
Mathematica Moravica
Vol. 17-1 (2013), 51–57

On the Existence and Uniqueness of Solutions of
Boundary Value Problems for Second Order

Functional Differential Equations

Evangelia S. Athanassiadou

Abstract. In this paper we study existence and uniqueness of solu-
tions of boundary value problems for second order nonlinear delay dif-
ferential equations. We transform the boundary value problem to an
equivalent integral equation and then we use the Banach fixed point
theorem and the notion of the Fréchet derivative.

1. Introduction

This paper is concerning with the existence and uniqueness of solutions
of boundary value problems for nonlinear second order functional differen-
tial equations. More precisely, we study boundary value problems for the
equations of the form

x′′(t) = f(t, xt),

where f is a continuous function and xt is a function which denote the delay.
The boundary conditions are consisted from the relation x0 = φ or equiv-
alent x(s) = ϕ(s) on an interval as well as a condition which connect the
values of x on some points of its domain. In this paper general boundary
conditions are considered which cover known cases as in [6] and [8]. Exis-
tence and uniqueness are proved in [8] by using the fixed point technique,
in [7] the topological degree method is applied, while in [6] the method of
quasilinearization has been extended to boundary value problems for func-
tional differential equations of second order. In [10] and [9] boundary value
problems for first and second order functional differential equations respec-
tively are studied via the method of upper and lower solutions. Existence
and dependence of solutions results for similar problems there exist in [5]
and [1]. For the basic theory of functional differential equations we refer to
the books [2], [3] and [4].
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In section 2 we transform the boundary value problem to an equivalent
integral equation. In section 3 we construct an contractive operator and
applying the Banach fixed point theorem we prove an existence and unique-
ness result. We obtain corresponding results using the notion of the Fréchet
derivative.

2. Preliminaries and notations

For a positive number τ the space of all continuous functions ϕ : [−τ, 0]→
R will be denoted by C = C([−τ, 0],R). The supremum norm of ϕ ∈
C([−τ, 0],R) is defined by

||ϕ||C = sup{|ϕ(t)| : t ∈ [−τ, 0]}.
For every continuous function x : [−τ, b]→ R, b > 0, and every t ∈ [0, b] we
denote by xt the function xt : [−τ, 0]→ R with

xt(s) = x(t+ s), s ∈ [−τ, 0].

Especially the condition x0 = ϕ is equivalent to x(s) = ϕ(s), s ∈ [−τ, 0].
This paper is concerned with the boundary value problem

(1) x′′(t) = f(t, xt), 0 ≤ t ≤ b,

(2) x0 = ϕ,

(3) ax(0) + βx
′
(0) + γx(b) + δx

′
(b) = λ,

where f : [0, b]×C → R is a continuous function, ϕ ∈ C, and a, β, γ, δ, λ ∈ R
with β + δ + bγ 6= 0 and a, λ arbitrary numbers.

Lemma 1. Boundary value problem (1)–(3) is equivalent to the integral
equation

x(t) = ϕ(0) +
t

β + δ + γb

[
λ− (α+ γ)ϕ(0)−

∫ b

0
(δ + γb− γs)f(s, xs)ds

]
+

∫ t

0
(t− s)f(s, xs)ds, t ∈ [0, b],

x(t) = ϕ(t), t ∈ [−τ, 0].

Proof. Let x be a solution of (1)–(3) then integrating by parts (1) in the
interval [0, t] we have

(4) x′(t)− x(0) =

∫ t

0
f(s, xs)ds

and putting t = b we take

(5) x′(0)− x′(b) = −
∫ b

0
f(s, xs)ds.
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Integrating (4) again in [0, t] we have

x(t)− x(0)− tx′(0) =

∫ t

0

∫ τ

0
f(s, xs)dsdτ,

which is becomes

(6) x(t)− tx′(0) = ϕ(0) +

∫ t

0
(t− s)f(s, xs)ds.

From (6) with t = b we take

(7) x(b)− bx′(0) = ϕ(0) +

∫ b

0
(t− s)f(s, xs)ds.

From the linear system (3), (5) and (7) we have

(8) x′(0) =
1

β + δ + γb

[
λ− (α+ γ)ϕ(0)−

∫ b

0
(δ + γb− γs)f(s, xs)ds

]
.

From (6) and (8) we have
(9)

x(t) = ϕ(0) +
t

β + δ + γb

[
λ− (α+ γ)ϕ(0)−

∫ b

0
(δ + γb− γs)f(s, xs)ds

]
+

∫ t

0
(t− s)f(s, xs)ds.

Conversely, by differentiating (9) we take

(10)

x′(t) =
1

β + δ + γb

[
λ− (α+ γ)ϕ(0)−

∫ b

0
(δ + γb− γs)f(s, xs)ds

]
+

∫ t

0
f(s, xs)ds,

x′′(t) = f(t, xt), t ∈ [0, b].

Taking into account (9) and (10) we calculate to (3). �

3. Main result

In this section we present an existence and uniqueness result for the
boundary value problem (1)–(3).

Theorem 1. Let f : [0, b] × C → R be a continuous function. We assume
that there exists an integrable and positive function m such that

(11) |f(t, ψ)− f(t, ψ̄)| ≤ m(t) ‖ ψ − ψ̄ ‖C ,

for t ∈ [0, b], ψ, ψ̄ ∈ C and

(12) ln

(
1 +
|β + δ + γb|

A

)
> bM(b),
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whereM(t) =
∫ t

0 m(τ)dτ and A = max
s∈[0,b]

|δ+γb−γs| > 0. Then, the problem

(1)–(3) has a unique solution.

Proof. For x ∈ C we define the norm

‖x‖ = max{e−ρM(t) max{|x(s)|, s ∈ [0, t]}, t ∈ [0, b]},

where

(13) b < ρ <
1

M(b)
ln
(

1 +
|β + δ + γb|

A

)
.

Also we define the operator P : C → C, by
(14)

(Px)(t) = ϕ(0) +
t

β + δ + γb

[
λ− (α+ γ)ϕ(0)−

∫ b

0
(δ + γb− γs)f(s, xs)ds

]
+

∫ t

0
(t− s)f(s, xs)ds, t ∈ [0, b].

Taking into account (11), for any x, y ∈ C we have

|(Px)(t)− (Py)(t)| ≤ | t

β + δ + γb
|
∫ b

0
|δ + γb− γs| · |f(s, xs)− f(s, ys)|ds

+

∫ t

0
(t− s)|f(s, xs)− f(s, ys)|ds

≤ Ab

|β + δ + γb|

∫ b

0
m(s)‖xs − ys‖Cds

+ b

∫ t

0
m(s)‖xs − ys‖Cds.

For s ∈ [0, τ ] we have

‖xs − ys‖C = sup
r∈[−τ,0]

|x(s+ r)− y(s+ r)|

= max
r∈[−s,0]

|x(s+ r)− y(s+ r)|

= max
r∈[0,s]

|x(r)− y(r)|.

Similarly for s ∈ (τ, b] we have

‖xs − ys‖ ≤ sup
r∈[−τ,0]

|x(s+ r)− y(s+ r)|

= max
r∈[s−τ,s]

|x(s+ r)− y(s+ r)|

≤ max
r∈[0,s]

|x(r)− y(r)|.



Evangelia S. Athanassiadou 55

Therefore

|(Px)(t)− (Py)(t)|

≤ Ab

|β + δ + γb|

∫ b

0
m(s)eρM(s)e−ρM(s) max

r∈[0,s]
|x(r)− y(r)|ds

+ b

∫ t

0
m(s)eρM(s)e−ρM(s) max

r∈[0,s]
|x(r)− y(r)|ds

≤ Ab

|β + δ + γb|
‖x− y‖

∫ b

0
m(s)eρM(s)ds+ b‖x− y‖

∫ t

0
m(s)eρM(s)ds

=
Ab

|β + δ + γb|
‖x− y‖e

ρM(b) − 1

ρ
+ b‖x− y‖e

ρM(t) − 1

ρ

=
b

ρ
‖x− y‖

[ A

|β + δ + γb|
(eρM(b) − 1) + eρM(t) − 1

]
=
b

ρ
‖x− y‖

[ 1

|β + δ + γb|

(
AeρM(b) −A− |β + δ + bγ|

)
+ e%M(t)

]
From (12) it follows

AeρM(b) −A− |β + δ + bγ| < 0.

Hence we have

(15) |(Px)(t)− (Py)(t)| ≤ b

ρ
‖x− y‖eρM(t).

From (15) it follows

max
s∈[0,t]

∣∣∣(Px)(s)− (Py)(s)
∣∣∣ ≤ b

ρ
‖x− y‖ max

s∈[0,t]
eρM(s) ≤ b

ρ
‖x− y‖eρM(t),

and hence

max
t∈[0,b]

[
e−ρM(t) max

s∈[0,t]
|(Px)(s)− (Py)(s)|

]
≤ b

ρ
‖x− y‖.

Therefore

(16) ‖Px − Py‖ ≤
b

ρ
‖x− y‖.

From (16), where b
ρ < 1, we conclude that P is an contractive operator and

applying the Banach fixed point theorem, P has a unique fixed point in C
and the theorem is proved. �

Theorem 2. Let f : [0, b] × C → R be a continuous function. We assume
that the Fréchet derivative fΦ exists, is continuous and satisfies

(17) |fΦ(t,Φ)u| ≤ K‖u‖C
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for t ∈ [0, b],Φ, u ∈ C and

(18) 0 ≤ K <
1

b2
ln

(
1 +
|β + δ + γb|

A

)
Then the problem (1)–(3) has a unique solution.

Proof. Taking into account (17) we conclude that (11) is satisfied with
m(t) = K. Also we have M(t) = Kt. From (18) we take

0 ≤ Kb < 1

b
ln

(
1 +
|β + δ + γb|

A

)
,

that is the condition (12) is valid. In accordance to Theorem 1 the problem
(1)–(3) has a unique solution. �

Example 1. Consider the boundary value problem

(19) x′′(t) = et +
1

8
(sin t)

∫ 0

−2
xt(s)ds, t ∈ [0, 1],

(20) x(s) = (s+ 1)2, s ∈ [−2, 0],

(21) 4x(0) + 2x′(0) + x(1)− x′(1) = 5.

Here we have a = 4, β = 2, γ = 1, δ = −1, λ = 5, b = 1 and

|f(t, u)− f(t, ū) ≤ 1

4
‖u− ū‖C

for t ∈ [0, 1] and u, ū ∈ C. Then for m(t) = 1
4 we have M(t) = 1

4 t and
M(1) = 1

4 . Also, it is A = maxs∈[0,1] | − 1 + 1− s| = 1 and the assumption
(12) is satisfied. Hence the boundary value problem (19)–(21) has a unique
solution.
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