (The proof of inequalities (1) and (1’) via
induction may be found in: T a s k o v i ć [2005].)

Otherwise, a fundamental first example of transversal upper normed spaces
with the upper bisection function g : (R0

+)2 → R0
+ defined by g(s, t) := s+ t,

is a classical normed space.1

Example 2 (The space Lp(a, b) for p ∈ R\{0}). If in the set Lp(a, b) for p ∈ R\{0}
introduced, in the classical style, the following compositions in the form as

(x+ y)(t) = x(t) + y(t), and (λx)(t) = λx(t),

then we obtain that Lp(a, b) is a vector space. The zero vector for this space is
a function which is almost everywhere equel to zero. This space is a transversal

1History of normed spaces. J e a n D i e u d o n n é: “Starting from the work of
F r i e d r i c h R i e s z and E d u a r d H e l l y on the problem of moments inertia it
was a natural generalization to define norms on arbitrary vector spaces. This was done
independently by S t e f a n B a n a c h and H a n s H a h n about 1920. In 1932 Banach
published a book containing a comprehensive account of all results known at that time
in the theory of normed spaces, and in particular the theorems he had published in his
papers of 1922 and 1929. A large part was devoted to the concept of weak convergence and
its generalizations, which he had begun to study in 1929. This book had on Functional
Analysis the same impact that Van der Waerden’s book had on Algebra two years earlier.
Analysts all over the world began to realize the power of the new methods and to apply
them to a great variety of problems; Banach’s terminology and notations were universally
adopted, complete normed spaces became known as Banach spaces, and soon their theory
was considered as a compulsory part in most curricula of graduate students. After 1935,
the theory of normed spaces became part of the more general theory of locally convex
spaces”.
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upper normed space if the transversal upper norm x 7→ ‖x‖ is defined with

‖x‖ =

(∫ b

a

|x(t)|pdt
)1/p

(2)

for every x ∈ Lp(a, b) and for an arbitrary fixed p ∈ R\{0}. Then to arise that (2)
has all attributes of transversal upper norm, where inequality (Nu) is the form as

‖x+ y‖ ≤ max



‖x‖, ‖y‖,

(∫ b

a

(
|x(t)|+ |y(t)|

)p
dt

)1/p




for all x, y ∈ Lp(a, b) and p ∈ R\{0}. (We notice, in the special case for p ≥ 1, the
inequality (Nu) may be in something differently form.)

Something dilatation. (The spaces Lp for p ∈ R\{0}). Let Ω be a
nonempty set and let Σ be a σ-algebra subsets of Ω. Suppose that µ is a
nonnegative, nontrivial, complete, and σ-finite measure on Ω. Let (Ω,Σ, µ)
be a measure space and p ∈ R\{0}. An Lp space essentially consists of all
measurable functions x such that ‖x‖p is an integrable function with (2)
taken as the upper transversal norm.

The case 0 < p < 1. In the case x ∈ Lp for 0 < p < 1 the function (2)
is an upper trahsversal norm. But, an upper transversal norm f 7→ ‖f‖ we
can defined and with

‖f‖ =

∫

Ω
|f |pdµ for 0 < p < 1;

where all properties of the upper transversal norm hold and where inequality
(Nu) holds from the following inequality in the from as

(x+ y)p ≤ xp + yp for 0 < p < 1(3)

and for all x, y ≥ 0. Otherwise, this form of inequality (Nu) via (3) has
many applications in mathematical analysis.

We notice that every upper intervally normed space is a transversal upper
intervally space if a transverse ρ[x, y] = Mx−y. Let τ(G) be a topology for
a ≥ 0 in the following sense as

Gx(ε) =
{
y ∈ X : Mx−y(ε) < a+ ε

}

for every x ∈ X and for every ε > 0. In the next set A(x) = b for x ≤ 0 and
A(x) = a for x > 0. Now we can formulate the following result.

Proposition 1. Let X be a vector space over K (:= R or C), Mx(0) = a for
every x ∈ X, Mx = A if and only if x = 0, Mαx(ε) ≥Mx(ε) for 0 < |α| < 1,
Mαx(ε)→ a as α→ 0, and

Mx−y(ε)<a+ ε and My−z(δ)<a+ δ implies Mx−z(ε+ δ)<a+ (ε+ δ)
(4)
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for all ε, δ > 0, then (X, τ(G)) is a transversal topological vector space, where
the upper transverse ρ has the following form as

ρ[x, y] =

{
0 if y ∈ Gx(ε) for every ε > 0,
inf{ε : y /∈ Gx(ε)} for every 0 < ε < 1,

in agreement with translation and invariance of the upper transverse in
the form: ρ[0, λx] ≤ ρ[0, x] for |λ| < 1. Also, ρ[x, y] > τ if and only if
Mx−y(τ) < a+ τ for every τ > 0.

Proof. Set D = {Gx,y = Mx−y : x, y ∈ X}, then directly, from the preceding
facts we obtain the following fact that

Gx,y(ε) < a+ ε and Gy,z(δ) < a+ δ implies Gx,z(ε+ δ) < a+ (ε+ δ)
(5)

for all ε, δ > 0. On the other hand, the condition (5) implies the following
condition in the form as: for every ε > 0 there exists 0 < δ ≤ ε such that

Gx,y(δ) < a+ δ and Gy,z(δ) < a+ δ implies Gx,z(ε) < a+ ε,(6)

where the condition (6) is to equivalent with the fact that (X, τ(G)) is a
topological vector space, i.e., the first part of statement holds. Also, from
the fact

ρ[0, x− z] = inf
{
ε : M0−(x−z)(ε) = Mx−z(ε) ≥ a+ ε

}
= ρ[x, z],

it follows that ρ[x + y, y + z] = ρ[0, x + y − (y + z)] = ρ[0, x − z] = ρ[x, z].
In this context, for |λ| ≤ 1 the following fact holds as

ρ[0, λx] = inf
{
ε : Mλx(ε) ≥ a+ ε

}
≤ inf

{
ε : Mx(ε) ≥ a+ ε

}
= ρ[0, x],

i.e., from these facts we obtain that the upper transverse is invariance and
translation. Also holds and second part of statement because τ(G) = τ(D).
The proof is complete. �

We notice that if (X,D) is an upper transversal intervally normed space with an
upper bisection function g ∈ D([a, b]), then (4) holds, because for Mx−y(ε) < a+ ε
and My−z(δ) < a+ δ we obtain that

Mx−z(ε+ δ) = Mx−y+y−z(ε+ δ) ≤

≤ max

{
Mx−y(ε),My−z(δ), g

(
Mx−y(ε),My−z(δ)

)}
≤

≤ max

{
Mx−y(ε),My−z(δ), g

(
max{Mx−y(ε),My−z(δ)},max{Mx−y(ε),My−z(δ)}

)}
≤

≤ · · · ≤ max

{
Mx−y(ε),My−z(δ),max

{
Mx−y(ε),My−z(δ)

}}
<

< max
{
a+ ε, a+ δ,max{a+ ε, a+ δ}

}
< a+ (ε+ δ).
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The space B(S). The upper transversal normed space of primary in-
terest to us is the space B(S) of all upper bounded scalar-valued functions
x : S → R defined on an arbitrary set S, with the upper norm given by

‖x‖ = sup
{
|x(t)| : t ∈ S

}
.

If the upper bisection function is defined by g(s, t) := s + t and S =
{1, 2, . . . , p}, then B(S) is the space Rn with the upper norm ‖ · ‖∞; and
if S = N, then we obtain the upper transversal normed space B(N) = m
consists of all upper bounded sequences.

Annotation. Many important properties of upper transversal normed spaces
(an example of a Banach space) are closely linked to the shape of its closed
unit sphere, that is, g(S(0, 1)) := {x : ‖x‖ = 1}. One basic property of
g(S(0, 1)) is that it is always general convex (see chapter 5). Let our under-
lying linear space be the real linear space R2 of all ordered pairs x = (x1, x2)
of real numbers. As on Figure 1 we have seen, there are many different up-
per norms which can be defined on R2, among which are the following:
‖x‖1 = |x1| + |x2|, ‖x‖2 = (|x1|2 + |x2|2)1/2, and ‖x‖∞ = max{|x1|, |x2|}.
Figure 1 illustrates the closed unit sphere which correspondes to each of
these upper norms.
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Fig. 1 Some closed unit spheres

We notice, in general case, that the upper transversal norm is not a continuous
function. But, if the bisection function is g ∈G (R0

+), then upper norm is a contin-
uous (even and uniformly continuous) function from the inequality

∣∣∣‖x‖−‖y‖
∣∣∣� ‖x− y‖ for all x,y ∈ X .

Proposition 3. Let X be a linear space and let (X ,ρ) be an upper transversal space,
then upper transverse ρ can be defined with upper norm if and only if the following
facts hold:

ρ [x− a,y− a] = ρ [x,y] for all x,y,a ∈ X , (7)

ρ [λx,λy] = |λ |ρ [x,y] for all x,y ∈ X (8)

and for every λ ∈K (:= R or C).

Proof. Let f : X → R be a defined by f (x) = ρ [0,x] for x ∈ X , then f is an upper
transversal norm on X . Indeed, let λ ∈K and x ∈ X , then from (8) it follows that

f (λx) = ρ [0,λx] = ρ [λ 0,λx] = |λ |ρ [0,x] = |λ | f (x),

i.e., f is an absolute homogeneous function. On the other hand, from (7) and given
conditions, it follows that for all x,y ∈ X we have the following inequality in the
form

f (x+ y) = ρ [0,x+ y] = ρ [−x,y]�
� max

{
ρ [−x,0],ρ [0,y],g

(
ρ [−x,0],ρ [0,y]

)}
= max

{
f (x), f (y),g

(
f (x), f (y)

)}
,

which means that the function f satisfy the correspondent inequality for upper trans-
verse, i.e., f is an upper (transversal) norm on X . Otherwise,

ρ [x,y] = ρ [0,y− x] = f (y− x) for all x,y ∈ X ,

and thus, from the fact (8), it follows that ρ [x,y] = f (x−y), i.e., the upper transverse
ρ is defined with the upper norm f . The proof is complete.

An annotation. We notice that a special form of the preceding Proposition 3, for metric linear
spaces, is proved in 1936 by S. K a k u t a n i on a different manner; see: R o l e w i c z [1984].

Further facts. Also, with the same suppositions and g ∈G([a,b)), if E is a real (or complex)
transversal upper normed space, the mapping (x,y) �→ x + y is uniformly continuous in E × E.

Figure 1. Some closed unit spheres

Proposition 2. Let S be an arbitrary set and let B(S) be an upper transver-
sal linear normed space of all upper bounded real functions x : S → R with
the upper norm ‖x‖ = sup{|x(t)| : t ∈ S}. Then B(S) is an upper complete
space.

The proof of this statement may be found (on a standard adequate manner) in:
T a s k o v i ć [2005].

We notice, in general case, that the upper transversal norm is not a con-
tinuous function. But, if the bisection function is g ∈ G (R0

+), then upper
norm is a continuous (even and uniformly continuous) function from the
inequality

∣∣∣‖x‖ − ‖y‖
∣∣∣ ≤ ‖x− y‖ for all x, y ∈ X.
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Proposition 3. Let X be a linear space and let (X, ρ) be an upper transver-
sal space, then upper transverse ρ can be defined with upper norm if and only
if the following facts hold:

ρ[x− a, y − a] = ρ[x, y] for all x, y, a ∈ X,(7)
ρ[λx, λy] = |λ|ρ[x, y] for all x, y ∈ X(8)

and for every λ ∈ K (:= R or C).

Proof. Let f : X → R be a defined by f(x) = ρ[0, x] for x ∈ X, then f is an
upper transversal norm on X. Indeed, let λ ∈ K and x ∈ X, then from (8)
it follows that

f(λx) = ρ[0, λx] = ρ[λ0, λx] = |λ|ρ[0, x] = |λ|f(x),

i.e., f is an absolute homogeneous function. On the other hand, from (7)
and given conditions, it follows that for all x, y ∈ X we have the following
inequality in the form

f(x+ y) = ρ[0, x+ y] = ρ[−x, y] ≤
≤ max

{
ρ[−x, 0], ρ[0, y], g

(
ρ[−x, 0], ρ[0, y]

)}
= max

{
f(x), f(y), g

(
f(x), f(y)

)}
,

which means that the function f satisfy the correspondent inequality for
upper transverse, i.e., f is an upper (transversal) norm on X. Otherwise,

ρ[x, y] = ρ[0, y − x] = f(y − x) for all x, y ∈ X,
and thus, from the fact (8), it follows that ρ[x, y] = f(x− y), i.e., the upper
transverse ρ is defined with the upper norm f . The proof is complete. �

An annotation. We notice that a special form of the preceding Proposition
3, for metric linear spaces, is proved in 1936 by S. K a k u t a n i on a different
manner; see: R o l e w i c z [1984].

Further facts. Also, with the same suppositions and g ∈ G([a, b)), if E is a
real (or complex) transversal upper normed space, the mapping (x, y) 7→ x + y is
uniformly continuous in E × E. The mapping (λ, x) 7→ λx is continuous in R× E
(or C× E); the mapping x 7→ λx is uniformly continuous in E.

As a corollary of this facts it follows that any translation x 7→ a + x and any
homothetic mapping x 7→ λx (λ 6= 0) is a homeomorphism of E onto itself, for the
inverse mapping is again a translation (resp. a homothetic mapping). For every
vector a 6= 0 in X the mapping λ 7→ λa is a homeomorphism of the field R on the
line Ra in X.

Every two open (closed) balls, as and every two spheres, in a transversal upper
normed space X are homeomorphic. Unhurt space, also, is homeomorphic to an
arbitrary proper open ball. Thus in X are essential the balls and spheres with
center 0 and radius 1, i.e.,

g
(
K(0, 1)

)
, g
(
K[0, 1]

)
, and g

(
S(0, 1)

)
.

If the upper bisection function g ∈ G([a, b)), then every ball is a convex set; also,
for different of upper transversal spaces, we have that Cl(g(K(a, r))) = g(K[a, r])
and Int(G(K[a, r])) = g(K(a, r)) for a ∈ X and r > 0.
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If x 7→ ‖x‖ is an upper norm on the vector space E, then ρ[x, y] = ‖x− y‖ is a
transverse on E such that ρ[x+ z, y + z] = ρ[x, y] and ρ[λx, λy] = |λ|[x, y] for any
scalar λ ∈ K.

The verification of the axioms of transversal upper spaces is trivial. An upper
transversal normed space is a vector space X with a given upper norm on X; such
a space is always considered as a transversal upper space for the transverse ‖x−y‖.

Let F be a linear subspace of a linear space E. The linear space E/F := {x+F :
x ∈ E} for x+F := {x+y : y ∈ F} for all x ∈ E. The sets x+F are called cosets
of F in E. We observe that F = 0 + F . The linear space E/F defined above is
called the quotient space of E modulo F . The mapping x 7→ x + F of E onto
E/F is called the canonical mapping.

The realationship between the quotient space E/F and linear subspaces of E
complementary to F is simple. LetG be a linear subspace of E such that E = F⊕G.
It is easy to verify that the restriction to G of the canonical mapping x 7→ x+F is
a one-to-one mapping of G onto E/F which preserves the linear space operations.
Such a mapping between two linear spaces is called an isomorphism. Thus any
linear subspace of E that is complementary to F is ”isomorphic” to E/F .

Otherwise, let F and G be are linear subspaces of a linear space E. The space E
is said to be the direct sum of F and G if and only if E = F +G and F ∩G = {0}.
If E is the direct sum of F and G we write E = F ⊕G. It is clear that E = F ⊕G
if and only if each element x ∈ E has a unique representation in the form x = y+z

where y ∈ F and z ∈ G. It can be proved that, given a linear subspace F of E,
there exists at least one linear subspace G of E such that E = F ⊕ G; any such
linear subspace G is said to be complementary to F in E.

Theorem 1. Let F be a closed linear subspace of an upper transversal
normed space E with the bisection function g ∈ G([a, b)) and let

‖x+ F‖ = inf
{
‖x+ y‖ : y ∈ F

}

for all x ∈ F . The mapping (x + F ) 7→ ‖x + F‖ is an upper transversal
norm on E/F , and further if E is complete space, so is E/F .

The proof of this statement is founded on the facts of problems 13 and 14. A
proof for this statement may be found in: T a s k o v i ć[2005].

In further, the upper transversal normed spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y )
with the same field K are isometric isomorphism (or isomorphism) if
there exists a one-to-one linear transformation (operator) A : X → Y such
that

‖Ax‖Y = ‖x‖X for every x ∈ X;

and X is said to be isometrically isomorphic to Y if there exists an
isometric isomorphism of X onto Y .

This terminology enables us to give precise meaning to the statement that
one upper transversal normed linear space is essentially the same as another.
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In this sense, if the upper transversal normed spaces X and Y are isomet-
rically isomorphic and if one of him complete (upper complete), then other
of him also complete space.
Linear upper bounded operators. Let X and Y be upper transversal

normed spaces over K and let L(X,Y ) be a set of all linear operators of X
into Y . An operator A ∈ L(X,Y ) is bounded (or upper bounded) if there
exists a real number M ≥ 0 with property that

‖Ax‖ ≤M‖x‖ for every x ∈ X;(9)

in this case, then M is called a bound (or upper bound) for A, and such
an A is often referred to as a bounded linear operator, where an upper
norm of operator A, in notation ‖A‖, defined by

‖A‖ := sup
x∈X\{0}

‖Ax‖
‖x‖(10)

or on a second manner, as infimum of the numbers M ≥ 0 for which holds
(9). Otherwise, the set S ⊂ X is bounded (or upper bounded) if there exists
m ≥ 0 such that ‖x‖ ≤ m for every x ∈ S.

In this sense, if A : X → Y is a homogeneous operator then the following
equalities hold in the form as

‖A‖ := sup
‖x‖≤1

‖Ax‖ = sup
‖x‖=1

‖Ax‖ =(11)

= sup
X\{0}

‖Ax‖
‖x‖ = min

{
M ∈ R0

+ : ‖Ax‖ ≤M‖x‖ for every x ∈ X
}
,

where min∅ = +∞; and thus we can obtain and other formulas for ‖A‖.
Specially, for someM ∈ R0

+ holds ‖A‖ ≤M if and only if ‖Ax‖ ≤M‖x‖ for
every x ∈ X. Set M = ‖A‖ then it follows that ‖Ax‖ ≤ ‖A‖ ‖x‖ for every
x ∈ X (∞ · 0 = 0).
Illustrations. The identity mapping of X into itself idX : X → X

defined by idX(x) = x for x ∈ X is linear. Since ‖ idX(x)‖ = ‖x‖ for every
x ∈ X, it follows ‖ idX ‖ = 1.

If X is a subspace of the space Y , then the mapping AX : X → Y defined
by AX(x) = x for x ∈ X is linear and ‖AX‖ = 1 (for X 6= {0}).

Amo the rest, if the operator A : X → Y is a homogeneous operator, then
for it upper norm the following facts hold in the next as

‖A‖ = sup
x∈X\{0}

‖Ax‖
‖x‖ = sup

x∈X\{0}

∥∥∥∥
1

‖x‖Ax
∥∥∥∥ = inf

x∈X\{0}

∥∥∥∥A
(

x

‖x‖

)∥∥∥∥ ,(12)

hence, because of the fact that for every x ∈ X\{0} the upper norm of the
vector x/‖x‖ is equaly 1, it follows fact that ‖A‖ = sup‖x‖=1 ‖Ax‖, which is
one of the equalities in (11). Since

sup
‖x‖=1

‖Ax‖ = ‖A‖ ≤ sup
‖x‖≤1

‖Ax‖ = ‖A‖,
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we obtain that the first equality in (11) holds. This with (12) give a good
reason for the preceding equalities in (11).

In further, the set of all linear bounded operators of X into Y denoted
by B(X,Y ); also, the space B(X,K) is denoted by X∗ and is called the
conjugate or more briefly, functionals.

Proposition 4. Let X and Y be two upper transversal normed spaces over K
with the bisection function g ∈ G([a, b)). Then B(X,Y ) is a vector subspace
in L(X,Y ) and upper norm of operators is an upper norm on the space
B(X,Y ).

The proof of this statement is a total analogy with the classic proof of corre-
sponding statement for normed spaces. A proof for this statement may be found
in: T a s k o v i ć[2005].

Proposition 5. Let X be an upper transversal normed space with the upper
bisection function g ∈ G([a, b)) and let Y be a somplete upper transversal
normed space. Then B(X,Y ) is a complete upper transversal normed space.

We notice that, in this case, also the proof of this statement is a total analogy
with the classic proof of the corresponding statement for normed space X and
Banach space Y . Thus this proof we omited.

As a direct consequence of Proposition 5 is the following fact that every up-
per transversal normed space X with the bisection function g ∈ G([a, b)) has the
complete conjugate space X∗.

Proposition 6. Let X and Y be two upper transversal normed spaces and
A : X → Y a linear operator. Then the following conditions are all equiva-
lent to one another: 1) A is upper continuous, 2) A is upper continuous at
the origin, 3) A is upper bounded, and 4) if g(S(0, 1)) := {x : ‖x‖ ≤ 1} is
closed unit sphere in X, then its image A(g(S(0, 1))) is an upper bounded
set in Y .

Remarks. We notice that if an additive operator is continuous in a point of
space, then it is continuous on the entire space. For an additive operator A : X → Y

the following two facts hold: A(0) = 0, and A(−x) = −A(x) for every x ∈ X.
Proof of Proposition 6. First, the condition of upper uniformly contin-

uous implies upper continuous (i.e., continuous) of the mapping A : X → Y
in the point 0 ∈ X. On the other hand, if A ∈ B(X,Y ), then for δ = ε/M
and M , ε > 0 from the inequality ‖x− y‖ < δ it follows that

‖Ax−Ay‖ ≤M‖x− y‖ < ε,

i.e., this means that A is upper uniformly continuous on the space X. Re-
verse, if A is upper continuous in 0 ∈ X, then A ∈ B(X,Y ).

Indeed, if A is upper continuous in 0 ∈ X, then for ε = 1 there exists
δ > 0 such that ‖Ax‖ < 1 whenever ‖x‖ < δ. Hence, for x ∈ X (x 6= 0) and
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0 < δ < α it follows that ‖αx/‖x‖ ‖ < δ and that

‖Ax‖ =

∥∥∥∥
‖x‖
α
A

(
αx

‖x‖

)∥∥∥∥ ≤
1

α
‖x‖;

and thus, since this inequality holds and for x = 0, it follows that A ∈
B(X,Y ). This means from all the preceding facts that 2) is equivalent to
3).

On the other hand, since a nonempty subset of an upper normed linear
space is upper bounded iff it is contained in a closed sphere centered on
the origin, it is evident that 3) implies 4); for if ‖x‖ ≤ 1, then ‖Ax‖ ≤ M .
To show that 4) implies 3), we assume that A(g(S(0, 1))) is contained in a
closed sphere of radius M centered on the origin. If x = 0, then A(x) = 0,
and clearly ‖Ax‖ ≤ M‖x‖; and if x 6= 0, then x/‖x‖ ∈ g(S(0, 1))), and
therefore ‖A(x/‖x‖)‖ ≤ M , so again we have ‖Ax‖ ≤ M‖x‖. The proof is
complete.
Infinite series in upper normed spaces. In an upper transversal

normed space we can introduce the notion of an infinite series. Let E be an
upper transversal normed space. A pair of sequences {xn}n∈N and {σn}n∈N
in E such that σn = x1 +x2 + · · ·+xn for n ∈ N is called an infinite series
(or series) and denoted by

∑
n∈N xn. The point σn is called the nth partial

sum of this series.
The series

∑
n∈N xn is said to upper converge (or converge) iff the se-

quence of partial sums {σn}n∈N upper converge (converge). An infinite series∑
n∈N xn in an upper transversal normed space E is said to be absolutely

convergent iff the series of real numbers
∑

n∈N ‖xn‖ is upper convergent
(convergent).

Clearly the absolutely convergent series in the upper transversal normed
space R are just the absolutely convergent series of real numbers in the usual
sense of elementary analysis. For a result which generalizes a well-known
property of absolutely convergent series of real numbers and for a rearrange-
ment (or commutative convergence) of a series see: Tasković [2005]. Many
properties of series of real numbers generalize to series in upper transversal
normed space as and in the next statement.

Proposition 7. An upper transversal normed space X with a bisection func-
tion g ∈ G(R0

+) is complete if and only if inside them every absolutely con-
vergent series is convergent.

The proof of this statement is very analogy with the corresponding proof
in the case of clssic normed spaces. Thus the proof we omit.

Annotation. We notice that the completeness of upper transversal normed
spaces we can describe and via, among the rest, Cauchy’s net.2 In this

2Generalized convergence. An ordered set P := (P,4) is directed if for each pair
x, y ∈ P there is some z ∈ P such that x 4 z and y 4 z. A net {xi}i∈P in a set X is any
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sense, the net {xi}i∈I in upper transversal normed space X is a Cauchy’s
net if for every ε > 0 there exists i0 = i0(ε) ∈ I such that i, j ≥ i0 implies
‖xi − xj‖ < ε.

Proposition 8. In every complete upper transversal normed space X with
a bisection function g ∈ G(R0

+) every Cauchy’s net is a convergent net.

This statement means that completeness of upper transversal normed
spaces we can describe via Cauchy’s nets. The proof of this statement is an
analogy with the proof of the preceding statement.
Separability. The set M is called dense in X iff Cl(M) = X. The

topological space X is called separable iff there is an at most countable set
which is dense in X.

A nonempty subset M of an upper transversal normed space E is said to
be fundamental in E iff the linear hull of M is dense in E.

It follows directly from former facts that M is fundamental in E if and
only if the closed linear hull of M is E.

Proposition 9. An upper transversal normed space E with a bisection func-
tion g ∈ G(R0

+) is separable if and only if there exists a countable subset of
E that is fundamental in E.

The proof of this statement is a totally analogy with the proof in the case
of classical normed spaces. Thus the proof we omit.
Locally compactness. A topological space X is locally compact if

every point x ∈ X has a compact neighborhood. Any discrete space is
locally compact, but not compact unless it is finite. The real line R is
locally compact but not compact.

Proposition 10. An upper transversal normed space X is locally compact
if and only if the following closed ball in the form

g(K[0, 1]) := {x ∈ X : ‖x‖ ≤ 1}
is a compact set. (This fact is characteristic and for classical normed spaces.)

Proof. (Necessity). Let g(K[0, 1]) be a compact set. For arbitrary point
x0 ∈ X the mapping x 7→ x+ x0 is a homeomorphism of X into X, the sets
x0 + g(K[0, 1]) and g(K[0, 1]) are homeomorphic, and thus x0 + g(K[0, 1])
is a compact neighborhood of x0. �

Sufficiency. Let X be a compact upper transversal normed space, thus
the point 0 ∈ X has a compact neighborhood V which is a closed set such
that contained a ball V (0, r) for r > 0. The set

g(K[0, r]) =
{
x ∈ X : ‖x‖ ≤ r

}
= Cl(V (0, r)) ⊂ Cl(V ) = V,

function x : P → X. If X is a topological space, then the net {xi}i∈P converges to a
point x ∈ X provided for each nbd U of x there is i0 = i0(U) ∈ P such that for all i ≥ i0
we have xi ∈ U .
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is a compact set (as a compact subset of a compact set V ). This means that
the closed ball g(K[0, 1]) is a picture of the set g(K[0, r]) with the continuous
mapping x 7→ (1/r)x, and thus g(K[0, 1]) is a compact set. The proof is
complete.

Corollary 1. The space Rn, as an upper transversal normed space, is locally
compact. (In this case a closed unit ball is in the form g(K[0, 1]) = {x ∈
Rn : ‖x‖ ≤ 1} is a compact set.)

The forms of Riesz’s lemma. From the preceding facts we obtain that
a nonempty bounded closed subset of a finite dimensional upper transversal
normed space is compact. There is a converse of this fact which is true and
which provides an important characterization of finite dimensional upper
transversal normed spaces. We shall need the following result.

Proposition 11. (Form of Riesz’s lemma). Let Y be a closed proper sub-
space in an upper transversal normed space X. Then for every δ ∈ (0, 1)
there exists a point xδ ∈ X such that

‖xδ‖ = 1 and ρ[xδ, Y ] := inf
y∈Y
‖xδ − y‖ > δ.

The proof of this statement is a totally analogy with the corresponding
proof for the case of classical normed space due to F. Riesz in 1918. The
following fact is a consequence of the preceding result.

Proposition 12. An upper transversal normed space X with a bisection
function g ∈ G(R0

+) is finite dimensional if and only if every his bounded
closed subset is compact.

Otherwise, the following geometrical fact holds on upper transversal normed
spaces, which has key role in lower transversal normed spaces.

Proposition 13. Let Y be a closed proper subspace in an upper transversal
normed space X. Then for every δ > 1 there exists a point xδ ∈ X such that

‖xδ‖ = 1 and pdiam(xδ, Y ) := sup
y∈Y
‖xδ − y‖ < δ.

Since this statement also holds in the lower transversal normed spaces,
thus his the proof we give only in this case after in the next paragraph.
The Approximation Problem. Let L be an upper transversal normed

space and suppose K ⊂ L. For an arbitrary z ∈ L, find an element z0 ∈ K,
called a best approximation to z ∈ K such that

dist(z,K) := inf
y∈K
‖y − z‖ = ‖z0 − z‖.

Two questions are to be considered: 1) Does K contain a best approxi-
mation to z? and 2) If a best approximation exists, is it unique?

The approximation problem is now seen as a problem in minimizing a
translate of the upper norm function, or if z = 0, as problem in minimizing
the upper norm function itself.
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The space is C[0, 1] the space of continuous functions on [0, 1], and K is
the subset of all affine functions x 7→ mx+b. The point z to be approximated
is f(x) = x/(x+ 1) and we can consider the problem for each of the upper
transversal norms.

Before obtaining any formal results, a number of geometric observations
may be helpful. The set MK(z) of best approximations to z ∈ K is always
convex if K is convex, since it is the intersection of the closed ball Nρ(z) of
radius ρ = dist(z,K) with the set K. Being convex, MK(z) is either empty,
a single point, or an infinite set (as on Figure 2).

12 MILAN R. TASKOVIĆ

Proposition 12. An upper transversal normed space X with a bisection function
g ∈ G(R0

+) is finite dimensional if and only if every his bounded closed subset is
compact.

Otherwise, the following geometrical fact holds on upper transversal normed
spaces, which has key role in lower transversal normed spaces.

Proposition 13. Let Y be a closed proper subspace in an upper transversal normed
space X. Then for every δ > 1 there exists a point xδ ∈ X such that

‖xδ‖= 1 and pdiam(xδ ,Y ) := sup
y∈Y

‖xδ − y‖< δ .

Since this statement also holds in the lower transversal normed spaces, thus his
the proof we give only in this case after in the next paragraph.

The Approximation Problem. Let L be an upper transversal normed space and
suppose K ⊂ L. For an arbitrary z ∈ L, find an element z0 ∈ K, called a best approx-
imation to z ∈ K such that

dist(z,K) := inf
y∈K

‖y− z‖= ‖z0 − z‖.

Two questions are to be considered: 1) Does K contain a best approximation to
z? and 2) If a best approximation exists, is it unique?

The approximation problem is now seen as a problem in minimizing a translate
of the upper norm function, or if z = 0, as problem in minimizing the upper norm
function itself.

The space is C[0,1] the space of continuous functions on [0,1], and K is the subset
of all affine functions x �→mx+b. The point z to be approximated is f (x) = x/(x+1)
and we can consider the problem for each of the upper transversal norms.

Before obtaining any formal results, a number of geometric observations may be
helpful. The set MK(z) of best approximations to z ∈ K is always convex if K is
convex, since it is the intersection of the closed ball Nρ(z) of radius ρ = dist(z,K)
with the set K. Being convex, MK(z) is either empty, a single point, or an infinite set
(as on Figure 2).

Fig. 2

As a further guide to our intuition, consider the situation in the plane. Denoting
points by x= (r,s) to avoid subscripts, we defined three different upper norms in the
following forms as
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As a further guide to our intuition, consider the situation in the plane.
Denoting points by x = (r, s) to avoid subscripts, we defined three different
upper norms in the following forms as

‖x‖1 = |r|+ |s|, ‖x‖2 = max
{
|r|, |s|

}
, ‖x‖3 = (r2 + s2)1/2.

They are, except for the dimension of the space, exactly the upper norms
that came up in a natural way. Let K = {(r, s) : r+s ≥ 2} and take z = 0 as
the point to be approximated. Imagine a ball about the origin with variable
radius ρ. Let ρ increase from 0 until the expanding ball approaches the set
K.

The two questions associated with the approximation problem become the
following: First, is there a ball that contains points of K on its boundary
‖x‖ = ρ but no points of K in its interior ‖x‖ < ρ?; and second, if such a
ball exists, does is contain just one point of K? The situation for each of
the three upper norms is indicated in Fig. 3.

The distance from K to the origin are, respectively: 2, 1,
√

2. In all three
cases, the ansver to first question is yes. But for second question, it is no for
the first, yes for the other two. If the set K were the open half-space, then
first question would have a negative answer in all three cases.

Some reflection makes it clear that answers to the approximation ques-
tions depend both on properties of the set K (=closed?, compact?, convex?,
general convex?, subspace?) and on the geometry of the unit sphere.
Proposition 14. Let K be a finite dimensional closed subset in an upper
transversal normed space L with a bisection function g ∈ G(R0

+). Then there
is at least one point of K at a minimum transversal from a given point z ∈ L.
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‖x‖1 = |r|+ |s|, ‖x‖2 = max
{
|r|, |s|

}
, ‖x‖3 = (r2 + s2)1/2.

They are, except for the dimension of the space, exactly the upper norms that
came up in a natural way. Let K = {(r,s) : r+ s � 2} and take z = 0 as the point
to be approximated. Imagine a ball about the origin with variable radius ρ . Let ρ
increase from 0 until the expanding ball approaches the set K.

The two questions associated with the approximation problem become the fol-
lowing: First, is there a ball that contains points of K on its boundary ‖x‖= ρ but no
points of K in its interior ‖x‖< ρ?; and second, if such a ball exists, does is contain
just one point of K? The situation for each of the three upper norms is indicated in
Fig. 3.

Fig. 3

The distance from K to the origin are, respectively: 2, 1,
√

2. In all three cases,
the ansver to first question is yes. But for second question, it is no for the first, yes
for the other two. If the set K were the open half-space, then first question would
have a negative answer in all three cases.

Some reflection makes it clear that answers to the approximation questions de-
pend both on properties of the set K (=closed?, compact?, convex?, general con-
vex?, subspace?) and on the geometry of the unit sphere.

Proposition 14. Let K be a finite dimensional closed subset in an upper transversal
normed space L with a bisection function g ∈ G(R0

+). Then there is at least one
point of K at a minimum transversal from a given point z ∈ L.

Proof. There is no loss in generality if we take z = 0. Choose any point x 0 ∈ K
and form the set M = {x ∈ K : ‖x‖ � ‖x0‖}. The set M is closed and bounded in a
finite dimensional subspace of L, and thus it is compact. The continuous upper norm
function f (x) = ‖x‖ takes a minimum value at some z0 ∈ M, and for any x ∈ K, we
have f (x)� f (z0). The proof is complete.

The question of uniqueness remains to be invstigated. Toward this end, not
suprisingly, we must define a concept for upper norms that is really a condition that
prevents flat spots on the unit sphere. We say an upper transversal normed space L is
a strictly convex space if its unit sphere contains no line segments. More precisely,
we require that

‖x‖= ‖y‖= ‖2−1(x+ y)‖= 1 implies x = y.

Figure 3

Proof. There is no loss in generality if we take z = 0. Choose any point
x0 ∈ K and form the set M = {x ∈ K : ‖x‖ ≤ ‖x0‖}. The set M is closed
and bounded in a finite dimensional subspace of L, and thus it is compact.
The continuous upper norm function f(x) = ‖x‖ takes a minimum value
at some z0 ∈ M , and for any x ∈ K, we have f(x) ≥ f(z0). The proof is
complete. �

The question of uniqueness remains to be invstigated. Toward this end,
not suprisingly, we must define a concept for upper norms that is really
a condition that prevents flat spots on the unit sphere. We say an upper
transversal normed space L is a strictly convex space if its unit sphere
contains no line segments. More precisely, we require that

‖x‖ = ‖y‖ = ‖2−1(x+ y)‖ = 1 implies x = y.

All inner product spaces (hence all Euclidean spaces Rm) are strictly
convex. We emphasize that strict convexity is a property not preserved by
topological isomorphism, as is apparent from considering the (topologically
equivalent) upper norms (represented in Fig. 3.).

Proposition 15. Let K be a finite dimensional closed convex subset in a
strictly convex upper transversal normed space L with a bisection function
g ∈ G(R0

+). Then there is a unique point of K at a minimum transversal
from a given point z ∈ L.
Proof. The existence of a point of K at a minimum transversal from z is
guaranteed by Proposition 14. Only the uniqueness needs to be established.
Assume as ussual that z is the origin, and let x and y be two points of
K at a minimum transversal ρ > 0 from 0. Since K is convex we have
2−1(x+ y) ∈ K and thus

ρ ≤ ‖2−1(x+ y)‖ ≤ 2−1(‖x‖+ ‖y‖) = ρ(2−1 + 2−1) = ρ;

and thus, ‖2−1(x+y)‖ = ρ and so x/ρ, y/ρ and 2−1(x+y)/ρ all have upper
norm 1. It follows from the strict convexity that x/ρ = y/ρ, hence that
x = y. The proof is complete. �
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As an illustration of the use of compactness in analysis we shall establish
some important properties of finite-dimensional upper transversal normed
spaces, and obtain some characteristic facts of such spaces in terms of com-
pactness. In this sense first is an important fact well known as Riesz’s
lemma in the following form.

Proposition 16. (Riesz, [1918]). Let Y be a closed proper subspace in a
normed space X. Then for every δ ∈ (0, 1) there exists a point xδ ∈ X such
that

ρ(xδ, Y ) := inf
y∈Y
‖xδ − y‖ > δ and ‖xδ‖ = 1.(13)

If Y is a finite dimensional subspace of X, then there exists a unit vector
xδ such that the following equality holds in the form ρ(xδ, Y ) = 1.

We notice that if X three-dimensional Euclidean space and if Y is plane,
then for xδ we can to take unit vector e which is perpendicular on the suspace
Y . Then, from Pythagora’s theorem, for every y ∈ Y the following fact holds

‖e− y‖2 = ‖e‖2 + ‖y‖2 = 1 + ‖y‖2 ≥ 1 > δ.

On the other hand, we notice that, any two n-dimensional upper transver-
sal normed spaces over the same field with a bisection function g ∈ G(R0

+)
are linearly homeomorphic.
Proof of Proposition 16. From the former observations and from the

conditions of this statement, directly it follows that there exists a point
x0 ∈ X\Y such that

ρ(x0, Y ) = inf
y∈Y
‖x0 − y‖ := ρ > 0.

Since always ρ < ρ/δ, thus it follows that there is a point z ∈ Y such that
ρ ≤ ‖x0 − z‖ < ρ/δ. If choice xδ = (x0 − z)/‖x0 − z‖, then ‖xδ‖ = 1 and
for y ∈ Y we have

‖xδ − y‖ =
‖x0 − (z + y‖x0 − z‖)‖

‖x0 − z‖
≥ ρ

‖x0 − z‖
> δ,

i.e. (13) holds. For second part of this statement, if Y is finite dimensional,
then the subspace Y0 = Lin(x0, Y ) is finite dimensional. Applying the first
part of statement on Y0, then for every n ∈ N there exists unit vector xn ∈ Y0

such that ρ(xn, Y ) ≥ 1/n.
The sequence {xn}n∈N is a sequence of unit vectors in Y0 has a convergent

subsequence of the form {xp(n)}n∈N with x̃ as limit. Then x̃ is unit vector
and for every y ∈ Y we obtain 1− 1/p(n) ≤ ‖xp(n) − y‖. Thus as n→∞ it
follows 1 ≤ ‖x̃ − y‖. Since ‖x̃ − y‖ ≥ 1 for every y ∈ Y directly we obtain
ρ(x̃, Y ) ≥ 1.

On the other hand, 0 in Y implies that the following inequality in the
form ρ(x̃, Y ) ≤ ‖x̃ − 0‖ = 1. Hence, in final, ρ(x̃, Y ) = 1. The proof is
complete.
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Proposition 17. (Riesz, [1918]). A normed space X is finite dimensional
if and only if every its bounded closed subset is compact.

A proof of this statement may be found in: R i e s z [1918]. Also, the
proof of Proposition 16 is essentially due to F. Riesz in 1918. The preceding
result is an important characterization of finite dimensional normed spaces.
Three main theorems on upper normed spaces. The initial com-

bination of algebraic and transversal structures opens up the possibility of
studying linear transformations of one upper transversal normed space into
another which have the additional property of being continuous.

Most of our work in this chapter of the paper centers around three fun-
damental theorems relating to continuous linear transformations: Form of
Hahn-Banach theorem, Form of open mapping theorem, and Form of uni-
form boundedness theorem (=Form of Banach - Steinhaus theorem).

The form of Hahn-Banach theorem guarantees that a complete upper
transversal normed space is richly supplied with continuous linear function-
als, and makes possible an adequate theory of conjugate transversal upper
normed spaces.

We turn now to the question of the existence of non-zero bounded linear
functionals on an arbitrary non-zero upper transversal normed space. Such
functionals obviously exist when the space is one-dimensional, and every
non-zero linear space has one-dimensional linear subspaces. Thus, if we can
show that any bounded linear functional on a non-zero linear subspace of an
upper transversal normed space can be extended to a bounded linear func-
tional defined on the whole space, then it will follow that non-zero bounded
linear functionals exist in abundance.

Further, by the “Axiom of Infinte Choice” we mean a statement in the
following form as: Given any set S, there exist at least countable choice
functions or there exist at least finite choice functions.

In general, equivalents of the Axiom of Infinite Choice appear frequently
in almost all branches of mathematics in a large variety of different forms.

In this part of the paper we present an equivalent form of the Axiom of
Infinite Choice which is expressible in the following sense.

Lemma A. (Lemma of Infinite Maximality, Tasković [2012]). Let P be an
inductive partially ordered set with ordering 4, then P has at least countable
maximal elements or P has at least finite maximal elements.

First, in this part we derive a general extension statement, called the
Form of Hahn-Banach theorem, for linear functionals on an arbitrary linear
space.

Theorem 2. (Form of Hahn-Banach theorem).3 Let X be a linear space
over R, S a subspace in X, and f : X → R be an upper transversal norm.

3S t e f a n B a n a c h (1892-1945) – Polish mathematician, born in Cracovieu, great
thinker, one of the greatest mathematical talents of the 20th century considered by many
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If h is a linear functional on S such that

h(s) ≤ f(s) for every s ∈ S,
then there exist at least countable or finite functionals Hk : X → R such that
the following inequality and equality hold in the form as

Hk(x) ≤ f(x) for all x ∈ X
and

Hk(s) = h(s) for all s ∈ S.
A proof of a variant of this statement can be as the proof in further next of

Theorem 6. Theorem 2 is only a special case of Theorem 6. In this sense a direct
application of this statement is in the following.

Proof of Theorem 2. Applying Theorem 6 (to put that the functional f :
X → R, de facto, f(x) = ‖x‖, i.e., that f is an upper transversal norm) we obtain
directly Theorem 2, with all adequate facts.

We notice that the form of open mapping theorem enables us to give a satisfac-
tory description of the projections on a complete upper transversal normed space,
and has the important closed graph theorem as one of its consequences. Otherwise,
the open mapping theorem was obtained by S t e f a n B a n a c h in 1929 for the
case of classical complete normed spaces, till a general form of this statement was
obtained by J u l i u s z S c h a u d e r in 1930.

Theorem 3. (Form of open mapping theorem). Let X and Y be two com-
plete upper transversal normed spaces with a bisection function g ∈ G(R0

+).
If A is a bounded linear operator of X onto Y , then A is an open mapping,
i.e., A(G) is an open subset in Y for every open subset G in X.

Most of the applications of the open mapping theorem depend more di-
rectly on the following special case, which we state separately for the sake
of emphasis.

as founder of the modern functional analysis. Mathematics school of Stefan Banach was
famous and made many well-known mathematicians such as: Mazur, Ulam, Orlicz.

Banach with Mazur and Ulam – that was table number one in “Scottish tavern” in
Ljvov. Meetings were held there in the time when it was hard to hold for longer or to
drink more than Banach. A meeting, lasting 17 hours is famous, in which an impor-
tant statement concerning Banach’s space was proven, but nobody wrote it down nor
reproduced since. Learning from this, Banach’s wife gave one big notebook to the bar-
man. This notebook, known as “The Scottish Book”, consists of around 150 problems. It
was printed in the USA without any changes. For more details see the paper of Hugo
Steinhaus: Souvenir de Stefan Banach, Colloq. Math., 1 (1948), 74–80.

Among many works, among which cannot be decided which one is more important than
the others in the creation of Banach, we decided on the paper on contraction principle
(Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales,
Thése de doctorat, Fund. Math. 3 (1922), 133–181), that illustrates best the meaning,
essence and far-reaching inspiration of Banach’s ideas.
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Proposition 18. A one-to-one continuous linear mapping of a complete
upper transversal normed space E onto a complete upper transversal normed
space F over the same field and a bisection function g ∈ G(R0

+) is a linear
homeomorphism of E onto F .

We notice, in particular of this statement, if a one-to-one linear mapping
T of a complete upper transversal normed space onto itself is continuous,
then its inverse T−1 is automatically continuous.

We now turn to the closed form of graph theorem. Let X and Y be
complete upper transversal normed spaces with a bisection function g ∈
G(R0

+). If we define an upper transverse on the product X × Y by

ρ
[
(x1, y1), (x2, y2)

]
= max

{
‖x1 − x2‖, ‖y1 − y2‖

}
,

then the resulting topology is easily seen to be the same as the product
topology, and convergence with respect to this upper transverse is equivalent
to coordinatewise convergence. Now let A be a linear operator of X into Y .
We recall that the graph of A is that subset of X × Y which consists of all
ordered pairs of the form (x,A(x)).

Proposition 19. (Form of Closed Graph Theorem). If X and Y are com-
plete upper transversal normed spaces with a bisection function g ∈ G(R0

+),
and if A is a linear operator of X into Y , then A is continuous if and only
if its graph is closed.

The proof of this statement is a totally analogy with the classical proof of
the Closed Graph Theorem for the case of Banach spaces. Thus the proof
of this statement we omit.

The techniques used in the preceding applications of well known Baire’s
theorem are typical of those used in classical applications. From the point
of view of functional analysis, the importance of Baire’s theorem derives
from the fact that it is the basis of the proofs of two fundamental principles
of functional analysis: the principle of uniform boundedness and the open
mapping theorem. In this sense we have the following result.

In further, let B(X,Y ) be denoted the set of all bounded linear transfor-
mations of an upper transversal normed space X into an upper transversal
normed space Y .

Theorem 4. (Form of Banach-Steinhaus theorem). Let J be an index set,
X and Y be upper transversal normed spaces with a bisection function g ∈
G(R0

+), X be an upper complete space and Aj ∈ B(X,Y ) for every j ∈ J .
Then supj∈J ‖Ajx‖ <∞ for every x ∈ X if and only if supj∈J ‖Aj‖ <∞.

This statement in the case for a Banach space X and for a normed space Y is
well known as the principle of uniform boundedness. This principle first time in
1922 (for bounded linear functionals) is proved by H a h n, afterwards in 1923 (for
continuous linear mappings of Banach spaces) is proved by H i l d e b r a n d t, and
also in 1927 (in a general form) are proved B a n a c h and S t e i n h a u s.
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This case of statement is often called the B a n a c h - S t e i n h a u s
theorem, and it has several significiant applications to analysis. See, for
example, Z y g m u n d [1959, vol. 1, pp. 165-168].

History of the Theorem of Uniform Boundedness. In 1927, S t e f a n
B a n a c h (1892-1945) and H u g o S t e i n h a u s (1887-1972) – using an idea
of S t a n i s l a w S a k s (1897-1942) – discovered that the uniform boundedness
theorem could be proved by an application of a theorem which R e n é - L o u i s
B a i r e (1874-1932) has proved in 1899; he had shown that in Rn the intersection
of a countable family of dense open subsets is itself dense. This implies that if

f : Rn → R
is a lower semicontinuous function, then any nonempty open subset U of Rn con-
tains a nonempty open subset V such that the following inequality holds in the
form as

sup
x∈V

f(x) <∞.

In this sense, these results and their proofs immediately generalize when Rn is
replaced by an arbitrary complete metric space.
Extensions of Hahn-Banach theorem. We start with a definition

on linear space X. Let A ⊂ X be a set. We say that A is Q-radial at a
point a ∈ A iff for every y ∈ X (y 6= 0) there exists an ε = ε(y) > 0 such
that a+ λy ∈ A for every λ ∈ Q ∩ (0, ε). Also, if λx+ (1− λ)y ∈ A for all
x, y ∈ A and arbitrary λ ∈ Q∩ [0, 1], then we say that A is a Q-convex set.
Lemma 1. (Tasković, [1993]). Let X be a linear space, let D ⊂ X be a set
Q-convex and Q-radial at a point x0 ∈ D, and let L ⊂ X be a linear space
(over Q) such that x0 ∈ L. Let for the function f : D → R there exists
g : (F (D))2 → R such that

f(λx+ (1− λ)y) ≤ max
{
f(x), f(y), g

(
f(x), f(y)

)}4(14)

for all x, y ∈ D and for every λ ∈ Q ∩ [0, 1]. If z /∈ L, if Z = Lin(L ∪ {z}),
and if h : L→ R is a linear functional such that

h(x) ≤ f(x) for every x ∈ D ∩ L,(15)

4General convex functions. In an earlier paper (T a s k o v i ć: Math. Japonica, 37
(1992), 367–372), introduced the notion of general convex functions. A function f : D →
R, where R denotes the real line and D is a convex subset of Rn, is said to be general
convex iff there is a function ψ : (f(D))2 → R such that

f(λx+ (1− λ)y) 6 max
{
f(x), f(y), ψ

(
f(x), f(y)

)}
(Max)

for all x, y ∈ D and for arbitrary λ ∈ [0, 1]. We notice that the set of all convex and quasi
convex functions can be a proper subset of the set of all general convex functions. We
notice that the upper transversal norm x 7→ ‖x‖ is a general convex function. The proof
is simple.

Historical facts. The recognition of convex functions as a class of functions to be
studied is generally traced to J e n s e n, but as is usually the case, earlier work can be
cited that anticipated what was to come. H ö l d e r proved that if f ′′(x) > 0, then f
satisfied what later came to be known as Jensen’s inequality. S t o l z proved that if f is
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then there exists a linear functional H : Z → R such that the following
inequality holds in the form as

H(x) ≤ f(x) for every x ∈ D ∩ Z(16)

as and, H|L = h, i.e., there exists an extension of linear functional on Z
with a subspace L.

Proof. For all x, y ∈ L and for all λ, µ ∈ Q ∩ (0,∞) such that x + µz ∈ D
and y − λz ∈ D we obtain from (14) and (15) the following inequalities in
the form as

λ

λ+ µ
h(x) +

µ

λ+ µ
h(y) = h

(
λ

λ+ µ
x+

µ

λ+ µ
y

)
≤

≤ f
(

λ

λ+ µ
x+

µ

λ+ µ
y

)
= f

(
λ

λ+ µ
(x+ µz) +

µ

λ+ µ
(y − λz)

)
≤

≤ max
{
f(x+ µz), f(y − λz), g

(
f(x+ µz), f(y − λz)

)}
;

and thus, over directly calculation, we obtain the following correspondent
inequality of the form as

h(x)− f(x+ µz)

µ
≤ 1

λ

[
λ+ µ

µ
max {f(x+ µz), f(y − λz),

g
(
f(x+ µz), f(y − λz)

)}
− h(y)− λ

µ
f(x+ µz)

]
:= R;

and defined U = {(x, µ) ∈ L × Q : µ > 0, x + µz ∈ D} and V = {(y, λ) ∈
L × Q : λ > 0, y − λz ∈ D} from the preceding inequality we obtain the
following inequality in the form as in the next

N :=
h(x)− f(x+ µz)

µ
≤ inf

V
R,(17)

which means that α := supU N ≤ supU infV R := β.
Since D is Q-radial at x0, we have (x0, µ) ∈ U for µ ∈ Q ∩ (0, ε(z)) and

(x0, λ) ∈ V for λ ∈ Q ∩ (0, ε(−z)). Consequently U 6= ∅ and V 6= ∅.
Observe also that α ≤ β implies that −∞ < α ≤ β < +∞. In particular
[α, β] 6= ∅.

Choose any c ∈ [α, β]. Every t ∈ Z may be uniquely written as t = x+λz,
where x ∈ L and λ ∈ Q. For such a t ∈ Z define H(t) = h(x) − cλ. It is
easily seen that H : Z → R is a linear functional and that H|L = h. Now

continuous on [a, b] and satisfies:

f
(x+ y

2

)
≤ f(x) + f(y)

2
,(Je)

then f has left and right derivatives at each point of (a, b). H a d a m a r d obtained a
basic integral inequality for functions having an increasing derivative on [a, b]. J e n s e n
used (Je) to define convex functions and gave the first in a long series of results which
together with (Je) imply the continuity of f .
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take an arbitrary t ∈ D ∩ Z which may be represented in form t = x + λz.
Consider three cases:

1) If λ = 0, then t = x; and by inequality (15) we obtain H(t) = h(x) ≤
f(x) = f(t). Consequently this fact we have that inequality (16) holds.

2) If λ > 0, then since t ∈ D we have (x, λ) ∈ U . Since c ≥ α, this
inequality implies h(x) − f(x + λz) ≤ cλ, i.e., the following want fact (16)
holds in the form as

H(t) = h(x)− cλ ≤ f(x+ λz) = f(t).

3) If λ < 0, then since t ∈ D we have (x,−λ) ∈ V . Since c ≤ β, this
inequality implies that the following inequality holds in the form as

−cλ ≤ −λ+ µ

µ
max

{
f(x+ µz), f(x+ λz), g

(
f(x+ µz), f(x+ λz)

)}
−

−h(x) +
λ

µ
f(x+ µz),

and thus, in the context of fact since is defined functional H(t), directly for
µ = λ we obtain the following want fact (16) in the form as

H(t) = h(x)− cλ ≤ f(x+ λz) = f(t),

i.e., the inequality (16) holds in this case, too. Now, together with all the
preceding facts, the proof is complete. �

As an immediate application of Lemma 1 hence we derive the rational
version of a form of the Hahn-Banach theorem in the following form as.

Theorem 5. (Rational version extension). Let X be a real linear space, let
D ⊂ X be a set Q-convex and Q-radial at a point x0 ∈ D, and Let L ⊂ X
be a linear space (over Q) such that x0 ∈ L. If the function f : D → R
satisfying (14) and if h : L → R is a linear functional such that (15), then
there exist at least countable or finite linear functionals Hk : X → R such
that

Hk(x) ≤ f(x) for all x ∈ D,
as and, Hk|L = h, i.e., there exist at least countable or finite extensions of
linear functionals on X with a subspace L.

With regard to the preceding statements extension an immediately general
result it follows directly in the following form as.

Theorem 6. (Tasković, [1993]). Let C be a convex open set in upper
transversal normed space X, let D be a nontrivial subspace such that D ∩C
is a nonempty set, and let f : C → R be a general convex function. If
h : D → R is an affine mapping such that

h(x) ≤ f(x) for every x ∈ D ∩ C,
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then there exist at least countable or finite affine extensions Hk : X → R of
the functional h such that the following inequality holds in the form as

Hk(x) ≤ f(x) for every x ∈ D.

Proof of Theorem 5. Let R be the family of all couples (Y,A), where Y
is a linear space (over Q), L ⊂ Y ⊂ X, and A : Y → R is a linear functional
such that A|L = h and

A(x) ≤ f(x) for all x ∈ D ∩ Y,(18)

where (L, h) ∈ R, so R is a nonempty family. We introduce the order in R in
the usual manner: (Y1, A1), (Y2, A2) ∈ R we agree that (Y1, A1) 4 (Y2, A2)
if Y1 ⊂ Y2 and A2|Y1 = A1. If Z ⊂ R is any chain, then put

G =
⋃

(Y,A)∈Z

Y,

and define B : G → R putting B(y) = A(y) if y ∈ Y and (Y,A) ∈ Z. The
couple (G,B) is an upper bound of Z ∈ R. In fact, if x, y ∈ G and α ∈ Q,
then there exists an (Y,A) ∈ Z such that x, y ∈ Y . Then also x+y ∈ Y ⊂ G
and αx ∈ Y ⊂ G, which shows that G is a linear space (over Q). Since
L ⊂ Y ⊂ X for all Y such that (Y,A) ∈ Z, also L ⊂ G =

⋃
(Y,A)∈Z Y ⊂ X.

Similarly it is shown that B is a linear functional fufilling (18) and such that
B|L = h.

By Lemma of Infinite Maximality in R there exist at least countable or
finite maximal elements (Ek, Hk). The only thing we need to show is that
Ek = X. Supposing the contrary, let z ∈ X\Ek. By Lemma 1 there exists
a linear functional H∗k : Lin(Ek ∪ {z})→ R such that H∗k |Ek = Hk, whence
H∗k |L = Hk|L = h, and

H∗k(x) ≤ f(x) for every x ∈ D ∩ Lin(Ek ∪ {z}),
and consequently this (Lin(Ek ∪ {z}), H∗k) ∈ R, and clearly (Ek, Hk) ≺
(Lin(Ek ∪ {z}), H∗k), which contradicts maximality of (Ek, Hk). Conse-
quently we must have Ek = X. The proof is complete.

Some annotations. We notice the following interesting fact. Let X be a linear
space and let D ⊂ X be a set which is symmetric with respect to 0 (i.e., −D = D),
and let f : D → R be an even function:

f(−x) = f(x) for all x ∈ D,(19)

and further, let L ⊂ X be a linear space (over Q), and let h : L → R be a linear
functional fulfilling (15), then the following inequality holds in the form as

|h(x)‖ ≤ f(x) for all x ∈ D ∩ L.(20)

Indeed, take an arbitrary x ∈ D ∩ L. We have by (15) and (19) that h(−x) ≤
f(−x) = f(x), whence h(x) = −h(−x) ≥ −f(x). This together with (15) yields
−f(x) ≤ h(x) ≤ f(x), which is equivalent to (20).
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With regard to preceding facts, in the special case, if D ⊂ Rn and if the function
f : D → R satisfying the following inequality in the form as

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ D and for arbitrary λ ∈ Q∩ [0, 1] the preceding statement are consid-
ered M. E. K u c z m a [1970] and E. B e r z [1975].

In connection with this in the book: K o l m o g o r o v - F o m i n [1973] is
proved a statement of the form of Hahn - Banach theorem on linear spaces, where
f : D → R (for D ⊂ Rn) is a convex and homogeneous function.

In the preface of the second edition this book in 1976 K o l m o g o r o v is to set
down in writing that is to make a essential change with introduction an extension
of Hahn-Banach theorem and further connection with problems of extremal tasks.
A very similar statement of this may be found in: R o b e r t s - V a r b e r g [1973].

Also, We s t o n [1960], from Bourbaki suggestion, is proved similar statement
with an application of Mazur’s separation theorem for convex sets and hyperplanes.

On the other hand, K a k u t a n i in 1938 is given a first proof of new proofs of
Hahn-Banach theorem via Markoff-Kakutani theorem of fixed point (see: Theorem
4.24). For further hystorical facts see the book of History of Functional Analysis
in 1981 by D i e u d o n n é. Also see: K ö n i g [1970] and S i m o n s [1985].

Otherwise, from the preceding rational version extension of a form of Hahn-
Banach theorem we obtain, among the rest, a general version of this statement in
a profitable form for further applications, see: T a s k o v i ć [2005].

Theorem 7. (General Hahn-Banach theorem). Let X be a real linear
space, let D ⊂ X be a subspace, and let f : X → R be a general convex
function such that

h(x) ≤ f(x) for every x ∈ D,(21)

where h : D → R is a linear functional. Then there exist at least countable
or finite linear functionals Hk : X → R such that the following inequality
holds in the form as

Hk(x) ≤ f(x) for every x ∈ X,(22)

as and, Hk|D = h, i.e., there exist at least countable or finite extensions of
a linear functional on X with a subspace D.

We notice that the upper transversal norm x 7→ ||x|| is a general convex function.
The proof is simple. See chapter 4 of this book!

Lemma 2. Let X be a real linear space and x0 ∈ X. If f : X → R is
a general convex with tent function, then there exists at least countable or
finite linear functionals Hk : X → R such that

Hk(x0) = f(x0) and Hk(x) ≤ f(x) for all x ∈ X.
Open problem 1. Independent of the preceding General Hahn-Banach
theorem to make a new proof of Lemma 2 with an application of Markoff-
Kakutani theorem of fixed point (Theorem 4.24)!? As a pattern for this
problem see: H i r a n o - K o m i y a - T a k a h a s h i [1982].
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Theorem 8. (Separation of concavity and general convexity). Let E be a
real linear space, let D ⊂ E be a nonempty convex subset, and let f : E → R
be a general convex with tent function such that

k(x) ≤ f(x) for every x ∈ D,
where k : D → R is a concave functional. Then there exist at least countable
or finite linear functionals Hk : E → R such that

k(x) ≤ Hk(x) for every x ∈ D,
and

Hk(y) ≤ f(y) for every y ∈ E.
A brief proof of this statement may by found in Tasković [2005]. For the

proof of this statement the preceding result of Lemma 3 is essential.
This statement means de facto that an arbitrary concave function can

be separated with a linear functional satisfying (18) from a general convex
function.

In connection with this we notice that H i r a n o - K o m i y a - T a k a h a s h i
[1982] are proved that a concave function (under correspondent conditions) can be
separated from an additive and homogeneous function, i.e., from sublinear func-
tion. Their proof is founded on Markoff-Kakutani theorem of fixed point (Theorem
4.24).

As an immediate consequence of the preceding result of Theorem 4 we
obtain in a practical way the following version of Hahn-Banach theorem,
see: Tasković [2005].

Proposition 20. (Form of Hahn-Banach theorem). Let E be a real linear
space, let L ⊂ E be a linear subspace, and let f : E → R be a general convex
with tent function such that

h(x) ≤ f(x) for all x ∈ L,
where h : L → R is a linear functional. Then there exist at least countable
or finite linear functionals Hk : E → R such that

Hk(x) = h(x) for all x ∈ L
and

Hk(y) ≤ f(y) for all y ∈ E.
Proof. From Theorem 6 there exists Hk ∈ E∗ satisfying Hk(x) ≥ h(x) for
all x ∈ L and Hk(y) ≤ f(y) for all y ∈ E. Since L is a linear subspace of
E∗, we obtain Hk(x) = h(x) for all x ∈ L. The proof is complete. �

Let E be a linear functional and let f : E → R be a general convex
with tent function. For two nonempty subsets A and B of E, we consider a
number

f(A,B) := inf
{
f(x− y) : x ∈ A, y ∈ B

}
.
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As a directly consequence of the preceding facts and results we obtain the
following statement.

Further annotations. From the proof of this statement in: T a s k o v i ć [2001]
we have that the proof is founded on separated of a concave function from a general
convex function (see: Theorem 8).

On the other hand, an extension of Hahn-Banach theorem which is very similar
to the former statement (for convex and concave envelopes) has been given by
K o t a r s k i [1987].

This result is a consequence of fact on separated a concave function from a
sublinear function, see: H i r a n o, K o m i y a and Ta k a h a s h i [1982].

Otherwise, in special case, if D = L (a subspace in X), k = H0 : L → R is
a linear functional, and if f = p : X → R is a sublinear functional, then from
Theorem 7 directly it follows a form of Hahn-Banach theorem. Indeed, then there
exists a linear functional H such that

H0(x) ≤ H(x) for every x ∈ L

and that is H(x) ≤ p(x) for every x ∈ L. Since L is a linear subspace we obtain
H0(x) = H(x) for all x ∈ L. Thus, H is an extension of the functional H0.

In connection with the preceding facts, B i t t n e r [1974] is considered a sub-
linearization of the functional P : X → R defined in the following form as

P (x) = inf
λ>0

1

λ

(
sup
α∈I

pα(λx)

)
for x ∈ X,

where pα : D → R (α ∈ I) are convex functionals. Evidently, from definition, we
obtain P (λx) = λP (x) for every x ∈ X and for arbitrary λ ≥ 0. Also, because con-
vexity of correspondence functionals, immediate it follows that P (x) is an additive
functional.

From these facts and from further phenomens of convex (concave) envelopes we
can to come to yet some results in the preceding context. Also see: K o t k o w s k i -
M a g d z i a r z - Wa s z a k [1977].

In this part we use a form of Hahn-Banach theorem to establish the existence
of non-zero bounded linear functionals on an arbitrary transversal upper normed
linear space. The Form of Hahn - Banach theorem is concerned with real linear
spaces, so our first task is to extend it to complex linear spaces. In the case of the
Hahn-Banach theorem an extension to complex linear spaces was obtained in 1938
by B o h n e n b l u s t and S o b c z y k and, independently, by S o u k h o m l i -
n o f f.

In the context of the preceding facts, we considered the following extension
of Theorem 7 on complex linear spaces, in the following form as.

Theorem 9. Let X be a complex linear space, let Y ⊂ X be a subspace, and
let f : X → R be a general convex homogeneous function such that

|h(y)| ≤ f(y) for every y ∈ Y,
where h : Y → C is a linear functional. Then there exist at least countable
or finite linear functionals Hk : X → C such that the following inequality



Milan R. Tasković 131

holds in the form as

|Hk(x)| ≤ f(x) for every x ∈ X,
as and, Hk(y) = h(y) for all y ∈ Y , i.e., there exist at least countable or
finite extensions of linear functionals on X with a subspace Y .

Inclosing annotations. We notice that Hahn-Banach theorem is an essential
and deep fact of entire mathematics. This extension theorem has many applications
and without Hahn-Banach theorem functional analysis and mathematics general
to looked strange and by all different.

We give only some of applications of Hahn-Banach theorem: adding of normed
(upper) space and normed algebra, Schauder’s theorem on compact operators,
Riesz’s theorem on representation of space C∗[a, b], Krein’s theorem on exten-
sion of positive linear functionals, general Banach’s integral - limes, difficulty and
readily measure problem, Nagy’s theorem on uniform boundedness group of linear
operators on Hilbert space, separated of convex sets: and functions, as and many
other facts of nonlinear functional annalysis.

Otherwise, Hahn-Banach theorem has an essential role for the proof of fact
that there exists a Green’s function for Laplace equations as and for other bound-
ary value problems (see: G a r a b e d i a n [1950], G a r a b e d i a n - S h i f f m a n
[1954], L a x [1952], and M i r a n d a [1947]).

Also, in the physics, via Hahn-Banach theorem it follows that there exists a
nontrivial quantum field. In this sense in further see Figure 4.

Open problem 2. Does general Hahn-Banach theorem (Theorem 7) is best exten-
sion in the sense as “maximal extension” of the Hahn - Banach theorem? Precisely,
can be we to change the general convex function f(x) in (21) and (22) with some
function in a widening class of functions such that to remain that holds Theorem
7?! Does this is posibly?

With regard to the preceding facts we notice that the following problem is well-
known: If p : X → R (X is a real linear space) is a sublinear functional (i.e.,
p(x + y) ≤ p(x) + p(y), p(λx) = λp(x) for λ ≥ 0 and x ∈ X), does there exists a
real linear functional H : X → R such that

H(x) < p(x) for every x 6= 0?!

A necessary condition for this problem is fact that p(x) + p(−x) 6= 0 for every
x 6= 0. In this sense, A r o n s z a j n [1935] is proved that if X is a separable space
via norm defined by ‖x‖ = p(x) + p(−x), then this condition is and sufficient.
B o n s a l l [1954] is proved that the condition of separability can not to omit!
Axiom of Infinite Choice and Extension Theorems. In this sense,

the first development occurred on the frontier between algebra, analysis,
and sets theory: Stefan Banach’s researches at Lwów on functional analysis.
In 1929 Banach established a fundamental result later known as the Hahn-
Banach theorem in the following form: Let p be a real-valued functional on
a complete normed vector space V over R and suppose that for every x and
y in V , p(x + y) ≤ p(x) + p(y) and that p(λx) = λp(x) for all positive λ;
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Fig. 4

To obtain this result, Banach relied on the Well-Ordering theorem. Much later,
the Hahn-Banach theorem was deduced from the Boolean Prime Ideal theorem and
shown to be equivalent to the following sttement: On every Boolean algebra there
exists an additive real-valued measure μ with μ(0) = 0 and μ(1) = 1.

On the prehistory of the Hahn-Banach theorem, especially as it concerns Eduard
Helly and Hans Hahn, see: Hochstadt [1980]. Also see: Łoś and Ryll-Nardzewski
[1951], and Luxemburg [1969].

From the preceding facts our general Hahn-Banach theorem is only a conse-
quence of Axiom of Infinite Choice. In the next, we give a variant of Theorem 7
which is an equivalent of Axiom of Infinite Choice.

Theorem 10. (Tasković, [2005]). Let M be a subspace of real linear space E and let
S ⊂ E be a subset. If f : E → R is a general convex functional such that dominated
(or f -dominated) over linear functional h : M →R, i.e., such that

h(x)� f (x) for every x ∈ M,

then the (convex) set G of all f -dominated linear extensions Hk : E →R have at least
countable or finite elements gk such that gk is an extreme point of G and gk is Sk-
maximal in G, i.e., for any ξ ∈G with gk(s)� ξ (s) for every s∈ S, and gk(s) = ξ (s)
for every s ∈ S.

Figure 4

then there is an additive functional f such that

−p(−x) ≤ f(x) ≤ p(x) for every x ∈ V.

To obtain this result, Banach relied on the Well-Ordering theorem. Much
later, the Hahn-Banach theorem was deduced from the Boolean Prime Ideal
theorem and shown to be equivalent to the following sttement: On every
Boolean algebra there exists an additive real-valued measure µ with µ(0) = 0
and µ(1) = 1.

On the prehistory of the Hahn-Banach theorem, especially as it concerns
Eduard Helly and Hans Hahn, see: Hochstadt [1980]. Also see: Łoś and
Ryll-Nardzewski [1951], and Luxemburg [1969].

From the preceding facts our general Hahn-Banach theorem is only a
consequence of Axiom of Infinite Choice. In the next, we give a variant of
Theorem 7 which is an equivalent of Axiom of Infinite Choice.

Theorem 10. (Tasković, [2005]). Let M be a subspace of real linear space
E and let S ⊂ E be a subset. If f : E → R is a general convex functional
such that dominated (or f -dominated) over linear functional h : M → R,
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i.e., such that

h(x) ≤ f(x) for every x ∈M,

then the (convex) set G of all f -dominated linear extensions Hk : E → R
have at least countable or finite elements gk such that gk is an extreme point
of G and gk is Sk-maximal in G, i.e., for any ξ ∈ G with gk(s) ≤ ξ(s) for
every s ∈ S, and gk(s) = ξ(s) for every s ∈ S.

We notice that the special cases of this statement, when the functional f : E → R
is sublinear, are proved in different variants: B o n s a l l [1954], A n d e n a e s
[1970], and L e m b c k e [1979].
Proof of Theorem 10 If Sk ⊂M , then the general Hahn-Banach theo-

rem is applicable, so we assume thet Sk\M is nonempty. Let M(Sk) denote
the subspace of E sppaned by M and Sk. We now extend h to M(Sk).

Repetition, at the same condition, the procedure in last part of the proof
of Theorem 5 we obtain that there exist at least countable or finite exten-
sions linear functional Hk (Hk|M = h, Hk ≤ f) such that it a Sk-maximal
element.

Let F denotes the set of all linear functionals Hk defined on E which are
extensions of functional h such that Hk ≤ f .

If we defined an ordereing on the set F such that Hk 4Sk
G if and only

if Hk(x) ≤ G(x) for every x ∈ Sk, then the preceding fact has a form in
the following sense that F has at least one element which is maximal via
ordering 4Sk

. If M ′ ⊃M is a subspace in E, let FM ′ = {Hk|M ′ : Hk ∈ F}.
Evidently FM ′ is a convex set and there exist Sk-maximal extensions Hk of
h such that Hk|M(Sk) is an extremal point in the set FM(Sk).

Let R be a family of pairs (h′,M ′) such that: (h,M) 4 (h′,M ′), h′ ≤
f |M ′, h′ is maximal on M ′∩Sk, M ′ is lineal of M and M ′∩Sk, and h′ is an
extremal point in FM ′ . If h0 is an extension of M0 to M1 defined the linear
functional h1 on M1 with

h1(x+ λx1) = h0(x) + λh1(x)

for every x ∈ M0 and for arbitrary λ ∈ R, where h1(x1) is a value of
functional h1 in the point x1 in the following form as

h1(x1) = inf
{
h0(x) + f(x1 − x) : x ∈M

}
.

Hence the preceding properties of R hold. To verify only last property.
In this sense, assume that h1 = λg + (1 − λ)r (0 < λ < 1), where g and
r are linear functionals on M1, such that g|M = r|M = h, g ≤ f |M1, and
r ≤ f |M1. On the other hand, h1|M0 = g|M0 = r|M0, because (h0,M0)
satisfy the last condition for the family R.

Hence, g(x1) ≤ h1(x1) and r(x1) ≤ h1(x1). Since h1(x1) = λg(x1) +
(1 − λ)r(x1) it follows that h1(x1) = g(x1) = r(x1), which means that is
h1 = g = r1, i.e., h1 is an extremal point of FM1 . The proof is complete.
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Annotations. We notice that when applied to Choquet theory the preceding
statement will provide extreme boundary measures.

We make some observations which will become useful later. The setting is the
same as in Theorem 10 We define f̃ : E → R by

f̃(x) = inf
{
h(y) + f(x− y) : y ∈M

}
,

hence if S = {x0}, then for any S-maximal extension H ∈ F we have H(x0) =

f̃(x0).
Also, for each x0 ∈ S there exists a S-maximal extension H0 ∈ F such that

H0(x0) = f̃(x0) and such that H0|M(S) is extreme point in FM(S).
A notrivial application. We now show our results can be used to develop

some fundamental facts in Choquet theory.
Let K be a nonempty compact convex subset of a locally convex Hausdorff space

over the reals. As usual C(K) denotes the class of continuous functions on K. An
element µ ∈ C(K)∗, with µ(1) = 1 = ‖µ‖, is called a boundry measure if

µ

(
K\
{
x : sup(µ(f) : µ ∈M+

x ) = f(x)
})

= 0

for every f ∈ C(K), where M+
x is a subset of C(K)∗ consisting of the extensions

µ of a positive linear functional on the set

A =
{
f ∈ C(K) : f is an affine function

}
.

In the context of all the preceding facts in Choquet theory the following fact
holds that: for each x ∈ K there exists a boundary measure µ ∈M+

x , see: C h o -
q u e t [1953].

The Figure 5 give all relations of the preceding statements in this part of
the book.

Theorem 11. (Sandwich Theorem). Real functions f, g : I → R (I ⊂ R is
an interval) satisfy (R) for all x, y ∈ I and arbitrary λ ∈ [0, 1] if and only if
there exists a general convex function h : I → R for a continuous increasing
function S : h(I)2 → R such that

f(x) ≤ h(x) ≤ g(x) for every x ∈ I.(R’)

Arguing as in the proof of Theorem 11, by Tasković [2001], we can get
however the following result.

Theorem 12. (Tasković, [2001]). Real functions f, g : D → R (D is a
convex subset of a vector space) satisfy for a continuous increasing function
G : g(D)n → R the following inequality

f




n∑

j=1

λjxj


 ≤ max

{
g(x1), . . . , g(xn), G

(
g(x1), . . . , g(xn)

)}
(23)

for all n ∈ N, for all x1, . . . , xn ∈ D and for reals λ1, . . . , λn ∈ [0, 1] with
the property λ1 + · · · + λn = 1 if and only if there exists a general convex



Milan R. Tasković 135

1. Transversal upper normed spaces 27

μ
(

K\
{

x : sup(μ( f ) : μ ∈M+
x ) = f (x)

})
= 0

for every f ∈ C(K), where M+
x is a subset of C(K)∗ consisting of the extensions μ of a positive

linear functional on the set

A =
{

f ∈C(K) : f is an affine function
}
.

In the context of all the preceding facts in Choquet theory the following fact holds that: for
each x ∈ K there exists a boundary measure μ ∈M+

x , see: C h o q u e t [1953].

The Figure 5 give all relations of the preceding statements in this part of the
book.

Fig. 5

Theorem 11. (Sandwich Theorem). Real functions f ,g : I →R (I ⊂R is an interval)
satisfy (R) for all x,y ∈ I and arbitrary λ ∈ [0,1] if and only if there exists a general
convex function h : I → R for a continuous increasing function S : h(I) 2 → R such
that

Figure 5

function h : D → R for a continuous increasing function S : h(D)n → R
such that

f(x) ≤ h(x) ≤ g(x) for every x ∈ D.(24)

We notice, that real functions f and g, defined on a convex subset D of an
(n− 1)-dimensional real linear space, satisfy (23) if and only if there exists
a general convex function h : D → R satisfying (24).

We notice that the following special case of Theorem 12 is very construc-
tive in this context. Namely, for the functional inequality of the form as

f(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y)

for given functions f, g : I → R (I ⊂ R is an interval), for all x, y ∈ I, and
for arbitrary λ ∈ [0, 1]. In this sense the following statement is well-known.

Theorem 13. (Baron-Matkowski-Nikodem, [1994]). Real functions f, g :
D → R (D is a convex subset in a linear space) satisfying the following
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inequality in the form as

f




n∑

j=1

λjxj


 ≤

n∑

j=1

λjg(xj)

for all n ∈ N, for all x1, . . . , xn ∈ D and for reals λ1, . . . , λn ∈ [0, 1] with
the property λ1 + · · · + λn = 1 if and only if there exists a convex function
h : D → R such that

f(x) ≤ h(x) ≤ g(x) for every x ∈ D.
This statement are proved B a r o n, M a t k o w s k i and N i k o d e m [1994].

A similar statement may be found in: C h o l e w a [1984]. Also, a result of
M a t k o w s k i [1990] is connected with this.

Otherwise, an interesting illustration of Theorem 11 is well-knownHadamard’s
bilateral inequality. Namely, if f : J → R (J → R is an open interval) is a convex
function and if a < b (a, b ∈ J), then holds the following bilateral inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.(Ha)

This inequalities to demonstrate, adequate to Theorem 11, since in this case is
form of the existing convex function h : J → R. This function, in this case for
f = g and when f is convex by Jensen, has a concrete form. Theorem 11 gave only
fact that this function existing.

For further facts on Hadamard’s bilateral inequality of the form (Ha) see: T a s -
k o v i ć [2001]. For other further facts of this see: C h o l e w a [1984].
Extension of Mazur-Orlicz theorem. Let X be a linear space over

K (:= R or C). The set of all linear mappings h : X → K, in this sec-
tion, denoted by X∗. The following extension of Hahn-Banach theorem is
fundamental.

Theorem 14. (Mazur-Orlicz, [1953]). Let X be a real linear space, p : X →
R is a sublinear functional, J is an arbitrary index set, {xj : j ∈ J} ⊂ X,
and let {cj : j ∈ J} ⊂ R. Then necessary and sufficient that there exists a
linear functional h ∈ X∗ such that

h ≤ p, cj ≤ h(xj) for j ∈ J(HB)

is the following condition: for every finite index set {j(1), . . . , j(n)} ⊂ J
and for arbitrary non-negative numbers {α1, . . . , αn} the following inequality
holds in the form as

n∑

k=1

αkcj(k) ≤ p
(

n∑

k=1

αkxj(k)

)
.(MO)

We notice that there exist many applications of this statement. Otherwise,
the inequality (MO) is well-known as Mazur-Orlicz condition, i.e., as a
criterion for the consistency of the preceding system (HB). The following
result is an extension of the preceding statement.
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Theorem 15. (Tasković, [2005]). Let X be a real linear space and let g :
X → R be a given general convex functional. If J is an index set, {xj : j ∈
J} ⊂ X, and if {cj : j ∈ J} ⊂ R, then the following system in the form as

h ≤ g, cj ≤ h(xj) for j ∈ J(Sh)

has at least one solution h ∈ X∗ if and only if for every finite index set
{j(1), . . . , j(n)} ⊂ J and for arbitrary non-negative numbers {α1, . . . , αn}
the following inequality holds in the form as

n∑

k=1

αkcj(k) ≤ g
(

n∑

k=1

αkxj(k)

)
.(Gg)

We notice that in the special case of this statement if g : X → R is a sublinear
functional (i.e., subadditive and homogeneous), then directly it follows the case of
Mazur-Orlicz characterization of existing extensions of linear functionals.

Also, if g : X → R is a convex and widdening a general convex function, then
from Theorem 15 it follows directly two extensions of Hahn-Banach theorem by
K o l m o g o r o v (for convex functions) and by Ta s k o v i ć (for general convex
functions).

In connection with the preceding we can say that the preceding sttement give
necessary and sufficient conditions for solution an infinite system of inequalities
(Sh) on a conjugate space of a given space.

2. Transversal lower normed spaces

Let X be a linear space over K. The mapping x 7→ ||x|| : X → [a, b]
(or x 7→ ‖x‖ : X → (a, b]) for some 0 ≤ a < b ≤ +∞ is called a lower
transversal seminorm (or lower seminorm) iff: ||x|| ≥ a for every x ∈ X,
||λx|| = |λ| ||x|| for all λ ∈ K and x ∈ X, and if there is a function d :
[a, b]2 → [a, b] such that

||x+ y|| ≥ min
{
||x||, ||y||, d

(
||x||, ||y||

)}
(Nd)

for all x, y ∈ X.
Further, x 7→ ||x|| is called a lower transversal norm (or lower norm)

iff in addition: ||x|| = b if and only if x = 0.
A lower transversal normed space (X, || · ||) over K consists of a linear

space X over K together with a lower transversal norm x 7→ ||x||.
The function d : [a, b]2 → [a, b] in (Nd) is called lower bisection fun-

ction. From (Nd) it follows, by induction, that there is a function d :
[a, b]n → [a, b] such that

||x0 − xn|| ≥

≥ min
{
||x0 − x1||, . . . , ||xn−1 − xn||, d

(
||x0 − x1||, . . . , ||xn−1 − xn||

)}

for all x0, x1, . . . , xn ∈ X and for any fixed integer n ≥ 1.
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It is easy to verify that the lower transversal normed linear space X is
a transversal lower space (see: Tasković [2005]) with respect to the lower
transverse ρ : X ×X → [a, b] defined by

ρ[x, y] = ||x− y|| for all x, y ∈ X;

thus we obtain ρ[x − z, y − z] = ρ[x, y] and ρ[λx, λy] = |λ|ρ[x, y] for all
x, y, z ∈ X and for every scalar λ ∈ K.

In this sense, the sequence {xn}n∈N in (X, || · ||) converges (or lower
converges) to x ∈ X if the sequence {xn}n∈N converges (or lower converges)
in (X, ρ), i.e., if

ρ[xn, x] = ||xn − x|| → b as n→∞.
In this sense, a lower transversal normed space X is said to be lower

complete (or complete) if it is lower complete as a transversal lower space.
We will, in further, denote by D([a, b]) the set of all lower bisection fun-

ctions d : [a, b]2 → [a, b] which are increasing satisfying d(t, t) ≥ t for every
t ∈ [a, b].

We notice that lower transversal norm x 7→ ||x|| is a general concave
function. The proof is simple.

Example 3 (Lower intervally normed space). Let X be a linear space over K and
let J be the set of all nondecreasing, leftcontinuous functions x 7→ Nx : R → [a, b]
for a < b (a, b ∈ R0

+), where inf Nx = a and supNx = b. Then (X, J) is a lower
transversal normed space if: Nx(0) = b for every x ∈ X, Nx = a for x ≤ 0 and
Nx = b for x > 0,

Nλx(σ) = Nx

(
σ

|λ|

)
for every x ∈ X

and for all σ ∈ R and λ 6= 0, and if there is a function d : [a, b]2 → [a, b] for
a, b ∈ R0

+ (a < b) such that the following inequality holds in the forma as

Nx+y(p+ q) ≥ min
{
Nx(p), Ny(q), d

(
Nx(p), Ny(q)

)}

for all x, y ∈ X and for all p, q ≥ 0. For further facts and examples see: T a s k o v i ć[2005].

Example 4 (The space LB(S)). Let S be a nonempty set and let LB(S) be a set
of all lower bounded functions x : S → R. Thus we have that LB(S) ⊂ RS with
the lower transversal norm defined by

||x|| = inf
{
|x(t)| : t ∈ S

}
;

and we denote the resulting lower transversal normed space by LB(S). Then LB(S)
is a lower complete lower transversal normed space from Proposition 33. (A brief
poof of this fact may be found in: T a s k o v i ć[2005]).

If in the preceding definition of trasversal lower normed spaces the con-
dition of homogenity of the form: ‖λx‖ = |λ| ‖x‖ for all λ ∈ K and x ∈ X
is to exchange with the condition of the form: ‖λx‖ = |f(λ)|‖x‖ for all
λ ∈ K, x ∈ X, and a function f : K → K, then we have a transversal
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lower global normed space (X, ‖ · ‖), where x 7→ ‖x‖ is a transversal
lower global norm.

Adequate we obtain a transversal lower global semi-normed space as and
transversal lower global seminorm. On the other hand, in a lower transver-
sal normed space X, with the lower bisection function d ∈ D([a, b]), the
following inequality holds as

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥ ≥ min
{
‖x1‖, . . . , ‖xn‖

}
(25)

for all points x1, . . . , xn ∈ X. (The proof of this inequality by induction may
be found in: T a s k o v i ć[2005].)

Example 5. The linear space Rk of all k-tuples x = (ξ1, ξ2, . . . , ξk) of real numbers
can be made into transversal lower normed linear space in an infinite variety of
ways, as we shall see below. If the transversal lower norm on Rk is defined by

‖x‖ =

{
k∑

v=1

|ξv|2/3
}3/2

,

then we get the k-dimensional Euclidean and transversal lower normed space fa-
miliar to us from our earlier work. Also, the inequality (Nd) holds because for
y = (η1, η2, . . . , ηk) the following inequality holds in the form as

‖x+ y‖ ≥ min



‖x‖, ‖y‖,

(
k∑

v=1

∣∣∣ |ξv| − |ηv|
∣∣∣
2/3
)3/2



 .

Example 6. Let Rk (or Ck) be a set of all k-tuples x = (ξ1, ξ2, . . . , ξk) of real
(complex) numbers can be made into transversal lower normed linear spaces if the
transversal lower norm is defined by

‖x‖ =

{
k∑

v=1

|ξv|−2

}−1/2

,

then we get the transversal lower normed spaces Rk (or Ck). In this cases inequality
(Nd) for y = (η1, η2, . . . , ηk) is satisfied from the following inequality in the form
as

‖x+ y‖ ≥ min



‖x‖, ‖y‖,

(
k∑

v=1

∣∣∣ |ξv| − |ηv|
∣∣∣
−2
)−1/2



 .

Example 7 (Gauss-Petrović space). Let a be a real number and let 0 < θ <
π/2. Let Rkarg be set of all k-tuples x = (ξ1, ξ2, . . . , ξk) of complex numbers such
that the following condition holds in the form as

a− θ ≤ arg(ξv) ≤ a+ θ (v = 1, . . . , k);(26)
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then we get the transversal lower norm on Rkarg ∪ {(0, 0, . . . , 0)} in the following
adequate form as

‖x‖ =

{
k∑

v=1

|ξv|p
}1/p

for −∞ < p < 1 (p 6= 0),(27)

i.e., the vector space GP := (Rkarg)∪{0}, where 0 = (0, 0, . . . , 0) with the transver-
sal lower norm of the form (27), is a transversal lower normed space.

Otherwise, the inequality (Nd) holds in this case from Minkowski’s inequality
and from inequality known as Petrović’s complementary inequality triangle.

Annotations. In a matter honor of names C a r l F r i e d r i c h G a u s s and
Mihailo N. Petrović the preceding space GP has give name: Gauss-Petrović lower
normed space. Indeed, de facto, GP -space there exists from the following inequality
in 1917 of P e t r o v i ć in the following variant: If (26) holds, then

∣∣∣∣∣
k∑

v=1

ξv

∣∣∣∣∣ ≥ (cos θ)

k∑

v=1

|ξv|.(28)

The Petrović’s proof of this inequality is given by Gauss theorem of centroid.
Inequality (28) is a complementary triangle inequality. It is difficult to say where it
appeared for the first time in literature. We have found (see a historical review in
M i t r i n o v i ć [1970]) that the special case a = θ = π/4 was proved by P e t r o -
v i ć [1917]. The general case of this inequality appears in a later paper of Petrović
[1970]. He also applied (28) to derive some inequalities for integrals. Inequality
(28) can be found also in: Karamata’s book [1949, pp. 300-301]. This result is
connected to Ðoković’s inequality by: M i t r i n o v i ć - P e č a r i ć - F i n k [1993].

The inequality (28) has been rediscovered by W i l f [1963], while the following
variant of inequality (28) for θ = π/2 is given in M a r d e n [1949]. A refiment
of inequality (3) is given by Va s i ć - J a n i ć - K e č k i ć [1972] in the following
form that if a < arg(ξv) < a+ θ for v = 1, . . . , k then

∣∣∣∣∣
k∑

v=1

ξv

∣∣∣∣∣ ≥ max

(√
2

2
, cos θ

)
k∑

v=1

|ξv|.

Example 8 (The space C[a, b]). The points x of the transversal lower normed
space C[a, b] are in closed segment [a, b] for b− a < +∞ continuous functions x(t)
with the transversal lower norm in the form as

‖x‖ = min
a≤t≤b

|x(t)|.

Example 9 (The space dlp for p ∈ R\{0}). The points x of transversal lower
normed space dlp are infinite sequences of numbers (ξv) such that the series

∑∞
v=1 |ξv|p

is divergent. In this space a transversal lower norm is defined by

‖x‖ =

{
n∑

v=1

|ξv|p
}1/p

for n ∈ N,
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where x = (ξ1, ξ2, . . .). It is easy to see that all facts hold for properties of the
transversal lower norm, as and inequality (Nd), for y = (η1, η2, . . .) in the form as

‖x+ y‖ ≥ min



‖x‖, ‖y‖,

(
n∑

v=1

∣∣∣ |ξv| − |ηv|
∣∣∣
p
)1/p



 .

Example 10 (The space hlp (−∞ < p < 1, p 6= 0)). The points x of transversal
lower normed space hlp are infinite sequences of numbers (ξv) such that

∑∞
v=1 |ξv|p ≥

µ for some µ > 0, and for a zero vector. In this space a transversal lower norm is
defined by

‖x‖ = inf
n∈N

{
n∑

v=1

|ξv|p
}1/p

,

where x = (ξ1, ξ2, . . .). It is easy to see that all facts hold for properties of the
transversal lower norm as and an inequality of the form (Nd).

Example 11 (The space Lp,∞(a, b) for p ∈ R\{0}). Let Lp,∞(a, b) for p ∈ R\{0}
be a set of all measurable functions x derined on (a, b) such that |x(t)|p is an
integrable function. In this vector space common with unit and zero-vector, x+ y
and λx being respectively the mappings (x+y)(t) = x(t)+y(t) and (λx)(t) = λx(t),
where a transversal lower norm defined by

‖x‖ =

(∫ b

a

|x(t)|pdt
)1/p

(29)

for every x ∈ Lp,∞(a, b) and for p ∈ R\{0}. It is easy to see that all properties
of transversal lower norm hold. The only axiom: ‖x‖ = b ≤ +∞ is equivalent to
x = 0 is not trivially verified. On the other hand, (Nd) holds in the form

‖x+ y‖ ≥ min



‖x‖, ‖y‖,

(∫ b

a

∣∣∣ |x(t)| − |y(t)|
∣∣∣
p

dt

)1/p


 ,

for all x, y ∈ Lp,∞ and for p ∈ R\{0}. Otherwise, as and in former cases, the
inequality (Nd) can be in further different forms.

Some more. (The space Lp,∞ for p ∈ R\{0}). Let Ω be a nonempty set, Σ
is a σ-algebra of all subsets of Ω, and let µ be a nonnegative nontrivial somplete
and σ-finite measure on Ω. An Lp,∞ space essentially consists of all measurable
functions x such that ∫

Ω

|x|p dµ = +∞, for p ∈ R\{0},

with the transversal lower norm defined corresponding as in (29). Also, in this case
hold all conditions for lower norm.

Further facts. From the preceding properties for the space Lp,∞ in the special
case, if p < 1 (p 6= 0), then from the following inequality in the form as

(∫ b

a

(|x|+ |y|)pdt
)1/p

≥
(∫ b

a

|x|pdt
)1/p

+

(∫ b

a

|y|pdt
)1/p
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it follows directly the following fact in the form that if x, y ∈ Lp,∞(a, b), then |x|+
|y| ∈ Lp,∞(a, b). Otherwise, from the classical metric inequality |x±y| ≥ | |x|−|y| |
for arbitrary p ∈ R\{0} it follows that x± y ∈ Lp,∞(a, b) if |x| − |y| ∈ Lp,∞(a, b).

On the other hand, from Hölder’s inequality (problem 4.2) for p < 1 (p 6= 0) in
the case for two measurable functions in the following form as∫

Ω

|fg|dµ ≥ ‖f‖p‖g‖q for
1

p
+

1

q
= 1,(30)

it follows directly that fg ∈ L1,∞, in the case if f ∈ Lp,∞ and g ∈ Lq,∞, or in the
case if f ∈ Lp,∞ and g ∈ Lq, or in the case if f ∈ Lp and g ∈ Lq,∞.

In connection with a result of W. O r l i c z in 1932 (: if
∑∞
n=1 d

2
n = +∞, then

there exists a continuous function such that
∑∞
n=1 |an| |dn| = +∞ via a condition

in the form that the orthonormal system of function (ϕn) on (a, b) is infinite and
contained of uniformly bounded functions), from inequality (30) we obtain the
following result:

If p < 1 (p 6= 0) and if f ∈ Lp,∞ then there exists a function g ∈ Lq,∞ (or
g ∈ Lq) for 1/p+ 1/q = 1 such that fg ∈ L1,∞.

An annotation. We notice that from the preceding Orlicz’s result in 1932
directly it follows that there exists a continuous function for which the following
series in the form as

∞∑

n=1

|an|2−ε

is divergent for every ε > 0. This redult is an analogy with singularity in the case of
trigonometrical systems which first time considered C a r l e m a n. Also, this result
is connected directly with the object of parameters convergence different systems
introduced by: T a s k o v i ć in 1971. In connection with this see: A d a m o v i ć
[1968].

In further we notice that every lower intervally normed space is a transver-
sal lower intervally space if a transverse ρ[x, y] = Nx−y. Let τ(D) be a
topology for b < +∞ in the following sense that

Dx(ε) =
{
y ∈ X : Nx−y(ε) > b− ε

}

for every x ∈ X and for every ε > 0. In the next set B(x) = a for x ≤ 0 and
B(x) = b for x > 0. Now we can formulate the following result.

Proposition 21. Let X be a vector space over K (:= R or C), Nx(0) = b for
every x ∈ X, Nx = B if and only if x = 0, Nαx(ε) ≥ Nx(ε) for 0 < |α| < 1,
Nαx(ε)→ b as α→ 0, and

Nx−y(ε) > b− ε and Ny−z(δ) > b− δ implies Nx−z(ε+ δ) > b− (ε+ δ)
(31)

for all ε, δ > 0, then (X, τ(D)) is a transversal topological vector space,
where the lower transverse ρ has the following form as

ρ[x, y] =

{
0 if y ∈ Dx(ε) for every ε > 0
sup{ε : y /∈ Dx(ε) for every 0 < ε < 1,
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in agreement with translation and invariance of the lower transverse in the
form: ρ[0, λx] ≤ ρ[0, x] for |λ| < 1. Also, ρ[x, y] < τ if and only if Nx−y(τ) >
b− τ for every τ > 0.

Proof. Set G = {Dx,y = Nx−y : x, y ∈ X}, then directly, from the preceding
facts we obtain the following fact that

Dx,y(ε) > b− ε and Dy,z(δ) > b− δ implies Dx,z(ε+ δ) > b− (ε+ δ)
(32)

for all ε, δ > 0. On the other hand, the condition (32) implies the following
condition in the form as: for every ε > 0 there exists 0 < δ ≤ ε such that

Dx,y(δ) > b− δ and Dy,z(δ) > b− δ implies Dx,z(ε) > b− ε,(33)

where the condition (33) is to equivalent with the fact that (X, τ(D)) is a
topological vector space, i.e., the first part of statement holds. also, from
the fact

ρ[0, x− z] = sup
{
ε : N0−(x−z)(ε) = Nx−z(ε) ≤ b− ε

}
= ρ[x, z]

it follows that ρ[x + y, y + z] = ρ[0, x + y − (y + z)] = ρ[0, x − z] = ρ[x, z].
In this context, for |λ| ≤ 1 the following fact holds as

ρ[0, λx] = sup
{
ε : Nλx(ε) ≤ b− ε

}
≤ sup

{
ε : Nx(ε) ≤ b− ε

}
= ρ[0, x]

i.e., from these facts we obtain that the lower transverse is invariance and
translation. Also holds and secont part of statement because τ(D) = τ(G).
The proof is complete. �

We notice that if (X,R) is a lower transversal intervally normed space with a
lower bisection function d ∈ D([a, b]), then (31) holds, because for Nx−y(ε) > b− ε
and Ny−z(δ) > b− δ we obtain that

Nx−z(ε+ δ) = Nx−y+y−z(ε+ δ) ≥

≥ min

{
Nx−y(ε), Ny−z(δ), d

(
Nx−y(ε), Ny−z(δ)

)}
≥

≥ min

{
Nx−y(ε), Ny−z(δ), d

(
min{Nx−y(ε), Ny−z(δ)},min{Nx−y(ε), Ny−z(δ)}

)}
≥

≥ min

{
Nx−y(ε), Ny−z(δ),min

{
Nx−y(ε), Ny−z(δ)

}}
>

> min
{
b− ε, b− δ,min{b− ε, b− δ}

}
> b− (ε+ δ).

Proposition 22. Let S be an arbitrary set and let LB(S) be a lower transver-
sal linear normed space of all lower bounded real functions x : S → R with
the lower norm ‖x‖ = inf{|x(t)| : t ∈ S}. Then LB(S) is a lower complete
space.
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Proof. The proof that LB(S) is a transversal lower normed space is standard.
We shall proved that LB(S) is lower complete. In this sense let (xn) be a
fundamental sequence in LB(X). Then for every ε > 0 there exists n0 ∈ N
such that ‖xn+k − xn‖ > ε for all n, k ≥ n0. On the other hand, for every
ε > 0 for every t ∈ S and for all n, k ≥ n0 we obtain that∣∣∣xn+k(t)− xn(t)

∣∣∣ =
∣∣∣(xn+k − xn)(t)

∣∣∣ ≥

≥ inf
{∣∣(xn+k − xn)(t)

∣∣ : t ∈ S
}

= ‖xn+k − xn‖ > ε.
(34)

hence for every t ∈ S the sequence of real numbers (xn(t)) is a fundamental
sequence in the space R ⊂ R. Since R is a lower complete space, it follows
that for every t ∈ S the sequence (xn(t)) is lower converges to x0(t) ∈ R,
i.e., for the function x0 : S → R we have x0(t) = limn→∞ xn(t) for every
t ∈ S. For k →∞ from (34) we obtain∣∣∣x0(t)− xn(t)

∣∣∣ ≥ ε for every t ∈ S
and thus inf{|x0(t) − xn(t)| : t ∈ S} ≥ ε for n ≥ n0, i.e., this means that
x0 − xn is a lower bounded function for n ≥ n0, i.e., x0 − xn ∈ LB(S) and
‖x0 − xn‖ ≥ ε.

Since x0 = (x0 − xn) + xn and x0 − xn, xn ∈ LB(S), and since LB(S) is
a linear space, it follows that x0 ∈ LB(S) and limn→∞ xn = x0 in the space
LB(S). The proof is complete. �
Proposition 23. Let X be a linear space and let (X, ρ) be a lower transver-
sal space, then lower transverse ρ can be defined with lower norm if and only
if the following facts hold:

ρ[x− a, y − a] = ρ[x, y] for all x, y, a ∈ X,(35)
ρ[λx, λy] = |λ|ρ[x, y] for all x, y ∈ X and λ ∈ K.(36)

Proof. Let f : X → R be a defined by f(x) = ρ[0, x] for x ∈ X, then f is a
lower transversal norm on X. Indeed, let λ ∈ K, then from (36) it follows
that

f(λx) = ρ[0, λx] = ρ[λ0, λx] = |λ|ρ[0, x] = |λ|f(x),

i.e., f is an absolute homogeneous function. On the other hand, from (35)
and given conditions, it follows that for all x, y ∈ X we have the following
inequality in the form

f(x+ y) = ρ[0, x+ y] = ρ[−x, y] ≤

≤ max
{
ρ[−x, 0], ρ[0, y], d

(
ρ[−x, 0], ρ[0, y]

)}
= max

{
f(x), f(y), g

(
f(x), f(y)

)}
,

which means that the function f satisfy the corespondent inequality for lower
transvrse, i.e., f is a lower (transversal) norm on X. Otherwise,

ρ[x, y] = ρ[0, y − x] = f(y − x) for all x, y ∈ X,
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and thus, from the fact (36), it follows that ρ[x, y] = f(x−y), i.e., the lower
transverse ρ is defined with the lower norm f . The proof is complete. �

Annotation. Every two open (closed) balls, as and every two spheres, in a
transversal lower normed space X are homeomorphic. Unhurt space, also,
is homeomorphic to an arbitrary proper open ball. Thus in X are essential
the balls and spheres with center 0 and radius 1, i.e., d(K(0, 1)), d(K[0, 1]),
and d(S(0, 1)).

If the lower bisection function d ∈ D([a, b]), then every ball is a convex set;
also, for different of lower transversal spaces, we have that Cl(d(K(a, r))) =
d(K[a, r]) and Int(d(K[a, r])) = d(K(a, r)) for a ∈ X and r > 0.

If x 7→ ‖x‖ is a lower norm on the vector space E, then ρ[x, y] = ‖x−y‖ is
a transverse on E such that ρ[x+z, y+z] = ρ[x, y] and ρ[λx, λy] = |λ|ρ[x, y]
for any scalar λ ∈ K.

Theorem 16. Let F be a closed linear subspace of a lower transversal
normed space E with the bisection function d ∈ D([a, b]) and let

‖x+ F‖ = sup
{
‖x+ y‖ : y ∈ F

}

for all x ∈ F . The mapping (x+F ) 7→ ‖x+F‖ is a lower transversal norm
on E/F , and further, if E is lower complete, so is E/F .

The proof of this statement is founded on the facts of problems 1 and 2.
A proof for this statement may be found in: T a s k o v i ć[2005].

The lower transversal normed spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) with the
same fiels K are isometric isomorphism (or isomorphism) if there exists
a one-to-one linear transformation (operator) A : X → Y such that

‖Ax‖Y = ‖x‖X for every x ∈ X;

and X is said to be isometrically isomorphic to Y if there exists an
isometric isomorphism of X onto Y .

This terminology enables us to give precise meaning to the statement that
one lower transversal normed linear space is essentially the same as another.

In this sense, if the lower transversal normed spaces X and Y are isomet-
rically isomorphic and if one of him complete (lower complete), then other
of him also complete space.
Linear lower bounded operators. Let X and Y be lower transversal

normed spaces over K and let L(X,Y ) be a set of all linear operators of X
into Y . An opertor A ∈ L(X,Y ) is bounded (or lower bounded) if there
exists a real number µ > 0 with the property that

‖Ax‖ ≥ µ‖x‖ for every x ∈ X;(37)

in this case, then µ is called a bound (or lower bound) for A, and such an A
is often referred to as a bounded linear operator, where a lower norm
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of operator A, in notation ‖A‖, defined by

‖A‖ := inf
x∈X\{0}

‖Ax‖
‖x‖(38)

or on a second manner, as supremum of the numbers µ > 0 for which holds
(37). Otherwise, the set S ⊂ X is bounded (or lower bounded) if there
exists m > 0 such that ‖x‖ ≥ m for every x ∈ S.

In this sense from (38) we can obtain and other formulas for ‖A‖. Spe-
cially, for some µ ∈ R+ holds ‖A‖ ≥ µ if and only if ‖Ax‖ ≥ µ‖x‖ for every
x ∈ X. Set µ = ‖A‖ then it follows that ‖Ax‖ ≥ ‖A‖ ‖x‖ for every x ∈ X.

In further, the set of all linear lower bounded operators of X into Y
denoted by LB(X,Y ); also, the space LB(X,K) is denoted by X∗ and is
called the conjugate or more briefly, functionals.

On the other hand, from (37) is infx∈X\{0}(‖Ax‖ ‖x‖−1) ≥ µ, and thus
the following inequality holds in the form as

‖Ax‖ ≥
(

inf
x∈X\{0}

‖Ax‖
‖x‖

)
‖x‖ for every x ∈ X,

which means that, from all given facts in this chapter of the book, the
following facts hold, if A : X → Y is a homogeneous operator, in this case
the following equalities in the form as

‖A‖ = inf
‖x‖≥1

‖Ax‖ = inf
‖x‖=1

‖Ax‖ = inf
x∈X\{0}

‖Ax‖
‖x‖ =

= max
{
µ ∈ R+ : ‖Ax‖ ≥ µ‖x‖ for every x ∈ X

}
,

(39)

where max∅ = 0; and hence, directly, we obtain the following fact: the op-
erator A : X → Y is bounded (or lower bounded) if and only if the following
inequality holds in the form as

inf
x∈X\{0}

‖Ax‖
‖x‖ > 0.

Illustrations. The identity mapping of X into itself idX : X → X
defined by idX(x) = x for x ∈ X is linear. Since ‖ idX(x)‖ = ‖x‖ for every
x ∈ X, it follows ‖ idX ‖ = 1.

Also, if X is a subspace of the space Y , then the mapping AX : X → Y
defined by AX(x) = x for x ∈ X is linear and ‖AX‖ = 1 (for X 6= {0}).

Among the rest, if the operator A : X → Y is a homogeneous operator,
then for it lower norm the following facts hold in the next as

‖A‖ = inf
x∈X\{0}

‖Ax‖
‖x‖ = inf

x∈X\{0}

∥∥∥∥
1

‖x‖Ax
∥∥∥∥ = inf

x∈X\{0}

∥∥∥∥A
(

x

‖x‖

)∥∥∥∥ ,(40)

hence, because of the fact that for every x ∈ X\{0} the lower norm or the
vector x/‖x‖ is equaly 1, it follows fact that ‖A‖ = inf‖x‖=1 ‖Ax‖, which is
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one of the equalities in (39). Since

inf
‖x‖=1

‖Ax‖ = ‖A‖ ≤ inf
‖x‖≥1

‖Ax‖ ≤ ‖A‖,

we obtain that the first equality in (39) holds. This with (40) give a good
reason for the preceding equalities in (39).

Proposition 24. Let X and Y be lower transversal normed spaces and A :
X → Y a linear operator. Then the following conditions are all equivalent
to one another: 1) A is lower continuous, 2) A is lower continuous at the
origin (in the sense that xn → 0 implies that A(xn) → 0), 3) A is lower
bounded, and 4) if d(S(0, 1)) := {x : ‖x‖ ≥ 1} is closed unit sphere in X,
then its image A(d(S(0, 1))) is a lower bounded set in Y .

Remarks. We notice that if an additive operator is lower continuous in a point
of space, then it is lower continuous on the entire space. For an additive operator
A : X → Y the following two facts hold: A(0) = 0 and A(−x) = −A(x) for every
x ∈ X.
Proof of Proposition 24 First, the condition of lower uniformly con-

tinuous implies lower continuous of the mapping A : X → Y in the point
0 ∈ X. On the other hand, if A ∈ LB(X,Y ), then for δ = ε/µ and µ, ε > 0
from the inequality ‖x− y‖ > δ it follows that

‖Ax−Ay‖ ≥ µ‖x− y‖ > ε,

i.e., this means that A is lower uniformly continuous on the space X. Re-
verse, if A is lower continuous in 0 ∈ X, then A ∈ LB(X,Y ).

Indeed, if A is lower continuous in 0 ∈ X, then for ε = 1 there exists
δ > 0 such that ‖Ax‖ > 1 whenever ‖x‖ > δ. Hence, for x ∈ X (x 6= 0) and
0 < δ < α it follows that ‖αx/‖x‖ ‖ > δ and that

‖Ax‖ =

∥∥∥∥
‖x‖
α
A

(
αx

‖x‖

)∥∥∥∥ ≥
1

α
‖x‖;

and thus, since this inequality holds and for x = 0, it follows that A ∈
LB(X,Y ). This means from all the preceding facts that 2) is equivalent to
3).

On the other hand, since a nonempty subset of a lower normed linear
space is lower bounded iff it is contained in a closed sphere centered on
the origin, it is evident that 3) implies 4); for if ‖x‖ ≥ 1, then ‖Ax‖ ≥ µ.
to show that 4) implies 3), we assume that A(d(S(0, 1))) is contained in a
closed sphere of radius µ centered on the origin. If x = 0, then A(x) = 0, and
clearly ‖Ax‖ ≥ µ‖x‖; and if x 6= 0, then x/‖x‖ in d(S(0, 1)), and therefore
‖A(x/‖x‖)‖ ≥ µ, so again we have ‖Ax‖ ≥ µ‖x‖. The proof is complete.

Proposition 25. Let X and Y be transversal lower normed spaces and let
A : X → Y be a linear operator. Then A is a lower bounded operator if and
only if every lower bounded set in X maps in some lower bounded set in Y .
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Proof. Necessity. Let the operator A : X → Y be a lower bounded and let
S be a lower bounded set, i.e., ‖A‖ > 0 and ‖x‖ ≥ µ > 0 for every x ∈ S,
then it follows that

‖Ax‖ ≥ ‖A‖ ‖x‖ ≥ µ‖A‖ for every x ∈ S.
Sufficiently. If d(K) is closed unit sphere in X, then its image A(d(K))

is a lower bounded set in Y , i.e., there exists a number µ > 0 such that
‖Ax‖ ≥ µ for every x ∈ d(K). Let x ∈ X\{0} be an arbitrary point, then
x/‖x‖ ∈ d(K) such that

∥∥∥∥A
x

‖x‖

∥∥∥∥ ≥ µ, i.e., ‖Ax‖ ≥ µ‖x‖,

but, since this inequality holds and for x = 0, from this fact it follows that
A is a lower bounded operator. The proof is complete. �

Example 12. Let x = (ξv) ∈ lp for −∞ < p < 1 (p 6= 0) and let [αvµ] be an
infinite matrix of numbers such that the following inequality holds in the form as

∞∑

µ=1

∞∑

v=1

|αvµ|q < +∞
(

1

p
+

1

q
= 1

)
,

then with the following corresponding equalities in the form as in the next adequate
forms with the equality that is

ηµ =

∞∑

v=1

|αvµξv| (µ = 1, 2, . . .)

is defined a lower bounded operator y = Ax for x = (ξv) and y = (ηµ) which maps
the space lp in the space lq with −∞ < p < 1 (p 6= 0) and 1/p+ 1/q = 1. Indeed,
since from Hölder’s inequality the following inequality holds in the form as

|ηµ| =
∞∑

v=1

|αvµξv| ≥
{ ∞∑

v=1

|αvµ|q
}1/q { ∞∑

v=1

|ξv|p
}1/p

for µ ∈ N, hence to put power q for this inequality and to bring together left and
right side of this inequality for µ = 1, 2, . . . we obtain the following inequality in
the form as

‖y‖lq ≥
{ ∞∑

µ=1

∞∑

v=1

|αvµ|q
}1/q

‖x‖lp ,

hence it follows that the following fact holds that is y ∈ Lq, i.e., the operator A
maps the space lp in the space lq and the following inequality holds in the form as

‖A‖ ≥
{ ∞∑

µ=1

∞∑

v=1

|αvµ|q
}1/q

,

i.e., the oprator A is a lower bounded operator. If x = (ξv) is a sequence of
nonnegative numbers, then A is a linear operator. The proof for this is elementary.
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Example 13. LetK(s, t) be a measure function which is defined on the unit square
Q = {(s, t) : 0 ≤ s, t ≤ 1} and let the following inequality holds in the form as

∫ 1

0

|K(s, t)|dt ≥ D for every s ∈ [0, 1],

then with the following equality in the form as in the next that is y(s) is an integral
in the following sense that is with

y(s) =

∫ 1

0

∣∣∣K(s, t)x(t)
∣∣∣dt

is defined a lower bounded operator y = Ax for x = x(t) and y = y(s) which maps
the space of the essential bounded functions M(0, 1) into itself. Indeed, from the
following inequalities in the form as

|y(s)| ≥
(

infess 0 ≤ t ≤ 1|x(t)|
)∫ 1

0

|K(s, t)|dt ≥ D‖x‖M ,

it follows that

infess 0 ≤ s ≤ 1|y(s)| ≥ D‖x‖M ,
i.e., ‖Ax‖M ≥ D‖x‖M . Hence we obtain Ax ∈ M(0, 1), A is a lower bounded
operator and ‖A‖ ≥ D. The linearity for A is not satisfied. But, if x = x(t) is a
nonnegative function, then A is a linear operator. The proof for this is elementary.

Lower locally compactness. A topological space X is said to be lo-
cally compact if for every point x ∈ X there exists a compact neighbour-
hood of x in X. Any discrete space is locally compact, but not compact.
The real line R is locally compact but not compact.

A lower transversal normed space X is said to be lower locally compact
if for every point x ∈ X there exists a lower compact neighbourhood of x in
X.

Proposition 26. The transversal lower normed space X is lower locally
compact if and only if the closed unit ball of the form as

d
(
K[0, 1]

)
:=
{
x ∈ X : ‖x‖ ≥ 1

}

is a lower compact set. (The proof of this statement is a totally analogy
with the proof of Proposition 10).

Proof. Let d(K[0, 1]) is a lower compact set. Since for every point x0 ∈ X the
mapping x 7→ x+x0 is homeomorphism of X into X, the sets x0 +d(K[0, 1])
and d(K[0, 1]) are homeomorphic sets, and thus x0 + d(K[0, 1]) is a lower
compact neighbourhood of the point x0.

Reverse, let X be a lower locally compact space, thus the point 0 ∈ X
has a lower compact neighbourhood V which is a closed set and contained
a ball V (0, r) for r > 0.

The set d(K[0, 1]) = Cl(V (0, r)) ⊂ Cl(V ) = V is lower compact (as a
closed subset of lower compact set V ). Hence, the closed unit ball d(K[0, 1])
is an image of the set d(K[0, r]) under the continuous mapping x 7→ (1/r)x
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such that thus also d(K[0, 1]) is a lower compact set. The proof is complete.
�

We notice, from the preceding facts, that a nonempty bounded closed
subset of a finite dimensional lower transversal normed linear space is lower
compact. There is a converse of this fact which is true and which provides
an important characterization of finite dimensional lower transversal normed
linear spaces. We shall need an essential statement.

Proposition 27. (Geometrical lemma). Let X be a lower transversal nor-
med space and let Y be a linear subspace of X that is a proper closed subset
of X. Then for every ε > 1 there exists a point xε ∈ X such that

||xε|| = 1 and hdiam(xε, Y ) := sup
y∈Y
||xε − y|| < ε.

Proof. From the former facts and from given conditions of statement directly
it follows that there exists a point x0 ∈ X\Y such that

hdiam(xε, Y ) = sup
y∈Y
‖x0 − y‖ := d > 0.

Since d < dε (for every ε > 1), hence there exists a point z ∈ Y such that
d/ε < ‖x0−z‖ ≤ d. If we choice that xε = (x0−z)/‖x0−z‖, then ‖xε‖ = 1.
Also, in this case, for y ∈ Y we obtain

‖xε − y‖ =
‖x0 − (z + y‖x0 − z‖)‖

‖x0 − z‖
≤ d

‖x0 − z‖
< ε,

which means, common with all preceding facts, that statement holds. The
proof is complete. �

Further application of Proposition 46 we have that the lower compactness
of closed unit ball is sufficiently for finite dimensional of a transversal lower
normed space.

Theorem 17. Let X be a lower transversal normed space and let d(K[0, 1]) =
{x ∈ X : ‖x‖ ≥ 1} be a closed lower compact ball in X, then the lower
transversal normed space X is finite dimensional.

Proof. (Application of Geometrical lemma). Let d(K[0, 1]) be a lower com-
pact set in X and let X be an infinite dimensional space. Suppose that
x1 ∈ X, ‖x1‖ = 1 and X1 ≡ Lin({x1}); then X1 is a proper closed subspace
in X. Also, there exists x2 ∈ X such that ‖x2‖ = 1 and hdiam(x2, X1) < 2
(from Proposition 46), which means that is ‖x2 − x1‖ < 2.

Let X2 ≡ Lin({x1, x2}), then X2 is a proper closed subspace in X.
Again, from Proposition 46, there exists x3 ∈ X such that ‖x3‖ = 1 and
hdiam(x3, X2) < 2, i.e., this means that ‖x3−x2‖ < 2, as and ‖x3−x1‖ < 2.

Applying Proposition 46, via method of mathematical induction, it follows
that there exist a sequence of finite dimensional subspaces {Xn}n∈N in X
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and a sequence {xn}n∈N in X such that

X1 ( X2 ( · · · , xn ∈ X, ‖xn‖ = 1 and hdiam(xn+1, Xn) < 2

for every n ∈ N. Thus ist follows that ‖xn−xm‖ < 2 for n 6= m, which means
that the sequence {xn}n∈N has not the lower convergent subsequences. This
is a contradiction with the supposition that d(K[0, 1]) is a lower compact
subset in X. The proof is complete. �

From the proof of the preceding statement as and from Proposition 46 we
have an immediately consequence in the following form as.

Corollary 2. Let X be a lower transversal normed space and let the sphere
d(S(0, 1)) = {x ∈ X : ‖x‖ = 1} be a lower compact subset in X, then the
lower transversal normed space X is finite dimensional.

Otherwise, on the lower transversal normed space also holds a spring form
of Riesz’s lemma in the following from as.

Proposition 28. (Form of Riesz lemma). Let X be a lower transversal
normed space and let Y be a linear subspace of X that is proper closed subset
of X. Then for every ε ∈ (0, 1) there exists a point xε ∈ X such that

‖xε‖ = 1 and ρ[xε, Y ] := inf
y∈Y
‖xε − y‖ > ε.

The proof of this statement is adequate to the proof which is has had
Riesz [1918] for the case of classical normed space.

An annotation. We notice that Geometrical lemma and Form of Riesz lemma
de facto hold on upper and lower transversal normed spaces. But, for geometry
of lower normed spaces is essential Geometrical lemma, till for geometry of upper
normed spaces is essential Form of Riesz lemma.

We turn now to the question of the existence of nonzero lower bounded
linear functionals on an arbitrary nonzero lower transversal normed space.
Such functionals obviously exist when the space is one-dimensional and every
nonzero linear space has one-dimensional linear subspaces. In this section
we derive a general extension statement.

Theorem 18. Let X be a real linear space, let D ⊂ X be a subspace, and
let x 7→ ||x|| : X → R be a lower transversal norm such that

h(x) ≥ ||x|| for every x ∈ D,
where h : D → R is a linear functional. Then there exist at least countable
or finite linear functionals Hk : X → R such that

Hk(x) ≥ ||x|| for every x ∈ X
and

Hk(z) = h(z) for every z ∈ D.
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Lemma 3. Let X be a linear space, let D ⊂ X be a set Q-convex and Q-
radial at a point x0 ∈ D , and let L ⊂ X be a linear space (over Q) such
that x0 ∈ L. Let f : D → R be a function fulfilling the inequality

f(λx+ (1− λ)y) ≥ min
{
f(x), f(y), d

(
f(x), f(y)

)}5(M)

for a function d : f(D)2 → R, for all x, y ∈ D and for every λ ∈ Q ∩ [0, 1].
If z /∈ L, if Z = Lin(L ∪ {z}) and if h : L → R is a linear functional such
that

h(x) ≥ f(x) for every x ∈ D ∩ L,(41)

then there exists a linear functional H : Z → R such that the following
inequality holds in the form as

H(x) ≥ f(x) for every x ∈ D ∩ Z(H)

] and H|L = h, i.e., there is an extension of the linear functional h on Z.

Proof. For all x, y ∈ L and for all λ, µ ∈ Q ∩ (0,∞) such that x + µz ∈ D
and y − λz ∈ D we obtain from (M) and (41) the following inequalities in
the form as

λ

λ+ µ
h(x) +

µ

λ+ µ
h(y) = h

(
λ

λ+ µ
x+

µ

λ+ µ
y

)
≥

≥ f
(

λ

λ+ µ
x+

µ

λ+ µ
y

)
= f

(
λ

λ+ µ
(x+ µz) +

µ

λ+ µ
(y − λz)

)
≥

≥ min
{
f(x+ µz), f(y − λz), d

(
f(x+ µz), f(y − λz)

)}
;

and thus, over directly calculation, we obtain the following correspondent
inequality of the form as

h(x)− f(x+ µz)

µ
≥ 1

λ

[
λ+ µ

µ
min {f(x+ µz), f(y − λz),

d
(
f(x+ µz), f(y − λz)

)}
− h(y)− λ

µ
f(x+ µz)

]
:= R;

and defined U = {(x, µ) ∈ L × Q : µ > 0, x + µz ∈ D} and V = {(y, λ) ∈
L × Q : λ > 0, y − λz ∈ D} from the preceding inequality we obtain the

5General concave functions. In an earlier paper (T a s k o v i ć: Math. Japonica,
37 (1992), 367–372), introduced the notion of general concave functions. A function
f : D → R, where R denotes the real line and D is a convex subset of Rn, is said to be
general concave iff there is a function ψ : (f(D))2 → R such that

f(λx+ (1− λ)y) ≥ min
{
f(x), f(y), ψ

(
f(x), f(y)

)}
(Min)

for all x, y ∈ D and for arbitrary λ ∈ [0, 1]. We notice that the set of all concave and
quasi concave functions can be a proper subset of the set of all general concave functions.
We notice that the lower transversal norm x 7→ ‖x‖ is a general concave function. The
proof is simple.
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following inequality in the form as in the next

N :=
h(x)− f(x+ µz)

µ
≥ sup

V
R,(42)

which means that β := supU N ≥ supU supV R := α.
Since D is Q-radial at x0, we have (x0, µ) ∈ U for µ ∈ Q ∩ (0, ε(z)) and

(x0, λ) ∈ V for λ ∈ Q ∩ (0, ε(−z)). Consequently U 6= ∅ and V 6= ∅.
Observe also that α ≤ β implies that −∞ < α ≤ β < +∞. In particular
[α, β] 6= ∅.

Choose any c ∈ [α, β]. Every t ∈ Z may be uniquely written as t = x+λz,
where x ∈ L and λ ∈ Q. For such a t ∈ Z define H(t) = h(x) − cλ. It is
easily seen that H : Z → R is a linear functional and that H|L = h. Now
take an arbitrary t ∈ D ∩ Z which may be represented in form t = x + λz.
Consider three cases:

1) If λ = 0, then t = x; and by inequality (41) we obtain H(t) = h(x) ≥
f(x) = f(t). Consequently this fact we have that inequality (H) holds.

2) If λ > 0, then since t ∈ D we have (x, λ) ∈ U . Since c < β, this
inequality implies h(x) − f(x + λz) ≥ cλ, i.e., the following want fact (H)
holds in the form as

H(t) = h(x)− cλ ≥ f(x+ λz) = f(t).

3) If λ < 0, then since t ∈ D we have (x,−λ) ∈ V . Since α < c, this
inequality implies that the following inequality holds in the form as

−cλ ≥ −λ+ µ

µ
min

{
f(x+ µz), f(x+ λz), d

(
f(x+ µz), f(x+ λz)

)}
−

−h(x) +
λ

µ
f(x+ µz),

and thus, in the context of fact since is defined functional H(t), directly for
µ = λ we obtain the following want fact (H) in the form as

H(t) = h(x)− cλ ≥ f(x+ λz) = f(t),

i.e., the inequality (H) holds in this case, too. Now, together with all the
preceding facts, the proof is complete. �

Hence we derive a totally new form of the rational version of the well
known Hahn-Banach theorem.

Theorem 19. Let X be a real linear space, let D ⊂ X be a set Q-convex
and Q-radial at a point x0 ∈ D, and let L ⊂ X be a linear space (over Q)
such that x0 ∈ L. Let f : D → R be a function fulfilling (M) for all x, y ∈ D
and for every λ ∈ Q ∩ [0, 1]. If h : L → R is a linear functional with
property (41), then there exist at least countable or finite linear functionals
Hk : X → R such that

Hk(x) ≥ f(x) for every x ∈ D
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and Hk|L = h, i.e., there exist at least countable or finite extensions of the
linear functional h on X of L.

In this section arguing as in the proof of Theorem 33 we can get however
the following result.

Theorem 20. (Form of Hahn-Banach theorem). Let X be a real linear
space, let D ⊂ X be a subspace and let f : X → R be a general concave
function such that

h(x) ≥ f(x) for every x ∈ D,
where h : D → R is a linear functional. Then there exist at least countable
or finite linear functionals Hk : X → R such that

Hk(x) ≥ f(x) for every x ∈ X
and Hk|D = h , i.e., there exist at least countable or finite linear extensions
of the linear functional h on the space X.

A brief proof of Theorem 20 (as and Lemma 3 and Theorem 19) may be
found in Tasković [2005].
Proof of Theorem 18. Applying Theorem 20 for the case when f(x) =

||x|| : X → R, where x 7→ ||x|| is a lower transversal norm, directly we obtain
this statement.

We notice that Theorem 20 guarantees that a lower transversal normed
space is richly supplied with continuous linear functionals, and makes pos-
sible an adequate theory of conjugate spaces.
Proof of Theorem 20. Let R be the family of all couples (Y,A), where

Y is a linear space (over Q), L ⊂ Y ⊂ X, and A : Y → R is a linear
functional such that A|L = h and

A(x) ≥ f(x) for all x ∈ D ∩ Y,(43)

where (L, h) ∈ R, so R is a nonempty family. We introduce the order in R in
the usual manner: (Y1, A1), (Y2, A2) ∈ R we agree that (Y1, A1) 4 (Y2, A2)
if Y1 ⊂ Y2 and A2|Y1 = A1. If Z ⊂ R is any chain, then put

G =
⋃

(Y,A)∈Z

Y,

and define B : G → R putting B(y) = A(y) if y ∈ Y and (Y,A) ∈ Z. The
couple (G,B) is an upper bound of Z ∈ R. In fact, if x, y ∈ G and α ∈ Q,
then there exists an (Y,A) ∈ Z such that x, y ∈ Y . Then also x+y ∈ Y ⊂ G
and αx ∈ Y ⊂ G, which shows that G is a linear space (over Q). Since
L ⊂ Y ⊂ X for all Y such that (Y,A) ∈ Z, also L ⊂ G =

⋃
(Y,A)∈Z Y ⊂ X.

Similarly it is shown that B is a linear functional fufilling (43) and such that
B|L = h.

By Lemma of Infinite Maximality in R there exist at least countable or
finite maximal elements (Ek, Hk). The only thing we need to show is that
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Ek = X. Supposing the contrary, let z ∈ X\Ek. By Lemma 3 there exists
a linear functional H∗k : Lin(Ek ∪ {z})→ R such that H∗k |Ek = Hk, whence
H∗k |L = Hk|L = h, and

H∗k(x) ≥ f(x) for every x ∈ D ∩ Lin(Ek ∪ {z}),
and consequently this (Lin(Ek ∪ {z}), H∗k) ∈ R, and clearly (Ek, Hk) ≺
(Lin(Ek ∪ {z}), H∗k), which contradicts maximality of (Ek, Hk). Conse-
quently we must have Ek = X. The proof is complete.

The following form of open mapping theorem enables us to give a satis-
factory description of the projections on a lower transversal normed space,
an has the important closed graph statement as one of its consequences.

Theorem 21. (Form of the open mapping theorem). Let X and Y be lower
complete lower transversal normed spaces with continuous lower norms and
with a bisection function d ∈ D(R0

+). If A is a lower bounded linear operator
of X onto Y , then A is an open mapping, i.e., A(G) is an open subset of Y
whenever G is an open subset of X.

As an immediately consequence of the Form of the open mapping theo-
rem it follows the following statement on bounded inverse operator in the
following form as.

Theorem 22. (Statement of inverse bounded). Let X and Y be two lower
complete transversal lower normed spaces with continuous lower norms and
bisection function d ∈ D([a, b]). If A ∈ B(X,Y ) and if A is bijective, then
there exists an inverse operator A−1 such that A−1 ∈ B(X,Y ).

Proof. Let A be a one-to-one continuous linear operator of X onto Y . Then,
by the Form of the open mapping theorem, A(G) is an open subset of Y
whenever G is an open subset of X. Since A is one-to-one we have

(A−1)−1(G) = A(G)(44)

for every set G in X, and consequently it follows from Theorem 21 that A−1

is a continuous operator. The proof is complete. �
Proposition 29. Let X and Y be lower complete trnasversal lower normed
spaces with continuous lower norms and the bisection function d ∈ D([a, b]).
If A ∈ K(X,Y ), then image operator not contained infinite dimensional
closed subspace in Y .

Theorem 23. (Form of Banach - Steinhaus theorem). Let J be an index set,
X and Y be lower transversal normed spaces with coninuous lower norms
and with a bisection function d ∈ D(R0

+), X be a lower complete space and
Aj ∈ B(X,Y ) for every j ∈ J . Then infj∈J ||Ajx|| > 0 for every x ∈ X if
and only if infj∈J ||Aj || > 0.

Theorem 24. (Form of convergence principle). Let X and Y be lower
transversal normed spaces with continuous lower norm and with a bisection
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function d ∈ D(R0
+), Y is a lower complete space and {An}n∈N the sequence

of lower bounded linear operators of X into Y such that:
1) ||An|| ≥ µ for every n ∈ N;
2) There exists limn→∞Anx for all points x ∈ D in a dense subset D of

a boll K := d(K(x0, r)) in X.
Then, there exists limn→∞Anx = Ax for every x ∈ X, and A is a lower

bounded linear operator with the property ‖A‖ ≥ µ.

Proposition 30. (Form of principle of uniform boundedness). Let X be a
lower complete transversal lower normed space and Y be a lower transversal
normed space over the same field with bisection function d ∈ D([a, b]). If
G is a subset of L(X,Y ) with the property that {Ax : A ∈ E} is a lower
bounded subset of Y for each x ∈ X, then G is a lower bounded subset of
L(X,Y ).

The proof of this statement is a totally analogy with the proof of Theorem
4. A part of this proof is including in the proof of Banach-Steinhaus theorem.
There is a special case of Proposition 30 which is sufficiently important to
merit a separate statement.
Lower total continuous operators. LetX and Y be two lower transver-

sal normed spaces. The linear operator A : X → Y is called lower total
continuous iff every lower bounded set in X maps in a relatively compact
set in Y .

In this sense, every lower total continuous operator is a lower continuous
operator. Namely, since every relatively compact set is a lower bounded
set, hence lower total continuous operator maps lower bounded sets in lower
bounded sets, which means that it lower continuous (from Proposition 25).

We notice that in an infinite dimensional lower transversal normed space
the lower bounded operator not obliged will be lower total continuous.

An example, if X is an infinite dimensional space, then the identical op-
erator id: X → X (which is lower continuous) is not lower total continuous.

Indeed, by supposition in X there exists infinite a great linear indepen-
dence vectors x1, x2, . . .; and let Xn (for n ∈ N) be a subspace which deter-
mined vectors x1, x2, . . . , xn. Then Xn is a proper subset of Xn+1 and Xn is
closed (as a finite dimensional subspace). From Proposition 27 (Geometrical
lemma) there exists a sequence of vectors {yn}n∈N such that

‖yn‖ = 1, yn ∈ Xn and hdiam(yn, Xn−1) < 2;

where the set {yn}n∈N is lower bounded in X. If an identical operator id
is lower total continuous, it will be the set {yn}n∈N maps in a relatively
compact set; but, id({yn}n∈N) = {yn}n∈N which means that in this case
of the sequence {yn}n∈N we can not to set spart a convergent subsequence
because then ‖ym − yn‖ < 2 for all m,n ∈ N (m 6= n).
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Proposition 31. Let X be a lower transversal normed space. If A : X → X
is a lower total continuous operator and B : X → X is a lower bounded
operator, then AB and BA are lower total continuous operators.

Proof. First, if M is a lower bounded set, then B(M) is a lower bounded
set, and thus A(BM) is a relatively compact set (because lower total contin-
uous of the operator A). This means that A(B) is a lower total continuous
operator.

Second, ifM is a lower bounded set, then A(M) will be relatively compact
(as and B(AM)), because B is a lower continuous operator. Accordingly,
B(A) is a lower total continuous operator. The proof is complete. �

Annotation. From Proposition 31 it follows that the lower total continuous
operator A : X → X can not have lower bounded inverse operator! Indeed, if
there exists a lower bounded inverse operator A−1, then we obtain AA−1 =
id; and hence applying Proposition 31 it follows that id is a lower total
continuous operator, which is not precisely.

Proposition 32. Let X and Y be complete lower transversal normed spaces
with the bisection function d ∈ D([a, b]) and let An : X → Y (n = 1, 2, . . .)
be a sequence of the lower total continuous operators. If for the liner operator
A : X → Y holds that

‖An −A‖ → b ≤ +∞ (as n→∞),(45)

i.e., if the sequence of operators {An}n∈N lower uniformly converge to the
operator A, then A is a lower total continuous operator.

An alternative for equations. We notice that is well-known the role
of Riesz’s lemma (Proposition 16) for a formulation of a form of famous
Fredholm alternative in 1903 on integral equations.

Applying Geometrical lemma (Proposition 27) we obtain a result in the
form an alternative (of lower total continuous linear operators) for operators
equations.

Proposition 33. Let X be a lower complete lower transversal normed space
and let A : X → X be a lower total continuous linear operator. If the
equation

x−Ax = y(46)

has a solution for every y ∈ X, then the following equation in a corresponding
form as

x−Ax = 0(47)

has a unique trivial solution. (An analogous statement of this also holds for
the conjugate operators equations).



158 Transversal Functional Analysis

We notice that if equation (46) has a solution for every y ∈ X, then
this solution is unique. Indeed, if for some y ∈ X there exist two different
solutions x1 and x2, then from the equalities in the form as

x1 −Ax1 = y and x2 −Ax2 = y

it follows the equality (x1 − x2) − A(x1 − x2) = 0 which is in contrariety
with the preceding statement, because x1 − x2 6= 0.

Proposition 34. Let X be a lower complete lower transversal normed space
and let A : X → X be a lower total continuous linear operator. If the
equation

x−Ax = 0(48)

has a trivial solution, then the following equation in a corresponding form
as

x−Ax = y(49)

has a solution for every y ∈ X. (This statement is in some sense vice versa
of the preceding statement.)

Further, a combination of the preceding two statements we obtain the
following result as an alternative for operators equations.

Theorem 25. (Lower Fredholm alternative). Let X be a lower complete
lower transversal normed space and let A : X → Y be a lower total continu-
ous linear operator. Then, or the equation

x−Ax = y

has a unique solution for every y ∈ X, or the equation of the form x−Ax = 0
has a nontrivial solution.

Remark. A matter honor I have such that the preceding statement denoted to
name by I v a r F r e d h o l m (1866-1927)6 as lower Fredholm alternative. The
results of his doctoral thesis in 1900 they have been in daybreak of Hilbert spaces.

6History of Hilbert spaces. One of the most active proponents of Fredholm’s new
theory on integral equations of 1900 was D a v i d H i l b e r t. As soon as he heard of
Fredholm’s result, he started doing research himself on these questions, made them one of
the main subject discussed in his Seminar in Göttingen, and supervised many dissertations
on the various aspects of the theory. Between 1904 and 1906 he published six papers on
integral equations in the “Göttinger Nachrichten” later brought together in a single volume
entitled “Grundzüge einer allgemeinen Theorie der Integralgleichungen” (Teubner, Leipzig
1912). The results of Hilbert are but one step removed from what we now call the theory of
Hilbert space; but the birth of this theory almost immediately followed the publication of
Hilbert’s papers (by René Maurice Fréchet and Erhard Schmidt in 1908). It seems to me
that it is due to the fact that this publication precisely occurred during the emergence of
a new concept in mathematics, the concept of structure. J o h n v o n N e u m a n n was
the first to conceive of an ”abstract” Hilbert space in 1929 (in connection with his spectral
theory for unbounded hermitian operators and his investigations on the mathematical
foundations of quantum mechanics.
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In further we notice that lower Fredholm alternative also holds and for the
equations λx − Ax = y and λx − Ax = 0, where λ 6= 0 is an arbitrary number.
Otherwise, Fredholm’s first formulation of alternative it has been for the integral
equations in the form

x(s)− λ
∫ 1

0

K(s, t)x(t)dt = 0,

x(s)− λ
∫ 1

0

K(s, t)x(t)dt = y(s),

and in his honor this equations to carry his name. Some later is formulated an
alternative for equations via total continuous linear operators.

For a proof of Proposition 34 we have the following two half statements
which are foundation on extension Hahn-Banach theorem (Theorem 20) in
the following sense.

Proposition 35. Let X be a lower complete lower transversal normed space
and let A : X → X be a lower total continuous linear operator. If the
functional y∗ ∈ X∗ is to annul in every point x ∈ X with the equation
x−Ax = 0, then the equation

x∗ −A∗x∗ = y∗(50)

has a solution. Specially, if the equation x − Ax = 0 has a unique trivial
solution, then the equation (50) has a solution for every y∗ ∈ X∗.
Proof. Let on the vector subspace L which is composition of all vectors of
the form z = x−Ax the functional x∗ defined by

x∗(x−Ax) = y∗(x);(51)

then, from Extension Hahn-Banach theorem (Theorem 20), we can x∗ (broaden
on whole space X. If T = id−A, then

x∗(x−Ax) = x∗((id−A)x) = x∗(Tx) = (T ∗x∗)x = (id∗ x∗ −A∗x∗)x,
and thus, profitable (51), it follows that x∗ satisfying the equation (50). The
proof is complete. �
Proposition 36. Let X be a lower complete lower transversal normed space
and let A : X → X be a lower total continuous linear operator. If in the
point y ∈ X every the functional x∗ ∈ X∗ is to annul with the property
x∗ −A∗x∗ = 0, then the following equation in the form as

x−Ax = y(52)

has a solution. Specially, if the equation x∗−A∗x∗ = 0 has a trivial solution,
then the equation (52) has a solution for every y ∈ X.

Proof. LetM∗ be a set of all functionals x∗ on X which satisfying the equation
x∗ − A∗x∗ = 0. Every x∗ ∈ M∗ is corresponding the set Lx∗ of all points x ∈ X
with the property x∗(x) = 0. If the vector y ∈ X satisfying

x∗(y) = 0 for every x∗ ∈M∗,
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then y ∈ ⋂x∗∈M∗ Lx∗ , which means that every vector y can be written in the form
x−Ax. In this sense, let x∗1 be a functional such that

x∗1(y) 6= 0 and x∗1(x−Ax) = 0 for every x ∈ X,(53)

where y1 /∈ (id−A)X. In further, we first prove a construction of a lower bounded
linear functional x∗1 on X such that (53) holds.

For the proof of this fact, let L0 be a set of all vectors of the form x−Ax. Let
{L0, y1} be a vector subspace of all vectors of the form z + αy1, where z ∈ L0.
Defined a lower bounded linear functional x∗1 on {L0, y1} such that

x∗1(z + αy1) = α,

and hence, from Extension Hahn-Banach theorem (Theorem 20), we can be broaden
on whole space X. Since x∗1(y1) = x∗1(0 + 1 · y1) = 1 and since

x∗1(x−Ax) = x∗1((x−Ax) + 0 · y1) = 0,

hence it follows that the functional x∗1 satisfying all facts of (53). The proof is
complete.
Proof of Proposition 34. Immediately to combine of Propositions 35

and 36 we obtain that all facts hold in Proposition 34.
The proof of this statement is totally analogous with the proof of Theorem 25

based on Lemma of Infinite Maximality and the former characterization of reflex-
ivity on lower transversal normed spaces. Thus we omit the proof.
Middle transversal normed spaces. In the preceding two part of this

paper I have had two spaces (or two sides of a space): upper transversal
normed space and lower transversal normed space. As a new space (or
as third side of a given space) is a middle transversal normed space by
Ta s k o v i ć[2005]. In this sense, a middle transversal normed space
is an upper transversal normed space and a lower transversal normed space
simultaneous.

3. Miscellaneous results, problems and applications

3.1. Upper and Lower Compact Operators, T a s k o v i ć[2005]. The new
facts on lower compact operators can play a central role in nonlinear functional
analysis. Their importance stems from the fact that many results on lower contin-
uous operators on Rn carry over to transversal lower normed spaces when “lower
continuous” is replaced by “lower compact”.

In connection with this, as it is well-known, compact and completely continuous
operators occur in many problems of classical analysis. In the nonlinear case, the
first comprehensive research on compact operators with numerous applications to
partial differential equations (both linear and nonlinear) was due to J. Schauder:
Zur Theorie stetiger Abbildungen in Funktionalräumen, Math. Zeit., 26 (1927),
47–65.

Literature on applications of the Schauder theorem to nonlinear problems is
extensive. The first topological proof of the Peano theorem is due to G. D. Birkhoff
and O. D. Kellogg: Invariant points in function space, Trans. AMS, 23 (1922), 95–
115.
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Juliusz Schauder in 1930 briefed: “The problem which this work brings to a
certain conclusion was first investigated by Messrs. Birkhoff and Kellogg in 1922.
These authors already recognized the correctness of the fixed point theorem in the
simplest function spaces, but for each individual function spaces, the proof had to
be carried anew from the beginning”.

We notice that the fundamental idea of applying fixed point results to produce
theorems in analysis is due to H. Poincaré: Sur certaines solutions particulières du
problème des trois corps, Bull. Astronom., 1 (1884), 65–74.

The possibility of defining such notions as a limit and a continuity in an arbitrary
set is an idea which undoubtedly was put forward for the first time by M. Fréchet
in 1904, and developed by him in his famous thesis in 1906.

The simplest and most fruitful method which be proposed for such definitions
was the introduction of the notion of distance.

But the greatest merit of Fréchet lies in the emphasis he put on three notions
which were to play a fundamental part in all later developments of Functional
Analysis: compactness, completeness, and separability.

In this sense, the notion of order, and the notion of new completeness, have each
led to a fixed point statement. We now obtain geometric results of fixed points
based on an interplay of these two notions as new notations in transversal upper
and lower spaces.

In connection with this, first, in Tasković [1998] we introduced the concept of
transversal (upper and lower) spaces as a natural extension of Fréchet’s, Kurepa’s,
and Menger’s spaces.

Further, let X and Y be Banach spaces and T : D(T ) ⊂ X → Y an operator,
which is called compact (or upper compact) iff: T is continuous and T maps
bounded sets into relatively compact sets.

Compact operators play a central role in a nonlinear functional analysis. Their
importance stems from the fact that many facts on continuous operators on Rn
carry over to Banach spaces when continuous is replaced by compact.

For finite-dimensional Banach spaces, continuous and compact operators are
the same whenever the domain D(T ) is closed. For if S is bounded, then S is
compact, since dim(X) < ∞. Then f(S) is compact, and hence f(S) is relatively
compact. Typical examples of compact operators on infinite dimensional Banach
spaces are integral operators with sufficiently regular integrands. We have the
following characterization of compact operators by S c h a u d e r [1934].

Proposition 37. (Approximation for compact operators). Let X and Y be Banach
spaces and M be a nonempty bounded subset of X. Then T : M → Y is a compact
operator if and only if for every n ∈ N there exists a compact operator Pn : M → Y
such that dim

(
SpanPn(M)

)
<∞ and

supx∈M
∥∥T (x)− Pn(x)

∥∥ ≤ 1/n.

We notice that in the proof of this statement we essentially use the characteriza-
tion of relatively compact sets in Banach spaces by finite ε-nets. In this sense, if T
is a compact operator, then T (M) is relatively compact so that so-called Schauder
operator defined by

Pn(x) =

∑n
i=1 ai(x)yi∑n
i=1 ai(x)
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where ai(x) = max
{
n−1 − ‖Tx − yi‖, 0

}
, has all the requisite properties for the

continuous ai(x) do not all vanish simultaneously for x ∈M .
In the preceding chapter, we have the basic fixed-point theorems for compact

operators in normed linear spaces. The approach is based on a general techniques
as: The approximation of compact maps by finite-dimensional ones, which leads to
the analogs of the Brouwer and Borsuk theorems for compact maps. Further, for
immediate applications of Brouwer and Schauder fixed point theorems to nonlinear
systems of equations, to system of inequalities, to nonlinear integral equations, and
to ordinary and semilinear partial differential equations see: Z e i d l e r [1986],
D u g u n d j i - G r a n a s [1982], and Ta s k o v i ć [1993].

Peano’s Theorem. (Initial value problem). Further we give an application of
General Schauder fixed point theorem to differential equations. As a parallel and
contrast to the Picard-Lindelöf theorem we consider the initial value problem of
the form as

x′(t) = f
(
t, x(t)

)
, x(t0) = y0,(54)

on [t0 − c, t0 + c]. Geometrically, (54) means that we are looking for a curve which
satisfies the differential equation and passes through (t0, y0) as in Figure 6 with
y0 = p0. At the end points t = t0 ± c, where x′(t) is to be interpreted as the
appropriate one-sided derivative.
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Proposition 38. (P e a n o [1890], T a s k o v i ć [2012]). Let there be given real
numbers t0 and y0, and the rectangle of the form as

Qb :=
{

(t, x) ∈ R2 : |t− t0| ≤ a, |x− y0| ≤ b
}
,

where a and b are fixed positive numbers. Suppose that f : Qb → R is continuous
and bounded with the following condition of the form as

∣∣f(t, x)
∣∣ ≤ K for all (t, x) ∈ Qb,

and fixed K > 0. Set c := min{a,K/b}. Then the initial value problem (54) has at
least countable or finite continuously differentiable solutions on [t0 − c, t0 + c].

Proof. (Application of Lemma A). In addition to initial value problem (54), we also
consider the integral equation of the form as

x(t) = y0 +

∫ t

t0

f
(
s, x(s)

)
ds,
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and next write this as the operator equation x = T (x), for x ∈M ⊂ X, where X :=
C
(
[t0−c, t0+c]

)
,M =

{
x ∈ X : ‖x−y0‖ ≤ b, and ‖x‖ = maxt0−c≤t≤t0+c |x(t)|

}
.

The setM is closed, convex, and bounded inX; also from this it follows T (M) ⊂M .
Since the operator T is compact,we have that Tasković fixed point theorem (Theo-
rem 46) implies the existence at least countable or finite solutions x = T (x), x ∈M .
The proof is complete. �

Existence principle for systems of equations. As a simple application of
the Brouwer fixed point theorem, we will prove an important existence statement
for the system of the form as

gi(x) = 0, for i = 1, . . . , n;(55)

where x = (ξ1, . . . , ξn) ∈ Rn. The key for solution of this problem is in the next
boundary condition which we can briefly write in the following form as

n∑

i=1

gi(x)ξi > 0 for all x with ‖x‖ = r.(56)

We notice that this existing problem will play a decisive role in the discussion
of the Galerkin method for monotone operators, cf. Z e i d l e r [1990, p. 557].

Proposition 39. (Solution of system equations (55)). Let ClK(0, r) =
{
x ∈ Rn :

‖x‖ ≤ r
}
for fixed r > 0 and x 7→ ‖x‖ a norm on Rn. Let gi : ClK(0, r) → R be

continuous for i = 1, . . . , n. If (56) is satisfied, then (55) has at least countable or
finite solutions x with ‖x‖ 6 r.
Proof. (Application of Lemma A). Set g(x) = (g1(x), . . . , gn(x)) and suppose that
g(x) 6= 0 for all x ∈ ClK(0, r). Then define

f(x) = −rg(x)/‖g(x)‖,
and, now f is continuous map of compact, convex set ClK(0, r) into itself. By
General Brouwer fixed point theorem (Proposition 44) there exist at least countable
or finite fixed points x = f(x). Taking norms, we see that ‖x‖ = r. Furthermore,

n∑

i=1

gi(x)ξi = −r−1‖g(x)‖
n∑

i=1

fi(x)ξi = −r−1‖g(x)‖
n∑

i=1

ξ2
i < 0,

contrary to the preceding fact (56). Thus, we have that g(x) = 0 for countable or
finite x ∈ ClK(0, r). The proof is complete. �

3.2. An Extension Leray-Schauder Principle, T a s k o v i ć [2005]. We
will now show how to use topological methods, and in particular, the Schauder
fixed point theorem for continuation with respect to λ-parameter. In this sense we
have the following Leray-Schauder Principle in the form such as.

Theorem 26. (Leray-Schauder [1934], Tasković [2005]). Let X be a Banach space.
Suppose that the operator T : X → X is compact and that there exists an r > 0
such that

x = λT (x) with 0 < λ < 1 implies ‖x‖ ≤ r,(57)

then the equation of the form as x = T (x) has at least countable or finite solu-
tions. (Notice that (57) is trivially fulfilled if the following inequality holds as
supx∈X ‖T (x)‖ <∞).



164 Transversal Functional Analysis

Proof. (Application of Lemma A). Let X be a Banach space and T is a compact
operator. We define an operator

S(x) =





T (x) if ‖T (x)‖ ≤ 2r,
2rT (x)

‖T (x)‖ if ‖T (x)‖ > 2r;

and we claim that S : M → M is compact on M :=
{
x ∈ X : ‖x‖ ≤ 2r

}
.

Obviously, S is continuous. To establish compactness, let {xn}n∈N be a sequence
in M . We consider two cases, namely there is: (a) a subsequence {yn}n∈N of
{xn}n∈N such that ‖T (yn)‖ ≤ 2r for all n ∈ N, and (b) a subsequence {yn}n∈N
such that

∥∥T (yn)
∥∥ > 2r for all n ∈ N.

In case (a), the compactness of T implies that there is a subsequence {zn}n∈N
of {yn}n∈N such that S(zn) = T (zn)→ y as n→∞.

In case (b), one can choose {zn}n∈N so that 1/‖T (zn)‖ → α and T (zn) → y as
n→∞ for suitable α and y, so that S(zn)→ 2rαy as n→∞.

The Tasković fixed point theorem (Proposition 46) provides us with at least
countable or finite x ∈ M for which S(x) = x. If

∥∥T (x)
∥∥ 6 2r, then T (x) =

S(x) = x. The other case,
∥∥T (x)

∣∣ > 2r, is impossible, for otherwise,

S(x) = λT (x) = x, 0 < λ =
2r∥∥T (x)
∥∥ < 1,

which forces ‖x‖ = 2r, while the condition (57) requires that ‖x‖ 6 r. The proof
is complete. �

Annotations. We notice that by using Theorem 26 we can obtain an existence
proof for the stationary Navier-Stokes equations (i.e., stationary movement of a
viscous fluid).

Let X be a nonempty set. The function ρ : X ×X → [0,+∞] := R0
+ ∪ {+∞}

is called a lower transverse on X (or lower transversal) iff: ρ[x, y] = ρ[y, x],
ρ[x, y] = +∞ if and only if x = y, and if there is a lower bisection function
µ : [0,+∞]2 → [0,+∞] such that

ρ[x, y] ≥ min
{
ρ[x, z], ρ[z, y], µ

(
ρ[x, z], ρ[z, y]

)}
(Am)

for all x, y, z ∈ X. A lower transversal space is a set X together with a given
lower transverse on X. The function µ in (Am) is called lower bisection function.

Annotation. For any nonempty set S in the lower transversal space X the dia-
meter of S, denoted by diam(S), is defined as

diam(S) := inf
{
ρ[x, y] : x, y ∈ S

}
;

where A ⊂ B implies diam(B) 6 diam(A). The relation diam(S) = +∞ holds if
and only if S is a one point set.

Elements of a lower transversal space will usually be called points. Given a lower
transversal space (X, ρ), with the bisection function d : [0,+∞]2 → [0,+∞] and a
point z ∈ X, the open ball of center z and radius r > 0 is the set

d(B(z, r)) =
{
x ∈ X : ρ[z, x] > r

}
.
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On the other hand, from Ta s k o v i ć [2005], the convergence xn → x as n→∞
in the lower transversal space (X, ρ) means that

ρ[xn, x]→ +∞ as n→∞,
or equivalently, for every ε > 0 there exist an integer n0 such that the relation
n > n0 implies ρ[xn, x] > ε.

The sequence {xn}n∈N in the lower transversal space (X, ρ) is called transver-
sal sequence (or lower Cauchy sequence) iff for every ε > 0 there is an n0 = n0(ε)
such that

ρ[xn, xm] > ε for all n,m ≥ n0.

Let (X, ρ) be a lower transversal space and T : X → X. We notice, from
Ta s k o v i ć [2005], that a sequence of iterates {Tn(x)}n∈N in X is said to be
transversal sequence if and only if

lim
n→∞

(
diam{T k(x) : k ≥ n}

)
= +∞.

Also, a lower transversal space is called lower complete iff every transver-
sal sequence converges. In this sense, a space (X, ρ) is said to be lower orbital
complete (or lower T -orbital complete) iff every transversal sequence which in
contained in O(x) := {x, Tx, T 2(x), . . .} for some x ∈ X converges in X.

Let (X, ρ) be a lower transversal space and T : X → X. We shall introduce
the concept of LS-convergence in a space X; i.e., a lower transversal space X sa-
tisfies the condition of LS-convergence (or X is LS-complete) iff: {xn}n∈N is an
arbitrary sequence in X and

∑∞
i=1 ρ[xi, xi+1] = +∞ implies that {xn}n∈N has a

convergent subsequence in X.
In connection with this, a lower transversal space (X, ρ) satisfies the condition

of orbital LS-convergence (or X is orbital LS-complete) iff: {Tn(x)}n∈N∪{0} for
x ∈ X is an arbitrary iteration sequence in X and

∞∑

n=0

ρ[Tn(x), Tn+1(x)] = +∞ (for x ∈ X)

implies that {Tn(x)}n∈N∪{0} has a convergent subsequence in X.
We notice that in 2005 Tasković proved the following statement for a class of

expansion mappings. Namely, if (X, ρ) is an orbital LS-complete lower transversal
space, if T : X → X, and if there exists a number q > 1 such that

ρ
(
T (x), T (y)

)
> qρ(x, y)(58)

for each x, y ∈ X, then T has a unique fixed point in the lower transversal space
X.

Let (X, ρX) and (Y, ρY ) be two lower transversal spaces and let T : X → Y . We
notice, from Ta s k o v i ć [2005], that T be lower transversal continuous (or
lower continuous) at x0 ∈ X iff for every ε > 0 there exists a δ > 0 such that the
relation

ρX [x, x0] > δ implies ρY [T (x), T (x0)] > ε.

A typical first example of a lower transversal continuous mapping is the map-
ping T : X → X with property (58). Also, the lower transverse ρ needs not be
lower transversal continuous; but, for an arbitrary metric function r(x, y) the lower
transverse of the form ρ[x, y] := 1/r(x, y) is a lower transversal continuous function.
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For further facts on the lower transversal continuous mapping see: T a s k o v i ć
[2005].

We are now in a position to formulate our new statements in this part of the
paper as Geometric statements of fixed point in the following forms.

Theorem 27. Let T be a self-map on an orbital LS-complete lower transversal
space (X, ρ). Suppose that there exists a function G : X → R0

+ such that

ρ
(
x, T (x)

)
> G(Tx)−G(x)(Aw)

for every x ∈ X. If x 7→ G(Tx) is an upper semicontinuous function and if
G(Tna)→ +∞ as n→∞ for some a ∈ X, then T has at least countable or finite
fixed points in X.

Proof (of a special case). Let x ∈ X be an arbitrary point in X. We can
show then that the sequence of iterates {Tnx}n∈N∪{0} in X satisfies the condition
of LS-convergence. In this sense, from (Aw) we have

n∑

i=0

ρ
[
T ix, T i+1x

]
> G(Tn+1x)−G(x),

and thus, from the conditions for functional G, as n→∞, we obtain an inequality
and an equality as the following fact:

∞∑

i=0

ρ[T ia, T i+1a] > lim
n→∞

(
G(Tn+1a)−G(a)

)
= +∞.

Hence, for the subsequence of iterates {Tn(k)a}k∈N∪{0} in X, by orbital LS-com-
pleteness, there is ξ ∈ X such that Tn(k)(a) → ξ (k → ∞). Since ξ ∈ X, from
(Aw), we obtain the following inequality in the form ρ(ξ, T (ξ)) > G(Tξ) − G(ξ);
i.e., since x 7→ G(Tx) is an upper semicontinuous function, we have

ρ(ξ, T (ξ)) > lim sup
k→∞

G(Tn(k)+1a)−G(ξ) = +∞;

which means, by the properties of a lower transversal space, Tξ = ξ. The proof is
complete.

In connection with the preceding statement, we can now show that the following
facts hold. Let X be a topological space (or only a nonempty set), let T : X → X
and let A : X ×X → R0

+ be a given mapping. We shall introduce the concept of
LA-variation in a space X, i.e., a topological space X satisfies the condition of
LA-variation iff: there exists a function A : X ×X → R0

+ such that
∞∑

n=0

A(Tn(x), Tn+1(x)) = +∞(59)

for arbitrary x ∈ X. In this case if (59) holds, we say and that T : X → X is
unbounded variation or unbounded A-variation.

In connection with the preceding statement, we can now show that the following
facts hold from the following.

Lemma 4. Let X be a nonempty set, T : X → X, and let A : X ×X → R0
+ be a

given mapping. Then the following facts are mutually equivalent:
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(a) T is an unbounded variation mapping on a nonempty set X in the sense of
the arbitrary given mapping A.

(b) There is an unbounded function G : X → R0
+ such that holds in this sense

the following inequality in the form as

A
(
Tn(x), Tn+1(x)

)
> G(Tx)−G(x)

for every n ∈ N ∪ {0} and for every x ∈ X, where G(Tnx)→ +∞ as n→∞.
(c) There is a nonnegative sequences of real functions in the form x 7→ Cn(x, Tx)

such that the following inequality holds

A
(
Tn(x), Tn+1(x)

)
> Cn(x, Tx)

for every n ∈ N ∪ {0} and for every x ∈ X, where
∑∞
n=0 Cn(x, Tx) = +∞ for

arbitrary x ∈ X.

Proof. For the proof of this facts, first, suppose that it holds (a), then we define
the function G : X → R0

+ by

G(x) =

n∑

i=0

A(T ix, T i+1x) for x ∈ X;

and thus we have G(Tx)−G(x) ≤ A(Tnx, Tn+1x), i.e., the condition (b) holds. If
(b) holds, then we obtain that the following inequality holds

A(Tnx, Tn+1x) > G(Tn+1x)−G(Tnx)

for every x ∈ X and for every n ∈ N∪{0}. We set Cn(x, Tx) = G(Tn+1x)−G(Tnx)
then directly we obtain (c). Also, elementary, (a) is a consequence of (c). The proof
is complete. �

Annotation. LetX be a topological space let T : X → X, and let A : X×X → R0
+

be a given mapping. We shall introduce the concept of LS-convergence in a spa-
ce X, i.e., a topological space X satisfies the condition of LS-convergence iff:
{xn}n∈N is an arbitrary sequence in X and

∑∞
i=1A(xi, xi+1) = +∞ implies that

{xn}n∈N has a convergent subsequence in X.

On the other hand, a topological space X satisfies the following condition of
orbital LS-convergence iff: {Tnx}n∈N∪{0} for x ∈ X is an arbitrary itera-
tion sequence in X and

∑∞
n=0A(Tnx, Tn+1x) = +∞ (for x ∈ X) implies that

{Tnx}n∈N∪{0} has a convergent subsequence in X.
We are now in a position to formulate our main geometric statements of fixed

point on arbitrary topological spaces.

Theorem 28. Let T be a self-map on a topological space X which is with the
property of orbital LS-convergence. Suppose that there exists a function G : X → R
such that

A
(
x, T (x)

)
> G(Tx)−G(x)

for every x ∈ X. If x 7→ G(Tx) is an upper semicontinuous function and if
A(a, b) = +∞ iff a = b and if G(Tnz) → +∞ (n → ∞) for some z ∈ X, then T
has at least countable or finite fixed points in X.
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The proof of this statement is totally analogous with the proofs of the preceding
statements of this type as an example in part 1 of chapter 3 of the book.

In connection with the preceding, we shall introduce the concept of lower topo-
logical space. In this sense, the function A : X × X → [0,+∞] is called a lower
topological transverse on a nonempty set X (or lower topological transversal)
iff: A(x, y) = +∞ if and only if x = y for all x, y ∈ X. A lower topological spa-
ce X := (X,A) is a topological space X together with a given lower topological
transverse A on X.

Otherwise, the function A is called a semilower topological transverse on a
nonempty set X iff: A(x, y) = +∞ implies x = y for all x, y ∈ X. A semilower
topological space X := (X,A) is a topological space X together with a given
semilower topological transverse A on X.

For further results the following fact is essential. In this sense, we notice that
we can modify the preceding statement in the following sense. Namely, the next
statement follows directly from Theorem 28 such as.

Theorem 28a. Let T be a self-map on a LS-complete semi lower transversal space
(X, ρ). Suppose that there exists an unbounded above function G : X → R0

+∪{+∞}
such that for any x ∈ X, with x 6= Tx, there exists y ∈ X\{x} with property

ρ(x, y) > G(y)−G(x),(Lc)

where x 7→ G(Tx) is an upper semicontinuous function, then T has at least count-
able or finite fixed points in X. (For further applications this statement is essential!)

A brief written suitable proof of this statement based on Lemma of Infinite
Maximality may be found in the book by Ta s k o v i ć [2005].

General annotation. For further facts, in connection with the preceding prob-
lems of fixed point and transversal spaces, see: T a s k o v i ć [2005].

Lower bounded linear operators. Let X and Y be lower transversal normed
spaces over K. The linear operator A : X → Y is called lower bounded (or
bounded) iff

inf
x∈X\{0}

‖Ax‖
‖x‖ > 0;

and, thus, the set B(X,Y ) of lower bounded linear operators from X to Y together
with the operator lower norm of the form

‖A‖ := inf
x∈X\{0}

‖Ax‖
‖x‖

is a complete (lower complete) lower transversal normed space over K.
Let X and Y be lower transversal normed spaces, then a map f : M ⊂ X → Y

is lower transversal continuous (or lower continuous) at x ∈ M iff for every
ε > 0 there is a δ = δ(ε) > 0 such that ‖f(x) − f(y)‖ > ε whenever y ∈ M and
‖x− y‖ > δ.

Lower relative compactness. Let (X, ‖ · ‖) be a lower transversal normed
space. A set M in X is lower bounded iff there is a number r > 0 such that
‖x‖ > r for all x ∈M .

A set M in X is lower relative compact (resp. lower compact) iff every
sequence in M contains a lower convergent subsequence (resp. the lower limit of
which also belongs to M).
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Let M ⊂ X, the set of points x1, . . . , xn(ε) ∈ M is called a lower finite ε-net
forM iff mini=1,...,n ‖x−xi‖ > ε for all x ∈M . In this sense, M is lower relative
compact iff for every ε > 0 there is a lower finite ε-net for M .

The set M is lower dense in X iff M = X, i.e., for every x ∈ X there exists
a sequence {xn}n∈N in M such that xn → x as n → ∞. This is equivalent to the
condition that for every x ∈ X and for every ε > 0 there is a point y ∈ M such
that ‖x − y‖ > ε. The concept of denseness in lower transversal normed spaces
covers many new approximation results.

Let X and Y be lower transversal normed spaces, then a map f : M ⊂ X → Y
is lower transversal continuous (or lower continuous) at x ∈ M iff xn → x as
n→∞ implies f(xn)→ f(x) as n→∞.

Here, it is naturally assumed that all of the xn belong to M . That f is lower
transversal continuous at x then it is equivalent to: for every ε > 0 there is a
δ(ε) > 0 such that

‖f(x)− f(y)‖ > ε whenever y ∈M and ‖x− y‖ > δ(ε).

Further we will denote by B(R0
+) the set of all upper bisection functions ψ :

(R0
+)2 → R0

+ which are increasing satisfying ψ(t, t) ≤ t for every t ∈ R0
+.

We will further on denote by D([0,+∞]) the set of all lower bisection functions
d : [0,+∞]2 → [0,+∞] which are increasing, satisfying d(t, t) > t for every t ∈
[0,+∞].

Let G be a nonempty bounded open set in Rn. Then LC(G) denotes the set
of all real lower transversal continuous functions f : G → R. For the special case
where G is a bounded open interval (a, b) we write LC[a, b] for LC(G). In this
sense, the set M in LC(G) is lower relatively compact iff: (i) (lower uniformly
boundedness)

inf
f∈M

(
1

supx∈G |f(x)|

)
> 0;

(ii) (lower equicontinuity) for every ε > 0 there is a δ(ε) > 0 such that the
following fact holds, that is

(
sup
f∈M

|f(x)− f(y)|
)−1

> ε whenever x, y ∈ G and |x− y|−1 > δ(ε);

where here δ(ε) is independent of x, y and f .
The space LC(G, Y ). Let G be a nonempty bounded open set in Rn and let

(Y, ‖ · ‖Y ) be a lower transversal normed space over K. We let LC(G, Y ) denote
the set of all lower transversal continuous functions f : G → Y . Then LC(G, Y )
becomes a lower transversal normed space over K with the maximum norm of the
form ‖f‖ = 1

/
maxx∈G ‖f(x)‖Y .

In this sense we have the following statement of a Form of the Arzelà-Ascoli
theorem for the lower transversal normed spaces: The set M in LC(G, Y ) is lower
relatively compact iff: the set {f(x) : f ∈ M} is lower relatively compact in Y for
all x ∈ G, and for every x ∈ G and every ε > 0 there is a δ(ε, x) > 0 which is
independent of the function f such that

inff∈M ‖f(x)− f(y)‖Y > ε whenever y ∈ G and ‖x− y‖ > δ(ε, x).



170 Transversal Functional Analysis

A brief proof of this statement may be found in: T a s k o v i ć [2005]. This
statement is essential for further facts on lower transversal normed spaces.

3.3. Lower compact operators, T a s k o v i ć[2005]. Let X and Y be lower
transversal normed spaces and T : D(T ) ⊂ X → Y an operator. The operator T
is called lower compact iff: T is lower transversal continuous and T maps lower
bounded sets into lower relatively compact sets.

Typical example of lower compact operators on infinite dimensional lower transver-
sal normed spaces is integral operator in the following form:

(Tx)(t) =

∫ t

a

K(t, s, x(s)) ds for all t ∈ [a, b],

where K : [a, b]× [a, b]× [−r, r]→ K(:= R,C) is a continuous function. Set, further,
that the following fact holds as

M :=
{
x ∈ LC

(
[a, b],K

)
: ‖x‖ > r

}
,

where ‖x‖ = 1/maxa≤s≤b |x(s)| and LC
(

[a, b],K
)
is the space of all lower transver-

sal continuous maps x : [a, b]→ K.
In this sense, we will consider T for K = R. The remaining case is treated

similarly. The set A = [a, b]× [a, b]× [−r, r] is compact, whence K is bounded and
uniformly continuous on A. Thus, there is a number α such that |K(t, s, x)| ≤ α
for all (t, s, x) ∈ A, and for every ε > 0 there is a δ(ε) > 0 such that |K(t1, s1, x1)−
K(t2, s2, x2)| < ε for all (ti, si, xi) ∈ A and i = 1, 2 satisfying |t1 − t2|+ |s1 − s2|+
|x1 − x2| < δ(ε). Let z = Tx and x ∈M . Then

1

z(t)
> 1∣∣∣
∫ t
a
K
(
t, s, x(s)

)
ds
∣∣∣
> 1

(b− a)α

for all t ∈ [a, b]. Furthermore, for |t1 − t2| 6 min{δ(ε), ε}, we obtain the following
suitable inequalities of the form

1

|z(t1)− z(t2)| =

∣∣∣∣
∫ t1

a

K
(
t1, s, x(s)

)
ds−

∫ t2

a

K
(
t2, s, x(s)

)
ds

∣∣∣∣
−1

=

=

∣∣∣∣
∫ t1

a

(
K
(
t1, s, x(s)

)
−K

(
t2, s, x(s)

))
ds−

∫ t2

t1

K
(
t2, s, x(s)

)
ds

∣∣∣∣
−1

>

> 1

(b− a)ε+ |t1 − t2|α
> 1

((b− a) + α)ε
;

and thus, the preceding two inequalities are uniformly true for z = Tx with ar-
bitrary x ∈ M . By the Form of the Arzelà-Ascoli theorem (for lower transversal
spaces), the set T (M) is lower relative compact.

On the other hand, the operator T is lower transversal continuous on M . To
see this, let {xn}n∈N be a sequence in M with ‖xn − x‖ → +∞ as n → ∞, i.e.,
the functions xn(t) lower converge uniformly on [a, b] to x(t). Set zn = T (xn) and
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z = T (x). Then

‖z − zn‖ =
1

maxa≤t≤b |z(t)− zn(t)| =

=

(
max
a≤t6b

∣∣∣∣
∫ t

a

(
K
(
t, s, x(s)

)
−K

(
t, s, xn(s)

))
ds

∣∣∣∣
)−1

→ +∞ as n→∞;

and thus, all the preceding facts together imply the lower compactness of T . The
prove of this fact is complete.

Convexity on lower transversal spaces. The set C in linear space is lower
convex if for x, y ∈ C and λ ∈ [1, 2] implies that λx + (1 − λ)y ∈ C. The lower
transversal space (X, ρ) is called lower convex (or transversal lower convex) if for
any two different points x, y ∈ X there is a point z ∈ X (z 6= x, y) such that

ρ[x, y] + ρ[y, z] = 2−19ρ[x, z].(Cd)

In connection with this, if C ⊂ X is a lower convex set of a transversal lower nor-
med space X, then C is also transversal lower convex space with ρ[x, y] = 1/‖x−y‖
for the classical norm ‖.‖, because for any two different points x, y ∈ C there is a
point z := (3y−x)/2 ∈ C (z 6= x, y) such that (Cd) holds. For further facts on lower
transversal normed spaces see part 5 of this chapter of the book by Ta s k o v i ć
[2005].

We are now in a position to formulate the following general statements which
are based for geometry (lower convexity) of lower transversal spaces. The following
statements are the very connection with the famous Schauder’s problem (Scottish
book, problem 54), from: Tasković [2002].

Proposition 40. Let C be a nonempty lower convex compact subset of a linear
topological space X and suppose T : C → C is a lower continuous mapping. Then
T has a fixed point in C.

A suitable brief proof of this statement may be found in T a s k o v i ć [2005].
We can give a proof of this statement also from the preceding facts of this book.

Proposition 41. Suppose that C is a nonempty lower convex lower compact subset
of Rn, and that T : C → C is a lower continuous mapping. Then T has a fixed
point in C.

We can now formulate Proposition 41 in a manner valid for all transversal lower
normed linear spaces.

Proposition 42. Let C be a nonempty, lower compact, lower convex subset of a
transversal lower normed space X, and suppose T : C → C is a lower continuous
operator. Then T has a fixed point in C.

We notice that Propositions 41 and 42 are direct consequences of Proposition
40. A brief suitable proof of Proposition 42 may be found in T a s k o v i ć [2005].

On the other hand, in connection with the preceding facts, the set C in linear
space is convex if for x, y ∈ C and λ ∈ [0, 1] implies λx+ (1− λ)y ∈ C.

The lower transversal space (X, ρ) is called L-convex (or transversal L-convex)
if for two different points x, y ∈ X there is a point z ∈ X (z 6= x, y) such that

ρ[x, y] + ρ[y, z] = ρ[x, z].(Dc)
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In connection with this, if C ⊂ X is a convex set of a transversal lower normed
space X, then C is also transversal L-convex space with ρ[x, y] = 1/‖x− y‖ for the
classical norm ‖.‖, because for any two different points x, y ∈ C there is a point

z :=
3−
√

5

2
y +

√
5− 1

2
x ∈ C (z 6= x, y)

such that (Dc) holds. For further facts of this see: T a s k o v i ć[2005].

Proposition 43. Let C be a nonempty L-convex lower compact subset of a linear
topological space X and suppose T : C → C is a lower continuous mapping. Then
T has a fixed point in C.

We can give a proof of this statement from the preceding facts of this book. The
proof of this statement is similar with the proof of the former Proposition 40.

Proposition 44. Suppose that C is a nonempty L-convex lower compact subset of
Rn, and that T : C → C is a lower continuous mapping. Then T has a fixed point
in C.

From Proposition 43 we can now formulate Proposition 44 in a manner valid for
all transversal lower normed linear spaces.

Proposition 45. Let C be a nonempty, lower compact, L-convex subset of a tran-
sversal lower normed space X, and suppose T : C → C is a lower continuous
operator. Then T has a fixed point in C.

We notice that Propositions 44 and 45 are direct consequences of Proposition
43. A brief suitable proof of Proposition 45 may be found in T a s k o v i ć[2005].

Open problem 3. Does every lower continuous mapping of compact set C ⊂ X
into itself in linear topological space X have a fixed point in C, where C with the
property that: λx+ (1−λ)y ∈ C for all x, y ∈ C and λ ∈ [n, n+ 1] for an arbitrary
fixed number n ∈ N!?

We notice that the cases n = 0 and n = 1, of this problem, are solved via
Propositions 40 and 43 in this part of this chapter of the book.

Lemma 5. Let (X, ρ) be a lower transversal space. If C is a transversal L-convex
or lower transversal convex set and if T : C → C, then there exists a function
G : C → R0

+ ∪ {+∞} such that T with the property (Lc).

Proof. Let a ∈ C be a fixed element and let x ∈ C be an arbitrary point with x 6= a.
First, since C is a L-convex set inX, it follows from definition that for a ∈ C and for
all x ∈ C\{a} there exists a point y 6= a, x in C such that ρ[a, x] + ρ[x, y] = ρ[a, y].
Hence, we also have the following inequality of the form

3ρ[x, y] > ρ[x, y] = ρ[a, y]− ρ[a, x],(60)

for every x ∈ C\{a}. On the other hand, if C is a transversal lower convex set,
then again it holds (60) for every x ∈ C\{a}. We notice that (60) simply holds
and for x = a. Hence, from inequality (60) define function G : C → R0

+ ∪ {+∞}
such that

G(x) = 3−1ρ[a, x] for x ∈ C.(61)
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Then, clearly, from (60) and (61) we have for any x ∈ C that there exists y 6= x
in C such that ρ[x, y] > G(y) − G(x). Thus, for any x ∈ C with x 6= Tx there
exists y ∈ C\{x} such that is (Lc). Hence, it follows that T is with the property
(Lc) and the proof is complete. �

Lemma 6. Let X be a linear space. If C is a L-convex or lower convex set in
X and if T is a map of C into itself, then there exists a continuous function
G : C → R0

+ ∪ {+∞} such that T is a with the property (Lc).

Proof. Consider the L-convex (or lower convex) set C of the linear space X as a
lower quasi-transversal space with the quasi lower transverse q, where q : C ×C →
R0

+ ∪ {+∞} defined by

q(x, y) =

{
+∞, for x = y,
min{K(x),K(y)}, for x 6= y,

for a strictly convex continuous function K : C → R0
+ ∪ {+∞}. Then it is easy

to see that q is a lower quasi-transverse, i.e., that for all x, y, z ∈ C we have:
q(x, y) = q(y, x), and

q(x, y) > min
{
q(x, z), q(z, y), d

(
q(x, z), q(z, y)

)}

for some d :
(
R0

+ ∪{+∞}
)2

→ R0
+ ∪{+∞}, and that x = y implies q(x, y) = +∞.

On the other hand, if q(x, y) = +∞ and x 6= y, i.e., if K(x) = K(y) = +∞, then
since K is a strictly convex function, we obtain the following fact

+∞ =
K(x) +K(y)

2
> K

(
x+ y

2

)
= +∞,

which is a contradiction. Consequently, x = y = (x + y)/2, i.e., x = y. Thus,
q(x, y) = +∞ implies x = y, i.e., q is a continuous lower transverse on C.

Applying Lemma 5 to this case, we obtain then that there exists a continuous
function G : C → R0

+ ∪ {+∞} defined by G(x) = 3−1q(x, y) such that T is with
the property (Lc). The proof is complete.

Proof of Propositions 40 and 43. From Lemma 6 and the preceding facts
there exists a continuous function G : C → R0

+ ∪ {+∞} such that T is with the
property (Lc). Since T is a lower continuous mapping, the function x 7→ G(Tx)
is an upper semicontinuous function. The set C is a compact in the space X and
thus C satisfies the condition of LS-completeness. It is easy to see that T satisfies
all the required hypotheses in Theorem 28a. Hence, it follows from Theorem 28a,
that T has at least countable or finite fixed points in C. The proof is complete. �

In connection with this, we notice that a direct equivalent translation of Propo-
sitions 40 and 43 to lower compact operators is the following result.

Proposition 46. Let C be a nonempty, closed, lower bounded, L-convex (or lower
convex) subset of a lower complete transversal lower normed space X, and suppose
T : C → C is a lower compact operator. Then T has at least countable or finite
fixed points in C.

A brief proof of this statement may be found in T a s k o v i ć [2005]. This form
of these statement is useful for applications!
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Existing facts for Systems of Equations. As a simple application of the
Proposition 46, we will prove an important existence statement for the system

gi(x) = 0, for i = 1, . . . , n;(Se)

where x = (ξ1, . . . , ξn) ∈ Rn. The key is in the boundary condition of the following
form which we write in the suitable form as

n∑

i=1

gi(x)ξi > 0, for all x with ‖x‖ = r.(Bc)

Proposition 47. [Solution of (Se)]. Let x 7→ ‖x‖ be a lower norm on Rn with
homogenity ‖λx‖ = |λ|‖x‖ or ‖λx‖ = |λ|−1‖x‖, and let ClK(0, r) = {x ∈ Rn :
‖x‖ > r} for fixed r > 0. If gi : ClK(0, r) → R is lower transversal continuous
for i = 1, . . . , n and if (Bc) is satisfied, then (Se) has at least countable or finite
solutions x ∈ Rn with ‖x‖ > r.
Proof. Set g(x) = (g1(x), . . . , gn(x)) and suppose that g(x) 6= 0 for every
x ∈ ClK(0, r). Then, in the case ‖λx‖ = |λ|‖x‖, define the following function
of the form f(x) = −rg(x)/‖g(x)‖. Now f is a lower transversal continuous map of
the lower compact, L-convex set ClK(0, r) into itself. By Proposition 44 there exists
a fixed point x = f(x). Taking lower norms, we see that ‖x‖ = r. Furthermore,

n∑

i=1

gi(x)ξi = −1

r
‖g(x)‖

n∑

i=1

fi(x)ξi = −1

r
‖g(x)‖

n∑

i=1

ξ2
i < 0,

contrary to (Bc); thus, the statement holds. In the second case, if ‖λx‖ = |λ|−1‖x‖,
then, we define the following function in the form as

f(x) = −‖g(x)‖
r

g(x);

and thus, now f is a lower transversal continuous map of the lower compact, L-
convex set ClK(0, r) into itself. Again, by Proposition 46, there exists a fixed point
x = f(x). Taking lower norms, we see that ‖x‖ = r. Furthermore,

n∑

i=1

gi(x)ξi = − r

‖g(x)‖
n∑

i=1

fi(x)ξi = − r

‖g(x)‖
n∑

i=1

ξ2
i < 0,

contrary to (Bc); and thus, the statement holds in this case. The proof is complete.
�

We notice that on a different manner new proofs may be given for Propositions
43, 44 and 45 (as well as for Propositions 41 and 42) via an approximation process
for lower compact operators. In this sense we have the following result.

Proposition 48. (Approximation for Lower Compact Operators). Let X and
Y be lower complete lower transversal normed spaces with a bisection function
d ∈ D([0,+∞]) and with homogenity ‖hx‖ = |h|‖x‖ or ‖hx‖ = |h|−1‖x‖ and let M
be a nonempty lower bounded subset of X. If T : M ⊂ X → Y is a given operator,
then T is lower compact if and only if for every n ∈ N there exists a lower compact
operator Pn : M → Y such that

infx∈M ‖T (x)− Pn(x)‖ > n(62)
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and ldim(lspanPn(M)) > 0, where ‖ · ‖ is an arbitrary continuous lower norm on
X and Y , and where ldim and lspan are the suitable lower dim and lower span.

Proof. First, in the case of homogentity form ‖hx‖ = |h|‖x‖, let T be lower com-
pact. Then T (M) is lower relative compact, so for each n ∈ N there exist elements
yi ∈ T (M) for i = 1, . . . ,m such that

min
i=1,...,m

‖T (x)− yi‖ >
n
∑m
i=1 hi(x)

min{h1(x), . . . , hm(x)} for all x ∈M,(63)

from the preceding facts on lower relative compactness and from the following
definition that we have the following fact as

Pn(x) =

∑m
i=1 hi(x)yi∑m
i=1 hi(x)

,(64)

where hi(x) = max
{
n − ‖T (x) − yi‖, 0

}
has all the requisite properties, for the

lower continuous hi(x) “do not all vanish simultaneously” for x ∈ M by (63), and
where by the generalized (Nl), i.e., (Nl’)

‖Pn(x)− T (x)‖ =

∥∥∥∥∥∥

(
m∑

i=1

hi(x)

)−1 m∑

i=1

hi(x) (T (x)− yi)

∥∥∥∥∥∥
=

=

(
m∑

i=1

hi(x)

)−1 ∥∥∥∥∥
m∑

i=1

hi(x)(T (x)− yi)
∥∥∥∥∥ > · · · >

>
(

m∑

i=1

hi(x)

)−1

min
{∥∥∥h1(x)(T (x)− y1)

∥∥∥, . . . ,
∥∥∥hm(x)(T (x)− ym)

∥∥∥
}

=

=

(
m∑

i=1

hi(x)

)−1

min
{
h1(x)

∥∥∥(T (x)− y1)
∥∥∥, . . . , hm(x)

∥∥∥(T (x)− ym)
∥∥∥
}
> n

for all x ∈ M . The lower boundedness of T (M) implies the lower boundedness
of Pn(M). Since the set Pn(M) lies in a finite dimensional space, Pn(M) is lower
relative compact, i.e., the operator Pn is lower compact.

In the case of homogenity form ‖hx‖ = |h|−1‖x‖ let T be lower compact. Then
T (M) is lower relative compact, so for each n ∈ N there exist elements yi ∈ T (M)
for i = 1, . . . ,m such that

min
i=1,...,m

‖T (x)− yi‖ >
n
∑m
i=1 hi(x)

min{1/h1(x), . . . , 1/hm(x)} for all x ∈M,
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from the preceding facts on lower relatively compact and from (64). Thus, by (Nl)
or (Nl’), as in the preceding case, we obtain

∥∥∥Pn(x)− T (x)
∥∥∥ =

∥∥∥∥∥∥

(
m∑

i=1

hi(x)

)−1 m∑

i=1

hi(x)(T (x)− yi)

∥∥∥∥∥∥
>

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

>
(

m∑

i=1

hi(x)

)−1

min
{∥∥∥h1(x)(T (x)− y1)

∥∥∥, . . . ,
∥∥∥hm(x)(T (x)− ym)

∥∥∥
}

=

=

(
m∑

i=1

hi(x)

)−1

min

{
1

h1(x)

∥∥∥(T (x)− y1)
∥∥∥, . . . , 1

hm(x)

∥∥∥(T (x)− ym)
∥∥∥
}
> n

for all x ∈ M . The lower boundedness of T (M) implies the lower boundedness if
Pn(M). Again, since the set Pn(M) lies in a finite dimensional space, Pn(M) is
lower relatively compact, i.e., the operator Pn is lower compact in this case, too.

On the other hand, suppose that (62) is true. As the lower uniform limit of lower
continuous operators Pn, the operator T is itself lower continuous, for by (62) and
(Nl) we have

‖T (x)− T (y)‖ > · · · > min
{
n, ‖Pn(x)− Pn(y)‖, n

}
> 3ε

for sufficiently large fixed n ∈ N and ‖x− y‖ > δ(ε). Furthermore, T (M) is lower
relative compact, since (62) implies that for each n ∈ N, the set T (M) has a lower
finite n/2-net. Note that the lower relative compact set Pn(M) has a n-net. The
proof is complete. �

A principle of continuation. We will now show how to use topological meth-
ods for the variant of Proposition 46 for continuation with respect to parameter λ
for the lower compact operators.

Proposition 49. (Principle of Continuation, Tasković [2005]). Let X be a lower
complete transversal lower normed space with homogenity ‖hx‖ = |h|‖x‖ or ‖hx‖ =
|h|−1‖x‖ and suppose that the operator T : X → X is lower compact and there
exists an r > 0 such that

x = λT (x) with λ > 1 implies ‖x‖ > 3r,(Co)

then the equation x = T (x) has at least countable or finite solutions. (Notice that
(Co) is trivially fulfilled if the following inequality holds in the form as infx∈X
‖T (x)‖ > 0.)

Proof. In the case of homogenity form ‖hx‖ = |h|‖x‖ we define an operator of the
following form as

S(x) =





T (x) if ‖T (x)‖ > 2r,
2rT (x)

‖T (x)‖ if ‖T (x)‖ < 2r;

where we claim that S : M → M is lower compact on M := {x : ‖x‖ > 2r}.
Obviously, S is lower transversal continuous.



Milan R. Tasković 177

To establish lower compactness, let {xn}n∈N be a sequence in M . We consider
two cases: namely, there is a subsequence {an}n∈N of {xn}n∈N such that ‖T (an)‖ >
2r for all n ∈ N; and there is a subsequence {an}n∈N such that ‖T (an)‖ < 2r for
all n ∈ N.

In the first case, the lower compactness of T implies that there is a subsequence
{bn}n∈N of {an}n∈N such that S(bn) = T (bn)→ b as n→∞.

In the second case, one can choose {bn}n∈N so that 1/‖T (bn)‖ → a and T (bn)→
b as n→∞ for suitable a and b, so that S(bn)→ 2rab ad n→∞.

In this context, the Proposition 46 provides us with at least countable or finite
x ∈ M for which S(x) = x. If ‖T (x)‖ > 2r, then T (x) = S(x) = x. The other
case, ‖T (x)‖ < 2r, is impossible, for otherwise,

S(x) = λT (x) = x, λ =
2r

‖T (x)‖ > 1,

which forces ‖x‖ = 2r, while this case requires ‖x‖ > 3r. In the case of homogenity
form ‖hx‖ = |h|−1‖x‖ we define an operator of the following form

S(x) =

{
T (x) if ‖T (x)‖ > 2r,
‖T (x)‖T (x)

2r
if ‖T (x)‖ < 2r;

where we claim that S : M → M is lower compact on M . Obviously, S is lower
transversal continuous. Further proof is totally analogous with the preceding case.

Finally, the Proposition 46 provides us with an x ∈ M for which S(x) = x. If
‖T (x)‖ > 2r, then T (x) = S(x) = x. The other case, ‖T (x)‖ < 2r, is impossible,
for otherwise,

S(x) = λT (x) = x, λ =
2r

‖T (x)‖ > 1,

which forces ‖x‖ = 2r, while this case requires ‖x‖ > 3r. The proof is complete. �

Remarks. This result of Proposition 49 is in a direct connection with the
famous Leray-Schauder Principle of Continuation for compact operators in 1934.

One of the earliest successes of functional analysis dates from 1916 when F .
R i e s z used linear space methods to prove some of Fredholm’s results on linear
integral equations.

The concept of a normed linear space had not been formulated in 1916, and
Riesz worked with integral equations, but his techniques generalize directly and
can be applied to a special case of linear operators, now called compact operators.

Now we shall show how Proposition 42 and 45, i.e., Proposition 46, can be
applied for investigation of solvability of the initial value problem of the form

x′(t) = f
(
t, x(t)

)
, x(t0) = y0,(De)

where f is merely continuous or lower transversal continuous. In this sense the
following result holds.

Theorem 29. Let there be given real numbers t0 and y0 and the following suitable
set as a rectangle of the form

Qb :=
{

(t, x) ∈ R2 : |t− t0| ≤ 1/a, |x− y0| ≤ 1/b
}
,
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where a and b are fixed positive numbers. Suppose that f : Qb → R is continuous
or lower transversal continuous and bounded with

|f(t, x)| ≤ K for all (t, x) ∈ Qb,
and fixed K > 0. For m = min{1/a, 1/bK} then the initial value problem (De) has
at least countable or finite lower transversal continuous differentiable solutions on
the closed interval of the form [t0 −m, t0 +m] := I.

In further let LC[t0−m, t0 +m] denote the space of all lower transversal contin-
uous functions x(t) where the lower norm ‖ · ‖ in the form ‖x‖ = 1/maxt∈I |x(t)|.
Proof of Theorem 29. For the proof of this statement we first replace (De) by the
integral equation in the form

x(t) = y0 +

∫ t

t0

f
(
s, x(s)

)
ds,

and next write this as the operator equation x = Tx for x ∈ M ⊂ X, where
M = {x ∈ X : ‖x− y0‖ > b}.

The set M is closed, lower bounded, and L-convex of transversal lower normed
space X := LC[t0 −m, t0 + m]. We notice that T (M) ⊂ M , i.e., T maps M into
M . For if x ∈ M , then ‖x − y0‖ > b, and hence |x(t) − y0| ≤ 1/b for all t ∈ I.
Thus,

‖Tx− y0‖ =
1

maxt∈I

∣∣∣
∫ t
t0
f
(
s, x(s)

)
ds
∣∣∣
> 1

mK
> b;

therefore, Tx ∈ M . The operator T : M → M is lower compact by the preceding
typical example. Now, Proposition 46 implies the existence of a solution x = Tx,
x ∈M . The proof is complete. �

In this part, also, our goal is to generalize the preceding Form of Peano’s theorem
to equations of the form

x′(t) = f
(
t, x(t)

)
, x(t0) = y0,(65)

where x(t) lies in a lower transversal normed space Y . In the special case where
Y = Rp, (65) is the system

ξ′i(t) = fi

(
t, x(t)

)
, ξi(t0) = ηi0, i = 1, . . . , n;

where x(t) = (ξ1(t), . . . , ξn(t)), of n ordinary differential equations. For continuous
fi we obtain the equivalent system of integral equations

ξi(t) = ηi0 +

∫ t

t0

fi

(
s, x(s)

)
ds, i = 1, . . . , n.

As our lower transversal normed space we choose the set of all x(t) for which the
components ξi(t) are lower continuous on [t0 −m, t0 +m]. For the lower norm on
Y we use ‖x‖Y := 1/max1≤i≤n(maxa6t≤b |ξi(t)|), then in complete analogy with
Theorem 29 one shows the existence of solutions for some m and for continuous fi
in the class of all lower continuous functions.

In contrast to former fact that f is continuous, or lower transversal continuous,
we now require f to be a lower compact mapping.



Milan R. Tasković 179

Theorem 30. (Generalized Theorem 29). Let Y be a lower complete lower transver-
sal normed space with a bisection function d ∈ D([0,+∞]), let t0 ∈ R and y0 ∈ Y ,
and

Qb :=
{

(t, y) ∈ R× Y : |t− t0| ≤ 1/a, ‖y − y0‖Y 6 1/b
}
,

for fixed numbers 0 < a, b < ∞. Suppose that f : Qb → Y is a lower compact
map and that ‖f(t, y)‖Y ≤ K for all (t, y) ∈ Qb with fixed K > 0. If we set
m = min{1/a, 1/bK}, then (65) has at least countable or finite lower continuously
differentiable solutions on [t0 −m, t0 +m] := I.

Proof. We set X := LC([t0 −m, t0 +m], Y ) for 0 < m < +∞, i.e., X is the space
of all lower continuous functions x : [t0 −m, t0 +m]→ Y , where as a lower norm,
we choose

‖x‖X := max
t∈[t0−m,t0+m]

‖x(t)‖Y ,

where ‖x‖Y := (maxt∈I |x(t)|)−1 and, where M := {x ∈ X : ‖x − y0‖X > b} is a
ball (lower) in X. Define z(t) to be the right side of the integral equation

x(t) = y0 +

∫ t

t0

f
(
s, x(s)

)
ds := z(t),(66)

and set T (x) = z. Then, this equation corresponds to the fixed point problem
x = T (x) for x ∈M ⊂ X, and is also equivalent to (65). Since ‖x− y0‖X > b and
‖z − y0‖X > 1/mK > b and

‖z(t1)− z(t2)‖Y >
1

K|t1 − t2|
(67)

for all t1, t2 ∈ [t0 −m, t0 +m]; if we now set

A(t) := y0 + (t− t0)conv
{
f(s, x(s)) : s ∈ [t0 −m, t0 +m]

}
,

where conv denote closed convex hull, then z(t) ∈ A(t) and T (M) ⊂M .
The set T (M) is lower relative compact in X, because for (67) it shows that

the functions z ∈ T (M) are lower uniform continuous functions, and for all t ∈
[t0 −m, t0 +m], their values lie in the lower compact set A(t). Then, the Form of
Arzelà-Ascoli theorem implies that T (M) is lower relative compact.

On the other hand, the operator T is lower continuous on M . To see this, let
xn → x in X as n→∞. By (50), we have

‖Txn − Tx‖X > m inf
s∈[t0−m,t0+m]

∥∥∥f
(
s, xn(s)

)
− f

(
s, x(s)

)∥∥∥
Y
→ +∞

as n→∞. For if it did not, there would be an ε0 > 0 and a sequence, denoted for
brevity by (sn) in [t0 −m, t0 +m] for which

∥∥∥f
(
sn, xn(sn)

)
− f

(
sn, x(sn)

)∥∥∥
Y
6 ε0;(68)
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then there is a subsequence, again denoted by (sn) and an s0 such that sn → s0 as
n→∞, and

∥∥∥xn(sn)− x(s0)
∥∥∥
Y
> min

{∥∥∥xn(sn)− x(sn)
∥∥∥
Y
,
∥∥∥x(sn)− x(s0)

∥∥∥
Y
,

d
(∥∥∥xn(sn)− x(sn)

∥∥∥
Y
,
∥∥∥x(sn)− x(s0)

∥∥∥
Y

)}
>

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> min
{∥∥∥xn(sn)− x(sn)

∥∥∥
Y
,
∥∥∥x(sn)− x(s0)

∥∥∥
Y
,

min
{∥∥∥xn(sn)− x(sn)

∥∥∥
Y
,
∥∥∥x(sn)− x(s0)

∥∥∥
Y

}}
=

= min
{∥∥∥xn(sn)− x(sn)

∥∥∥
Y
,
∥∥∥x(sn)− x(s0)

∥∥∥
Y

}
→ +∞ as n→∞.

In this sense, we note that {xn(s)}n∈N is lower uniformly convergent, x(t) is lower
continuous, and f is lower continuous, therefore both f(sn, xn(sn)) and f(sn, x(sn))
lower converge to f(s0, x(s0)) as n→∞, contradicting (68).

Apply the Proposition 46 to obtain the existence of a fixed point of T on M .
The proof is complete. �
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