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Abstract. We introduce and study a significant generaliza-
tion of Abel’s summability method, and their corresponding limiting
process. This leads to an analogue to Hardy-Littlewood Tauberian
Theorem. The first section includes an introduction to some ba-
sic concepts of summability methods and a survey of classical and
neoclassical results. In the second section a general summability
method is designed and some related Tauberian theorems are estab-
lished. In the third section higher order of Abel’s summability meth-
ods are obtained as a special case of a general summability method
and the general Littlewood theorem is proved for those summabil-
ity methods. Finally we give Tauberian theorems corresponding to
(C, m)-summability methods and present some further convergence
theorems.
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1. Introduction
A. Definitions and notations

Let A(A) denote all the analytic functions in the unit disc. To each
f(a) in A(A) we associate a series Y -2 a, of Taylor coefficients of f.
Write

(1.1) Sn(a) = Zak

(12) ru(S(a)) = 1 3 Si(a)
k=0

If limy o0 0,.5(a)) exists, then we say that the sequence {S,(a)} is
(C,1)-summable and lim,_, 0,(S(a)) is the (C,1) limit of the sequence
{Sn(a)}.

Abel [1] proved that for any f(a) € A(A) if the sequence {S,(a)}
converges then lim;_,1_g f(a,z) exists. This theorem is known as Abel’s
limit theorem for power series.

Let f(a) € A(A). If limgz—1-0 f(a,z) exists, then the sequence {Sy(a)} is
Abel summable to lim;_,q—0 f(a,z).

The class of all Abel summable sequence is denoted by (4, 0).

In this work we are interested in the generalizations of (A4, 0)-summa-
bility, which we call (A, m)-summability later. Our main concern is to
study (A, m)-summability and find corresponding Tauberian theorems for
the recovery of the convergence.

A summability method is regular if it sums every convergent se-
quence to its sum.

The (C,1) and Abel summability methods are regular, that is,

(1) Tim oa(5(a)) = lim Sa(@)
and
(1.4) li{rlo fla,z) = Jim Sn(a)
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provided that lim,_,o, Sr(a) exists.

The first result above is obtained by the theorem of Cauchy and the other
-is obtained by Abel’s theorem.

If f(a,z) = O(1),  — 1 — 0 then the sequence {S,(a)} is Abel bounded
and we write Sp(a) = o(1) (4,0).

The sequence {S,(a)} is said to be very slowly oscillating if

(1.5) LS 6(a) = Su(1) = (1), n— oo
k=0

n+1 -

The class of all very slowly oscillating sequence is denoted by VSQO.
It is easy to see that if {5,(a)} is very slowly oscillating, then V,(a,1) =
o(1),n — oo.
The sequence {Sn(a)} converges if and only if {Sn(a)} is (C,1)-summable
provided that {S,(a)} very slowly oscillating.
If {Sn(a)} is (C,1)-summable, then S,(a) = o(n), n — oo. It easily follows
that a, = o(n), n — oco.

Consider the summability method, which is called Holder method,
applying an iteration method to the method of arithmetic means.
We write

(16) o{(5(a)) = Sa(a)

and for some integer m > 1
1 n
(m) = — (m—1)
(1.7) o (8(a)) = 73 k§=0: oy (5(a))

If limy— 00 agm)(S(a)) exists, then we say that {S,(a)} is (H, m)-summable.
The (H,1) method and (C,1) method are the same. Another method of
summability which generalizes the arithmetic mean defined previously is
the Cesaro summability method. For m > —1,and n > 0

We write

(1.8) quzm) — ( n+m )

m



24 IBrRAHIM CANAK

and
(1.9) Spt= D APTY, A = Su(a)
k=0
If limy—eo 73‘%2—) exists, then the sequence {S.(a)} is said to be (C,m)-
summable.

We say that {S.(a)} is (C,m) bounded if {a,(lm)(S(a))} is bounded and
denoted by S.(a) = O(1) (C,m).

Notice that (C,m) and (H,m) methods are equivalent ([2]).

It is also well known that for m > —1 (C, m)-summability implies the Abel
summability ([2]).

B. Survey of classical methods and results

This section includes some well known Tauberian theorems corre-
sponding to the Abel summability method in the historical order. One may
ask whether the converse of Abel’s theorem, i.e. the statement limz—1—0
f(a,z) exists implies that Y o2, a, converges also holds true. The follow-
ing counterexampleé shows that the inverse statement of Abel’s theorem
is not true. For the function f(a) = f(a,z) = Y oro(—1)"z", |z| < 1,
limgz—1-0 f(a,z) exists but the sequence Y o2 ,(—1)"n is not convergent.
However the converse of Abel’s theorem is valid provided that we add some
condition, so called Tauberian condition. So any theorem which states the
convergence of sequence follows a summability method and some Tauberian
condition is said to be a Tauberian theorem. In the beginning conditions
for the recovery of the convergence of the series {S,(a)} out of its Abel’s
summability were conditions on the order of magnitude of the Taylor coef-
ficients {an} of a function f(a) = f(a,z) = Y02 an2™, |z| < 1 analytical
in the unit disc. :

Theorem 1.1 Let f(a) = f(a,z) = Y oopanz™, || < a and
limg1-0 f(a,z) exist. If

na, = o(1), n — 00

then the sequence converges.
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Proof Let na, = 0(1), n — oco. Denote 0, = max>, |kax|. Then
we have ¢ | 0. Consider

o« oo o o] oo
Zanz"—Zan:Zan(l—-z")-}— Z a,z", 0<z<l

n=0 n=0 n=0 n=N+41

Thus, we obtain

(¢S] . N &) o] na
danz" = an| < ) lann(l-a)+| ), — "
n=0 n=0 n=0 n=N+1 n
ON+1
< (1-z)N —_—
s (=2)Noot+ N =2y
Let N = [lix] = N(z). Then N - o0 as z — 1 — 0, and limz—1-9

sup [Zf:o ant"” — Zg=o On
proof of the theorem.
Denote Wy(a,1) = Yty kag. If the condition na, = o(1), » — 1 can
be replaced by &T(f—ll = o(1), n —» 400 in Theorem 1.1, we have the
convergence of the series {5,(a)} out of its Abel summability.

< €0¢. € was arbitrary. This completes the

After Tauber’s theorem many significant generalizations of this theorem
have been obtained. Later, Littlewood [4] lightened the original condition
na, = o(l), n —» oo by na, = O(1), n — oo and proved the following
theorem.

Theorem 1.2 Let f(a) = f(a,z) = Y organz™, |z| < 1 and
limgz_1-0 f(a,2z) exist. If na, = 0(1), n — 400 then the sequence {S,(a)}
converges.

The main object in the rest of the section B is to represent some
improvements of Tauber’s Theorem.

All the conditions in Theorem 1.1 , 1.2 and the Classical Hardy-
Littlewood [5] condition

13
(1L10) Va(lal,p)= = Y- Rlal =0(1),  n— oo, p>1
o k=1

(And other similar) imply that

(1.11)  Sn(a) — Sm(a) = o(1), N>M — oo, % -1
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i.e. the slow oscillation of {Sn(a)}, introduced by Schmidt [6], but the
converse is not rue.

This led to the generalized Littlewood [7] Tauberian theorem asserting that
if the limit lim,—,1_o f(a, z) exist and (1.11) holds then the series {S,(a)}
converges to lim;_1_¢ f(a,z).

As an example of this theorem we have the following: If {0511)(5({1))} is
slowly oscillating and Abel summable then the sequence {Sn(a)} is (C,1)-
summable.

The following corollary to the generalized Littlewood theorem will be used
extensively later.

Corollary Let the sequence {S,(a)} be (C,1)-summable. If {S,(a)}
is slowly oscillating, then the sequence {S,(a)} converges.

Proof By the remark in the section A the sequence {S,(a)} is Abel
summable. The proof follows from the Generalized Littlewood theorem.

Hardy and Littlewoood [5] conjectured the following result and Szasz
[8] proved that the Classical Hardy-Littlewood condition (1.10) is a Taube-
rian condition to recover the convergence of the sequence of {S,(a)} out
of its Abel summability.

Theorem 1.3 Let f(a) = f(a,z) = Yreganz™, 2] < 1 and
limgz1-0 f(a,z) exist. If (1.10) holds for some fized p > 1, then the
sequence {S,(a)} converges.

Proof Denote a(t) = ¥, <, an. Then we have
a(t)—a(t)y= > an
t<n<t!
and
la(t) —a(®)| < D laal .
t<n<t!

We obtain ,by Holder’s inequality,

Q-

k=m+1 k=m+1

> |ak15(n—m51‘%( > vam)
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From the last inequality it follows that
1

n p n
(n-m)" ( > Iakl”) < (n—m)l_%l ( > Ikl”lakl”) :
k=m+41 m k=m+1
By the hypotheses of the theorem we have
1

n P 1

( > kp|ak|p) < cat
k=m+1 .

where C is a constant. Thus,

|a(t') — a(t)] < C%nﬁ —cl (1 _ _ﬂg)l—%

m n

If 2 — 1 we obtain that ), cx<, ax — 0.
Thus a(t) satisfies the hypothesgs of the generalized Littleweood theorem.
This completes the proof.

This theorem is a corollary of the Generalized Littlewood theorem.
The condition (1.11) implies that S—"n(ﬂ = h(n) for some h € H™, r > 2 [9].
The condition (1.10) is of considerable interest to our study. It does
not only imply (1.11) but for p € (1,2] implies that g(a) = g(a,z) =
> ne0 npyz" belongs to HY, % + % = 1, [10]. Rényi [11] noticed that for
p=1V,(lal,p) = O(1), n — oo is no longer a Tauberian condition for the
recovery of the convergence of the series out of its Abel’s summability.
Rényi [11] have constructed an example that for a sequence a = {a,} the
condition V,(]a},1) = O(1), n — oo cannot be replaced by (1.10).
Rényi’s example satisfies the condition (1.10) but the sequence {S5,(a)}
does not converge.
He considered the sequence ¢ = {a,}, where a; is 1 if £ = 2™ and -1 if
k=2"+4+1forn=1,2,3,... and 0 for other values.
Show that V,.(|a[,1) is bounded.
It is sufficient to verify that for n’s of the form 2° or 25*1,
For n = 2%, we have

s—1

1 .
8 = — _-7
V 23;(22 +)+1<4
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Similarly, Vos41 is bounded. Now verify that the sequence {Sn(a)} is Abel
summable.
Rewrite f(z) = 32, axz* as

(1.12) f(z)= i (zzk — m2k+1) .
k=1

For 0 < z < 1, f(z) > 0. Thus lim,_,_¢inf f(z) > 0. From (1.12) We also
obtain

flz) = (l—x)imzk =(1-2z) (z2+x4+z8+§:z2k)
k=1 k=4
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Since In (%) ~1—=zasz — 1-—o0,wehavelim;,;_gsup f(z) < 0.
Thus limg_,1_, f(z) = 0. But the sequence {S,(a)} diverges.

‘Rényi [11] also observed that if V,,(|a|,1) = O(1), n — oo is replaced
by somewhat stronger condition that lim,_,. V,(|a[,1) exists then one can
recover convergence of the series {S,(a)} out of its Abel’s summability.

Theorem 1.4 Let f(a) = f(a,z) = Y oepanz™, |2| < 1 and
limg—1- f(a,z) ezist. If

(1.13) lim Vo(lal,1) =V,

then the sequence converges.

Proof Denote a(t) = 3_,<; an. Show that a(t) satisfies the hypothe-
ses of the generalized Littlewood Theorem.
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Let n>m+1,m—ocoand > — 1.
By the condition in the theorem we have

Z klak| = Vn + o(n)
k<n
and consequently
Z klax| = V(n — m) + o(m).
m<k<n

By an Abel transformation, we obtain

" k
2 lal 2:5%ﬂ=/ (Ejmko ;w%%iﬂ

m<i<n m<k<n m<k<u
_ /"(u—m)V+o( )du+V(n—m).
m n

u2

fl

Let  — 1. Then we have —L—l = o(1) and

ﬁ%@du:o(m(%—%)):o(l—%):o(l).

From the last calculation we get

ST sl V/ L-m du+V<1——)+o(1)

m<l<n
= V/ du+o(1)
- VmE—Vm(%~%)+dU:dU.

Rényi constructed examples to show that neither of his theorem nor Szasz’s
theorem includes the other.

In [12] the authors designed a general summability method gener-
alized Abel’s summability method as its special case and proved that the
limiting case become a tauberian condition for those summability methods.
I extend this work and present tauberian theorems for (C, m)-summability
method and further convergence theorems in the last section.

The situation in Theorem 1.4 motivates the following questions:
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— (i) Are there some generalized Abel’s summability methods of
{Sn(a)} such that V,(]a|,1) = O(1), » — oo or its generalization,
entail some limiting information about {S,(a)}?

— (ii) What are the conditions for recovering Abel’s summability out of
those general summability methods, regular with respect to Abel’s
summability?

The answers of these questions will be the main point of this work.
To search the answers to the questions (i) and (ii) consider the fol-
lowing variant of Borel summability method.
Let P(z) = 372 ) pra™ be an analytical function on (0,1) such that
P is not polynomial on (0,1) and P(z) — 00,z — 1 — o.
If
lim 2 ne0 Sn(a)pnz”
T—1—0 P(.’l})
exists, then {S,(a)} is (K, P)-summable.
The method (K, P) is regular since the convergence of {S,(a)} im-
plies the existence of lim,_,_, f(a,z) For
P(z) = ! = o1(2)

11—z

we get
Poneo Sn(a)pnz™ -
=(l1-z Sp(a)z™ = fla,z) .
Py = (1= 2) X u(@)a” = J(o,2)

For this choice of P(z) if {S.(a)} is (K,01)-summable then it is Abel
summable. If p, = nlﬁ, then from the definition above it follows that the
method (K, P) includes the (A, 0) method. ‘

Instead {S.(a)} we may consider

00)(a) = 00(a) = 0u(5(@)) = —— 3 Su(@) = —— 3" 0l(S(a))

n+1k:0 _n+1k:0

or any other sequence {A,(5(a))} generated by {S.(a)}. In general we
define

K(f, P, A(S(a)), ) = ﬁ 3 Au(S(a))pac™ .

n=0
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For P(z) = 6; and An(S(a)) = on(a),

I{(f, 0.1,0.,93) — Z?ﬁ:o;;zia))lzn _ (1 _.m) Z an(a)mn _

3 (0nea(a) = ou(a))a”

n=0

n=0

Il

The Taylor coefficients of (K,§;,0) are {ont1(a) — on(a)} = —Ado.
If {S.(a)} is (K,¥6;,0)-summable, i.e if

lim oo on(a).l.z™
r—l-o 61(.’1:)

exists, and if V,(]a|,1) = O(1), n — oo then the series {S,(a)} is (C,1)-
summable. Thus V(]a|,1) = O(1) is a Tauberian condition for (K, é:,0)-
method to obtain the (C,1)-convergence of {S,(a)}.

For the convergence recovery of {S,(a)} out of (K, 61, 0) - summabil-
ity we need Tauberian condition: {V,(a, 1)} is a bounded slowly oscillating
sequence (or {Sn(a)} is bounded slowly oscillating). (From any slowly os-
cillating sequence {L{n)} one can construct a bounded slowly oscillating
sequence: {exp(iL(n))} in the complex case and {sin(L(n))} in the real
case.) ‘

However if {V,(a,1)} is slowly oscillating and

Vu(lV],1) = O(1), n — 00

holds we can recover the convergence of {S,(a)} out of its (K, & ,0)-
summability.

These theorems will be proved in the next sections.

This type of theorems which we obtain the convergence of the series
out of (K, é1,0)-summability method will be the main goal in the next sec-
tions. The general situation motivated by the above examples and remarks
will be considered as well.

A nondecreasing sequence {R(n)} of positive numbers is O-Regularly
varying if for A > 1 ﬁﬁn%(&:)ll is finite;
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If
(1.14) Va(lal,p) =0(1), n—o0, pe(1,2]

then (1.14) is equivalent to Y p_; kP~1|at|[P = lgR(n) for some O-Regulary
varying sequence R(n). Thus f(a) = f(a,z) = Y arganz™, |z| < 1, be-
longstqu,zl;+%£1. :

Let L'(T) denote the Banach space of all complex valued Lebesgue

integrable functions on the circle group T = 3&- with the usual norm

2nZ
171 = fr 1 £C0)lde. o
The partial sums Sn(f) = Sa(f,t) = Lk<n f(k)et*t are (C,1)
summable in L! norm. '
Stanojevic has modified Karamata’s method [13] to obtain the con-
dition needed for the recovery of convergence in L' norm. This condition
is obtained in [14] and it has the form

[An]
.= o=1 | A /1|7
(1.15) )\EIII}Fohmn |k|§+1 || »Af(k)! <oo, pe(1,2]

The condition (1.15) is equivalent to V, (IAf|,p) =0(1),n — oo.

2. A general summability method

Let A be the space of all analytical functions in the unit disc, or
unit interval. We give the answer for the questions (i) and (ii) motivated
by Theorem 1.4. The answer will depend on the choice of a summability
method generalizing the Abel summability method and provides an algo-
rithm for the construction of analytical function in some interval [a,, 1),
o, € (0,1), whose Taylor coefficient generates limiting processes. For the
recovery of the convergence of the series out of this general summability
method. We need to establish a corresponding Tauberian condition for
the recovery of the convergence of series out of this general summability
method.

Our approach to answer the questions (i) and (ii) depends on a
method of integral transformations of the space A.
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We will use the following denotation:

For f(a) € A,

f(a’) = f(‘J”z) = Zanzn, |Z‘| <1

n=0

Sn(a) = }:ak,
k=0

m s LIS (mo)
oM (S(a)) = of(a) = w1 2Ok (a),
for integers m > 1. (0%)(a) = an(a), oi(a) = Sa(a)).
To describe the class of kernels of the integral transforms of functions
in A, we need the following properties of functions ¢ in ®:
— (i) There exists a number a, = a,(®) € (0,1) such that every ¢ € &
is analytical in [a,,1).

— (ii) For every ¢ € @,
w(z) — oo, z—1-o0.
— (iii) Each ¢ € ® is zerofree in [a,, 1).

— (iv) 2= = 1),z 51— 0, m > 1.

Pm—1 (1‘)
Then for every f(a) € A and ¢ € & we define

M, (f(a))

M, (f(a),0) = M(f(a),p,z) =
2 ittt

= ©¥1 (z) ? T 74 Qo
limg_,o, M,(f(a),z) = flao) , ==a,
or in general

My(f(a)) = My(f(a),¢) = M(f(a),p,2) =
S Hat)om(t)ds

= ' Ym+1(z) , TFE
limg o, My,,(f(a),2) = flao) , =00

for m > 0.
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If for some ¢ € ®

(2.1) lim M(f(a), m, @)
exists, {9n(a)} is (M, p)-summable to the limit above.

Since ¢r,41(2) = pm(z), it is clear that the existence of the limit
limg_,1-, f(@,z) implies the existence of the limit (2.1). That is, the su-
mmability method M, is a regular summability method.

An important subclass of ® are functions

5 _ 1
m(:l,‘) = m, m >0
and o, = 0.
For m = 1, we have

1 z 1
M(f(a)vahz): log (ﬁ;)/o 1_tf(t)dt

For m = 2, we have

M@ ine) = F [ HE = K(f(a) 1,000 =

= > (% (@) - o)) 2"

n=0

The function M(f(a),d2) is analytical in (0,1) and it is denoted by
f(=00) = f(~Aa,2) = AD(f(a)) = A (f(a),2) .

Notice that A(") f(a) defines a regular summability method (4, 1), because
the Abel summability method (4,0) = A)(f(a)) = f(a) = f(a,z) implies
(A,1).

For any a # 3 we have

ap
a—f

M(M(f(a),8a),8p,2) = (M(f(a),6a,2) = M(f(a),8p,%)) -
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From the above identity we see that for any sequence {Sn(a)} which is
(M, éq)-summable is (M, dg)-summable and similarly changing the roles
of o and # in the above identity we recover the inverse of the statement.
An elementary answer to the questions (i) and (ii) is provided by the
next theorem.
If the limz—1—, AD(f(a),z) exists then {S,(a)} is (4,1)-summable
to that limit.

As a corollary of the generalized Littlewood theorem we have

Theorem 2.1 Let {Sn(a)} be (A,1)-summable. If
(2.2) ’ Vu(lal,1) = O(1), n — 0o

then {S,(a)} is (A, 0)-summable.

Proof The condition (2.2) implies that {o,(a)} is slowly oscillat-
ing. Since {S.(a)}is (A, 1)-summable, by generalized Littlewood theorem
we obtain that {S,(a)} is (C,1)-summable. Therefore, {S,(a)} is (A,o)-
summable.

The Tauberian condition (2.2) (recall that (2.2) is not a Tauberian
condition for the recovery of convergence {5, (a)} of out of (4, 0)-summabi-
lity) can be generalized all the way up to {o,(a)} being slowly oscillating
and implies the (A,o)-summability of the series {S.(a)} provided that
{Sn(a)} is (A,1)-summable. It can even be obtained the convergence of
the series {S,(a)} if we strength the condition (2.2).

The following theorem is the one which is closer the classical situa-
tion.

Theorem 2.2 Let {S,(a)} be (A,1)-summable and let {V,(a,1)} be
bounded and slowly oscillating. Then the series {S,(a)} converges to its
(A,1)-sum.

In the next section we shall study more specific (M, ¢)-summability
methods in particular those related to various generalizations of (A4, o0)-
summability method.
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B. Tauberian theorems for (M, )-summability methods
In this section we give some results regarding (M, ¢)-summability
methods.
Theorem 2.3 Let {S,(a)} be M,-summable and let
p(2)
2.3 "(a,z :o<——), z—=1-o0.
(23) flam=o(L7

If {Va(a,1)} is slowly oscillating then the series {Sn(a)} converges to its
M ,-sum.

Proof From the identity

JL F(a,t)er(t)dt
e1(z)

M(f(a),cp,x) = f(a,x) -

and (2.3) it follows that {S,(a)} is (4, 0)-summable to its M, -sum. The
(A, 0)-summability implies (A, 1)-summability. Hence {V,(a,1)} is (4, 0)-
summable and since {V,(a, 1)} is slowly oscillating we have from the gener-
alized Littlewood theorem that {V,(a,1)} converges. Therefore {09(@)}
is slowly oscillating and consequently {Sy,(a)} is slowly oscillating. Recall-
ing again the generalized Littlewood theorem we conclude that the series
Y meg @n converges to its M,-sum.
A more general result can be obtained by replacing (2.3) with

e1(z)
M(f'(a), o,z =o(——), z—1-o0
(f'(a), ;) oa(2)
The composition of two M,-summability methods can be defined as
follows.
Let ¢, ¥ € . Then

(M, 0 My)(f(a),z) = M(My(f(a)),p,z) = faoM(i,f;;)cp(t)dt '

Now theorem 2.3 can be rewritten in the following way.
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Theorem 2.4 Let {Sn(a)} be (My, o M,)-summable and let

(2.4) flla,z) =0 (%) , t—1-o0
and
(2.5) M(f(a)gol,z)_.o(zlgg) t—1-o0

If {Vo(a,1)} is slowly oscillating then the series Y oo, an converges to its
My o M,-sum.
Proof The iterated identity from the proof of theorem 2.3 yields

(Myo M,)(f@)y2) = My(f(@),z M 5 [ M @), 0 0
o | O -
1 ,
o L M@)o

The conditions (2.4) and (2.5) imply that is (A,o0)-summable. The rest
of the proof follows the lines of the proof of Theorem 2.3 it was shown
that if {Sn(a)} is (A, 0)-summable, then it is (M, ¢)-summable. It is nat-
ural to ask under which condition (M, ¢)-summability implies (M, )-

= f(a,z) -

summability.

Theorem 2.5 Let {S.(a)} be (M, p)-summable. If
limz—1-6 f'(a,2) ezists, then {Sn(a)} is (M, p1)-summable.

Proof Consider

(26) My(f(a),2) = f(az) + Jan S (018 = eal2)w).

¢1(z)
Applying My, in (2.6) yields
(2.7) M, (M,(f(a)),z) =
E (L (u)pa(u)du — pa(t) f d
M (0 LU 000 foi) P(t)f'(1) dt

Since {Sn(a)} is (M,p)-summable, then limz1_, My, (Mo(f(a)),z) ex-
ists. It follows from (2.7) that {Sn(a)} is (M, ¢1)-summable.
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3. Generalized Abel’s summability methods

In section 1 we listed several Tauberian theorem corresponding to
Abel summability method and later introduced the general summability
method and established some Tauberian theorems to obtain the conver-
gence of the series out of this summability method. In that section we
concentrate on the specific (M, ¢)-summability methods. After Tauber’s
Theorem many generalizations have been obtained. It was proved that
the condition V,(]a|,1) = O(1), n — oo is not a Tauberian condition for
the Abel summability method. This condition turns out to be a Taube-
rian condition for the higher order of Abel’s summability method that we
introduce and study in this chapter.

For any f(a) € A, let the limit lim;_,1_, f(a,z) be exist. Then

1-=z =t
and
f@,2) 55
(3.1) 1_27 = ,g(:; ())

= i(k +a)oM(S(a))z*

Integrating both sides of (3. 1) from 0 to z, and then multiplying by 1— z,

we have
) [[5EE = -0 XSyt
= wZAa(l)(S (a))z*

Since limz—1-, f(a,z) exists, applying the L’hospital rule in the last for-
mula we obtain that

lim 1=z [*_fQ)

z—1—o0 T 0 (1 - t)2 dt




TAUBERIAN THEOREMS... 39

exists.
This motivates the following definition.

Definition 3.1 Let f € A(A). If

. 1l—z = f(1)
(32) :l:llfln—o T (]. e t)2 di

exists, the sequence {S.(a)} is (4, 1)-summable.

Recall that (A, 1)-summability method was obtained as a special case
of the (M, ¢)-summability method.

As shown in [15] (C, 1)-summability implies (A4, 0)-summability. For
(A, 1)-summability method we have the following theorem.

Theorem 3.1 If {S,(a)} is (C,2)-summable, then it is (A4, 1)-sum-
mable.

Proof Assume {5, (a)}is (C,2)-summable, then f(Ac)= f(Acr T)=

=y Aa,ﬂ (S(a)):c converges for all |z| < 1. Since 3.°° ; z* converges
absolutely to T, we get

(Ao, z2 = (Z Ao(l (S(a))z" ) (i a:”) = io,(ll)(S(a))a:"
(1 - 17) n=0 v n=0
Dividing equality above by 1= —1—, we obtain
((AUz;Ez) Z(n + 1)0.(2) (a))xn
_ UT(LZ)(S(a)) — S| < ¢ for
anyn > M.

Then, we have

f(Bo,a)— 5 = (1— 22 S(n + 1)(0?(S(a)) - $)a

n=0
Write the difference f(Ao,z) — S as

M
f(Do,2) =5 = (1-2)* Y (n+1)(0P(a) - S)a™ +

[e]

+ (1-2) Y (n+1)0(a) - 5"

n=M+1
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Thus,

M
f(Do,z) =S| < (1-2)? Y (n+1)|ol(a) - S| +

n=0
+ (1-2)* Y (a4 1)|a£3>(a)— Slz", |z|< 1.
n=M+1

The first term on the right tends to zero as  — 1 — 0, and the second one
is less than

[o0] o0
(1-2) Y (r+Dea"<(1-2)ed (n+l)z"=c¢.
n=M+1 n=0
It was shown that if f € (A4,0) then f € (A,1). But the converse
is not true. For example, although the function f(z) = sin (-1—1_32) satisfies
the condition (3.2), but it does not satisfy to be Abel summable.In general,
consider the analytic functions in A of the form

for=s ().,

where g is bounded, has a first derivative in the unit disc and limg_1 -, f(a,2)
does not exist. Then =% f7 (1—1t)2gl (—1%;) dt = =2 (g (ﬁ) - g(l)).
Since f is bounded, this implies that lim;_,1_, A(l)(f(a),z) exists.
Alternately, the following theorem shows that under some condition
there are some functions in A such that {S,(a)} is (4,1)-summable, but

not (A, o)-summable.

Theorem 3.2 Let {S,(a)} be (A,1)-summable. If

tim / " P)lg(1 - t)dt
0

z~1-o0

exists, then {Sn(a)} is not (A, o)-summable.
Proof Observe

A(l)(f(a),a:) f(z) + (1 —=)lg(1 —z)f'(z) 1

T

/Ox F"(#)lg(1 — t)dt .

—(0) -

1-—2

z
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Let G(z) = f(z) + (1 — z)lg(1 — z)f'(z). Then we obtain

G(t)
f(z) = lg(l—z)/ D

Rewrite f(z) as

1

@) = to(1= o) | s (G(a),) -

o
o (-mie?(1-a)
From the equality above and the hypotheses of the theorem it follows that
limg_1-0 Ef(({b-i)j exists. This completes the proof.

The method (A,1) is a generalization of the method (4,0). Sim-
ilarly we define the (A,2)-summability of the series {Sn(a)} as (4,1)-
summability of AM(f(a)).

In general, for any integer m > 1

AT (f(a))=AT(f(a),2)= A(AD(f(a), 2)= AD(ATD(f(a))

and

A™)(f(a),z) = ZAU(m) (S(a))z™ .

n=0

If limg_.;—, AU (f(a)) exists then {S,(a)} is called (A, m)-summable to
that limit.
Notice that A(™)( f(a)) defines a regular summability method (4, m).
For the (C,1)-convergence recovery of the series {S,(a)} out of its
(4, 1)-summability we will introduce Tauberian conditions in the following
theorem.

Theorem 3.3 Let

(33) - im [ L@

z—l-o0fg 1-—1

erists. If {EZ 0 Ft1 } is slowly oscillating then the series {Sn(a)} is
(C,1)-summable to zero.
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Proof Since limg—1-, fy Ll(l‘ﬂdt exists, the series {Zk —0 —"—(—lk_,_l } is

(A, 0)-summable and since {Ek:o T"_(}_%) is slowly oscillating, by the gen-

eralized Littlewood theorem it converges. Set Si(a) = > %—o —,ﬂ%
It follows that

(34) 5n(a) = o (57(a)) = o{)(S(a))

This completes the proof.
The next two corollaries are obtained by replacing slow oscillation of
{EZ:O %i%l} by some stronger condition.

Corollary 3.3.1 Let
lim
z—l-0jyg 1—1
exists. If for some p > 1

> ISk(@)fF =0(1), oo,

3.5
( ) n+ 1 k=0

then {S,(a)} is (C,1)-summable to zero.
Proof (3.5) implies that {S5,(a)} is slowly oscillating.

Corollary 3.3.2 Let

im [* @Yy
z—l-ofyg 1-—1
exist. If
(3.6) Va(S(a),1) = 0(1), n— oo

then {S,(a)}is (C, l)-éummable to zero.

Proof (3.6) implies that {S7%(a)} is slowly oscillating.
Recall that

f(=00,2) = AD(f(a),2) = Z(a‘” — o{)(a))a™ .
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From the above identity it is clear that the statements
(i) {Sn(a)} is (4, 1)-summable and (ii) {04 (S())} is (4, 0)-summa-
ble are equivalent.
In general, we have
™)(S(a)), t)dt

f(U(m+1)(S(a,)),x) — 1 ; z /'OI f(AO‘ (1 v t)2

For f(a) € A the following denotation will be used throughout the paper.

i 1 e
V™ (a,1) = il S v a, 1),
k=0

for integers m > 1. (Véo)(a, 1) = Vp(a,1) = T%H Y k=0 kak)
Notice that

o{™M(8(a)) = o™ I(S(a)) = Vi™(a, 1)

for integers m > 1.
From the last identity we obtain that

A(m>(f(a);x) ~ A (f(a),2) = F(AV™)(a,1),2) .

It is straightforward that if {S,(a)} is (A,m + 1)-summable then it is
(A, m)-summable provided that {V\™(a,1)} is (4,0)-summable.

The analogue of the generalized Littlewood theorem for (A, m)-su-
mmability method is given in the next theorem.

If {aslm)(S'(a))} is slowly oscillating, the series is called (C, m)-slowly
oscillating.

Theorem 3.4 Let {S,(a)} be (A,m)-summable. If {Sp(a)} is
(C,m)-slowly oscillating then {Sn(a)} is (C,m)-summable to its (A, m)-
sum.

The next three corollaries are obtained by rep‘lacing the slow oscil-
lation of {ogm)(S (a))} by some stronger conditions.

Corollary 3.4.1 For some integer m > 1 let {S,(a)} be (A4, m)-
summable. If {V,fm*l)(a, 1)} is bounded, then {Sn(a)} is (C, m)-summable
to its (A, m)-sum.
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Proof From the identity

n (m-1)
o™ (Sa)) =Y Ve (a1) k(“’l)
k=1
and V,fm_l)(a,l) = 0(1),n = 1it folloWs that {a,(lm)(S(a))} is slowly
oscillating.

Corollary 3.4.2 Let {S,(a)} be (A, m)-summable. If for somep > 1
1 & ylm-1) P '
. — 1) =0(1
(3.7) — kz=:1 Vit D@ =01), a-o

then the series {S,(a)} is (C,m)-summable to its (A, m)-sum.

Proof Rewritten form of (3.7)

L&y (e, )
p |k ? —
n+1;§=1k p = 0(1), n — 00
V(m_l)(a 1) | . . .
shows that {Z}:zl —"k—} is slowly oscillating.

Corollary 3.4.3 Let {S,(a)} be (A, m)-summable. If for some in-
teger m > 1

(3.8) Vi) (Ve (a,1),1) =0(1), oo

the series {S,(a)} is (C, m)-summable to its (A,m)-sum.

Proof From the condition (3.8) it follows that oslm)(S (a)) =
=) k=1 %—ELI E£L 8111 for some bounded sequence {f,}. Since {$.(a)}
is bounded, the last identity implies that {aszm)(S(a))} is slowly oscillating.

For the higher order of Abel’s summability method (A, m) we have
the generalized Littlewood Theorem. To recover the convergence of the
series {Sy,(a)} out of its (A, m)-summability method we have to assume an
extra condition on {S,(a)}. As seen in the next theorem weakening the
summability method and strengthening the Tauberian condition makes the

series {Sn(a)} convergent to its (A, m)-sum.
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Theorem 3.5 For some integer m > 1 let {Sn(a)} be (A, m)-su- |
mmable. If {Sn(a)} is bounded slowly oscillating then the series {Sn(a)}
converges to its (A, m)-sum.

Proof If {S,(a)} is (A, m)-summable, lim;_1_, Y o> Aanm)( S(a))z™
exists. Since Sp(a) = O(1), n — oo the series {a&m)(S’(a))} is slowly os-
cillating. By Theorem 3.4 the series {S,(a)} is (C,m)-summable to its
(A,m)-sum. (C,m)-summability implies (A, o)-summability. Therefore
{Sn(a)} converges to its (A4, m)-sum by the generalized Littlewood theo-
rem.

In theorem 3.4 the Tauberian condition can be replaced by a weaker
condition. '

Theorem 3.6 For some integer m > 1 let {Sn(a)} be (A,m)-su-
mmable. If {Vn(m)(a,l)} is bounded and slowly oscillating then the series
{Sn(a)} converges to its (A, m)-sum.

Proof Assume that {V(o)(a 1)} is bounded. Then for each inte-
germ > 1, {V, m)(a 1)} is bounded. Therefore {Un ( (a))} is slowly
oscillating. Since {Sn(a)} is (4, m)-summable we obtain that {S.(a)} is
(C,m)-summable by Theorem 3.4.

The condition V,So)(a, 1) = O(1), n — oo implies that {asll)(S(a))}
is slowly oscillating. Hence {S,(a)} is slowly oscillating. Recalling again
the generalized Littlewood theorem we conclude that the series {S,(a)}
converges to its (A, m)-sum.

In the generalized Littlewood theorem the Tauberian condition can
be replaced by the condition {VTSO)(a, 1)} being slowly oscillating as follows.

Theorem 3.7 Let {Sx(a)} be (A,o)-summable. If {V,SO)(a,l)} is
slowly oscillating then the series {Sn(a)} converges to its (A,0)-sum.

Proof Since (A, 0)-summability implies (A4, 1)-summability, is (4, 0)-
summable. By the generalized Littlewood theorem {V( )(a 1)} converges.
This implies that {S,(a)} is (C, 1)-slowly oscillating. Since {V )(a 1)} is
slowly oscillating, {Sn(a)} is slowly oscillating. Again by the generalized
Littlewood theorem we conclude that {S,(a)} converges.
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Theorem 3.8 Let {Sn(a)} be (A,2)-summable. If {Véo)(a, 1)} very
slowly oscillating, then {S,(a)} converges.

Proof Recall that every very slowly oscillating sequence is slowly os- -
cillating. Since {V(O)(a 1)} is very slowly oscﬂlatmg, it is slowly oscillating.
By the definition of Very slowly oscillation, V;{ (a 1) - V,Sl)(a,l) = o(1),
n — o00. Therefore {V( )(a 1)} is slowly oscillating. From the identity
Sn(a)—on(S(a)) = v (a 1), we obtain that {0,(S5(a))} is slowly oscillat-
ing. Since 02)(5( ))— ol (S(a)) v )(a 1), it follows that {G'n (S(a))}
is slowly oscillating. By generalized Littlewood theorem, {S,(a)} is (C,2)-
summable. Then {S.(a)} is (A,o0)-summable. Again by generalized Lit-
tlewood theorem, {S,(a)} converges.

For the recovery of the convergence of {5,(a)} out of its generalized
Abel summability method we need more than one condition. The following
theorem is like an analogue of generalized Littlewood theorem for (4, 1)-
summability method.

Theorem 3.9 Let {S,(a)} be (A,1)-summable. If {Sp(a)} is very
slowly oscillating then the sequence {S,(a)} converges.

Proof Assume that {S,(a)} is very slowly oscillating. Then it is
slowly oscillating and Véo)(a,l) = o(l), n —> 0o. Since é n(o)(a,l)} is
slowly oscillating, from the identity S,(a) — on )(S(a)) no)(a, 1) it fol-
lows that {S.(a)} is slowly oscillating. Since {Sn(a)} is (A4,1) summable
Jg.e. {o,(zl)(S(a))} is (A4, 0) summable, the sequence {09)(5((1))} convergeé
by the generalized Littlewood theorem.

From the (A, m)-summability of {§,(a)} one obtains the convergence
of the series {Sn(a)} under some conditions as in next two theorems.

Theorem 3.10 For some integer m > 1 let {S,(a)} be (A,m)-
summable. If {Vno)(a 1)} is (A,o0)-summable, then {S,(a)} is (4,o0)-
summable. If {Sn(a)} is slowly oscillating, then it converges.

Proof For any £, 0 < k < o

(3.9) AB(f,2) - AE(f,2) = ZAV“”al)x

n=0
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Since {V,SO)(a, 1)} is (4, 0)- summable, {V,Sk)(a, 1)} is (A, 0)-summable for
k =0,1,2,... Then by (3.9) we obtain that {5,(a)} is (A, 0)-summable.
If {S.(a)} is slowly oscillating we complete the proof.

The following theorem is a straightforward generalization of Rényi’s
theorem.

Theorem 3.11 Let {Sn(a)} be (A,m) summable. If (via,1)}
converges, then {Sn(a)} converges.

Proof It is assumed that {Vy © (a,1)} converges. Then for any inte-
germ > 0 {Vnm)(a, 1)} is bounded. Therefore {S,(a)} is (C, m)-slowly os-
cillating. Since {Sn(a)} is (A, m)-summable, it is (C,m)-summable by the
generalized Littlewood theorem. It is well known that Cesaro summability
of any order implies Abel summability. Thus {S,(a)} is (A4, 0)-summable.
This completes the proof.

Theorem 3.12 Let {S,(a)} be (A,2)-summable and let
Ly~ V0@ =0(1), n-oo, p>1.
n k=1 .

If {Vn(o)(a, 1)} is slowly oscillating, then {Sn(a)} converges.
Proof From the hypotheses of the theorem it follows that {V(l)(a 1)}

is bounded. Since oy )(S(a)) ke V(l)k(a’ ). the sequence {O’n (S(a))}
is slowly oscillating. By the generalized Littlewood s theorem {S,(a)} is
(C,2)-summable. Therefore {5,(a)}is (A, 0)-summable. Thus {Véo)(a, 1}
is EA ,0)-summable. Again by the generalized Littlewood’s Theorem
{Vno)(a 1)} converges. So {0(1)( S(a))} is slowly oscillating. {a,(ll)(S(a))}
converges. Finally, it follows {S,(a)} converges.

Theorem 3.13 Let {S,(a)} be (A,2)-summable. If {Vn(l)(a,l)} is
bounded slowly oscillating, then

(i) {Sn(a)
i) {z

s (C,1)-summable,

1
Sk(a)

} s slowly oscillating,
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(#it)  Sn(a) = o(n), n — 00

Proof (i) From the hypotheses it follows that {Vrfl)(a, 1)} is boun-
ded. This implies {07(12)(5((1))} is slowly oscillating. Since {S,(a)} is
(A,2)-summable, by generalized Littlewood’s theorem {S.(a)} is (C,2)-
summable. From the equality

o{M(S(a)) - o (S(a)) = Vn(l)(a, ),

it follows that {o? )(S(a))} is slowly oscillating. Therefore, {O'n )(S'(a))}
converges. This completes the part (1).
(ii)+(iii) From Snp(a) — 09)(5(&)) = Vn(o)(a, 1), we obtain that

" Sie) | o(S(a) & a,1) _
D e

k=1 k=1 k=1

Xn: k (S(a))-i—a(l)(S(a))

It is clear that {ZZ=1 S—"k(ﬂ} is slowly oscillating and S)n(a) = o(n), n —
0.

(iv) Observe that y }_; % = 37 ];?—Z(_I_ﬂl)— + 15,(a). By (ii) and (iii)
{>F=1 3} converges.

Theorem 3.14 Let {S,(a)} be (A, m)-summable and let {Vn(k)(a, 1)}
be bounded for some 0 < k < m —1. Then {S,(a)} is (A,0)-summable. If
{Sn(a)} is slowly oscillating then it converges.

Proof The condition Vn(k)(a,l) =0(1),n > 00,0<k<m-1
implies that {Sn(a)} is (C,m) slowly oscillating. Since {Sn(a)} is (4, m)-
summable, then it is (C, m)-summable. Therefore it is (A, o)-summable.
This completes the proof.

The (C,1)-sum of {Vk(m 2 ( ,1)}i—g, for some integer m > 1, is
denoted by Vn m)(a 1).
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In the next theorem it will be shown that for any integer m > 0,
assuming that the condition V,gk)(a,l) = 0O(1), » — oo, for some 0 <
k < m — 1, is enough to recover (4,o)-summability of out of {S,(a)} its
(A4, m)-summability.

Theorem 3.15 Let {S,(a)} be (A, m)-summable. If for some k,
0<k<m-1

(3.10) V(a,1)=0(1), n-oo

then
— (i) {Sn(a)} is (A,o0)-summable.
— (i) If {Sn(a) - 0&“1)(5’((1))} is slowly oscillating then {Sp(a)} con-
verges to its (A, m)-sum.

Proof (i) The condition (3.10) implies that {S,(a)} is (C, m)-slowly
oscillating. By Theorem 3.4 the series {S,(a)} is (C, m)-summable to its
(A, m) sum. Then 1t is (4, 0)-summable.

it) Since A (a 1) = O(1), n — oo then {V (a, 1)} is slowly oscil-
lating for j = k4+1,k+2,...,m—1. (A,0)-summability of {S,(a)} implies
that then {Véj)(a, 1)} is (A,0)-summable for j =k +1,k+2,...,m - 1.
Combining what we have and observing

m—1
Sn(a) = a;m><5<a)>+zv,£f>(a,1)

S m>(5(a>+zv”a1>+ S v

i=k+1

and
ZVJ’)(G 1) = Sn(a) — o *(S(a))

we obtain that {Sn(a)} is slowly oscillating. By the generalized Littlewood
theorem we conclude that {5,,(a)} converges.

It is a well known fact that if {S,(a)} is (C,0)-summable, then it is
(A, o0)-summable. It is natural to ask under which condition the inverse of
the statement is valid. The following theorem is the answer for this.
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Theorem 3.16 Let {S.(a)} be Abel summable. If for some integer
m >0 {V(m (a,1)} is slowly osczllatzng, then the sequence {Sn(a)} is
(C,m)-summable.

Proof Take the difference of the identity
(3.11) o™ (S(a)) - o7+ (S(a)) = V{™(a,1)

to obtain

(3.12) Acl™(5(a)) — Acl™tD(S(a)) = AV, ™ (a,1)

From (3.12) we have |

(3.13) f(Ad™(S(a)),2)- f(Ao™(S(a)), )= F(AV™(a,1),2)

Since the sequence {S,(a)} is (4,0)-summable, then {a,(lm)(S(a))} and
{a,(1m+1)(5'(a))} are. Therefore, it follows from (3.13) that {V,fm)(a, 1)} is
Abel summable. Hence {V,Sm)(a,l)} converges. This implies that
{crngrl)(S(a))} is slowly oscillating. Since it is also Abel summable, it
converges by Theorem 3.4. By (3.11) it is seen that {Sn(a)} is (C,m)-

summable.

Theorem 3.17 For some integer m > 0 let {Vnm)(a 1)} be (A,1)-
summable. If {Vnm+1)(a 1)} is slowly oscillating, then S,(a) = O(logn)
(C,m+1), n— oco.

Proof Since {Vn(m)(a, 1)} is (A, 1)-summable, then

. 1—z = f(AV™)(a,1),t)dt
lim / (11

z—1-o0

exits. This is equivalent to saying that
1 n
V) (g 1) = { —— S v (a1
VI (a,1) {nﬂgk (a,1)

is (A, 0)-summable. Therefore by Theorem 3.4 {Vn(m+1)(a, 1)} converges.



TAUBERIAN THEOREMS... 51

Applying summation by parts we obtain

" V™ (a,1)
2~

k=1

o™+ (S(a))

_ ym) SRR ALICHY
- Z 1)+Z k(k+1)

k=1
V(m+1)(a 1)
kE+1

= V{m™(q,1) + Z

From the last equality it follows that S,(a) = O(logn) (C,m+1), n — oo.
So far we recovered the convergence of the series out of its generalized
Abel’s summability method and a Tauberian condition corresponding to
that method. However the asymptotic behavior of the series {S,(a)} and
the generalized Abel’s summability method can be related.
Appell [16] proved that if

(3.14) Sn(a) ~ An7, v >0, A iscostant

then limz—1-0(1 — )" f(a,z) exists.

The symbol ~ is used in the following sense: a,, ~ b, means P — 1,
n — 0.

It easily follows from Appell’s theorem that if {S,(a)} is (C,1)-
summable, then it is (A,0)-summable. In general, if {S,(a)} is (C,k)-
summable for any positive integer k, then {S,(a)} is (4, k)-summable.

It is well known that if {S,(a)} is (C,1) summable then it is (4, 0)-
summable. Using Appell’s theorem one shows that if {S,(a)} is (C,2)-
summable then it is (A, 1)-summable.

We now use Appell’s theorem to prove the (A, m)-summability of
the sequence {S,(a)} when we know the asymptotic behavior of the cor-
responding partial sums.

From Appell’s theorem we conclude that if (3.14) holds for 7 =2
then lim,_;_,(1 — z)?f(a,z) exists.

Let F(z) = (1 — z)2f(z). Then the partial sums corresponding to
F(z) is (A,1)-summable, i.e. limy_;1_, AD((1 — 2)2f(a,z), 62, z) exists.
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But

A(l)((l - x)2f(a,x),6z,a:) = 1 ; i /OI f(t)dt.

Thus it follows that limz_,;_, 1—71. fy f(t)dt exists. This means that {#ff}
is (A, 0)-summable.

If {a,} is slowly oscillating, then { converges and thus

limg1_o 122 [ f(t)dt exists.
We know that if {Sn(a)} is (C,1)-summable, then {S.(a)} is (4,0)-
summable. Similarly, we can ask the following question for the (A,1)-

n+1

summability:
{a(m 2)(S(a.))} is (4, 1)-summable. If {S,(a)} is (C,m)-summable ? The
answer is affirmative and the theorem is as follows.

Theorem 3.18 Let {S,(a)} is (C,m)-summable. Then for some
m>2 {a(m 2)( S(a))} is (A, 1)-summable.

Proof If {a(m ) (S(a))} is (A,1)-summable, then {cr(m 1)( S(a))} is
(A, 0)- summmable and vice versa.

It is enough to show that {O'(m -2 (S(a))} is Abel summable. Con-
sider

(3.15) i Nol™(S(a))z"

Dividing (3.15) by (1 — z)? we obtain
Y- AcmD(S(a)z" = (1 - 2)* Y (n +1)of™(S(a))z"
n=0 n=0

Since {S,(a)} is (C, m)-summable, we get (n+ l)aglm)(S(a)) ~ An,n — oo.
By a Theorem in [3]

Z(n-{—l)am)(s )z" NAZm: ﬁ

n=0

Hence, limz—1-6 Y o2, Aa(m 2 (S(a))z™ exists or equivalently
{agm_l)(S(a))} is (A, 0)-summable.
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We say that {Sn(a)} is (A®), V(O AVO)summable if {S.(a)} is
(A,2)-summable and VA (AV), 1) = O(1), n — 0.
Theorem 3.19 Let {Sn(a)} be (AP, VO AV summable. If
{Sn(a)} is (C,1)-bounded then it is (C,1)-summable.
Proof Observe that Vno)(AV("), 1) = Vn(o)(a, 1)~ ,gl)(a, 1). Since
Y OAV©), 1)
(1) -V e \2rhY
Vil (a,1) Z . ,
k=1
{Vn(l)(a,l)} is slowly oscillating. By the assumption {S,(a)} is (C,1)-
(2) n a“’(S(a))—ai”(S(a)) : —
bounded, we have o (S(a)) =1 is slowly oscillat-
ing. Since {5, ga)} is (A4, 2) summable 1t converges by Theorem 3.4. From
the identity V{"(a,1) = 0{(S(a)) — 02 (S(a)) it follows that {S,(a)} is
(C,1)-slowly oscillating. Hence {5, (a)} is (C,1)-summable.
The condition in Theorem 3.19 can be replaced by the condition
{Sn(a)} is (C, 1}-slowly oscillating.
From the (A, 2)-summability of the series {S,(a)} with an appropri-

ate Tauberian condition we obtain how the series {0"9) (S(a))} behaves.

Theorem 3.20 Let {S,(a)} be (A,2)-$ummable. If

LSy, 1y
n_{_lng (a,1) = O(1), n — 0o

(1)
then for v € (0,1) Y02, ‘E;:—J%,%l converges.

Proof By summation by parts we get

o (1)
o(S(a) _ o
nZ:% (n+ 1))~ (n+ 1)7 Z o' (5(a))

n—1 1 1

k
i Z ((k + )0 T (k£ 1)('¥+1)) ]ngai /(5(a))

——(n+ S oS +

LB+ DO — (k4 10D )
+ Z (k+ 1 (v+1) (k+ 1)(7+1) O

(5(a)) -
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The first term exists as » — oo, and the second sequence exists as n — 0.

Under the conditions of the previous theorem we are able to show
that {aﬁP(S’(a))} is moderately divergent. It is enough to show that
o$P(5(a)) = o(n™1), n — oo for every r > 1.

From
n (o) n-11 1?_ V(") 1
A(S(a))= Y, LB < zv oD +y Lo (01,
k=1 +
we have
(1) n n-11 vk (o)
on’(5(a)) _ 1 l () kZJ=1Vj (a,1)
nr=1 7 nT‘lnl:L:;V”C (a 1)+ lkz:l k+1

for every r > 1. Since ;l—l k=0 Vk(o)(a, 1) = O(1), n — oo, then the first
term goes to zero as m — oo and the second term behave like :L—O,g_ﬂl as
n — 00.

Hence we have 0,(11)(5((1)) = o(n""!), n — oo for every r > 1. So
{09)( S(a))} is moderately divergent.

The assumption made in the following theorem imply that {S,(a)} is
(C,1)-summable. To get the convergence of the series we give a necessary

and sufficient conditions.
Theorem 3.21 Let
z f(t)dt
(3.16) lim J()dt
z—=l-0Jyg 1-—1

exists and the sequence {Sn(a)} is (C,1)-slowly oscillating. Then the se-
quence {Sn(a)} converges if and only if

Z a logk

(3.17) lim

n—o0 log

erists.

Proof The sequence {Zk—o e } is Abel summable by the con-
dition (3.16). We obtain that {S.(a)} is (A4,1)-summable. Since the se-
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quence {S,(a)}is (C,1)-slowly oscillating, it follows that {Sn(a)} is (C,1)-
summable. Applying summation by parts one obtains that

" 5i(a) oA (S
k+1

(3.18) k =

The last identity shows that {ZZ=0 Tk-;(-%l} is slowly oscillating. Together

0 k41
Applying summation by parts we have

1 = kE+1
logk = 1o k; Si(a)log (T) + 5.(a)

with the condition {ZZ: Se(a) converges.

The conclusion of the theorem follows the identity above if we show
the first term on the right converges under the hypotheses.
If we apply the summation by parts for the first term above we get

(3.19) L3 6, (a)log (%) -

_ 1 "Sk(“)lo'g(’““)
logn &~ & k

- e (57) 4 (1)) ¢

1=2

(e 50 g (1 1)’
logn

+

The second term of (3.19) converges to zero as n — oo.
Set A(n) = log (1 + ) Then

| | 1 (n+1)
Og _> _Og(H +1)

= lo (n + 2) n+1)n
)(n+1)

(n+2) l+n
= +1 ~log(l+——1 )
(n+1) 1+ ) n+1

A(n) — A(n — 1)
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It follows that AA(n) ~ —i= as n — oco. This shows that the first term
converges.

Theorem 3.22 Let {a,} be a sequence of real numbers and let

lim J()dt
z—ol-o0Jg 1-—1

exists. If the sequence {Sn(a)} is (C,1)-slowly oscillating, then

1 n
Sn(a) = @kz::zaklogk + 0(1), n— 00 .

Denote by L the class of sequences {a,} such that na, = O(1), n — oo.
Then we have the following corollary.

Corollary 3.22.1 Let {a,} and

im / f(a,t)dt

r—1-~o0 1—1t

exists. If
VO(a,) = 0(1), n—oo

then S,(a) = O(logn) + O(1), n — oo.

4. Tauberian Theorems for (C,m)-summability methods
and further convergence theorems

In the previous section we recovered the convergence of the series
out of its generalized summability assuming some conditions on the series.
We now give the Tauberian theorems for the Cesaro summability.

Recovering the lower order Cesaro summability of the sequence from
the higher order Cesaro summability using the Karamata’s techniques
modified by Stanojevic will be presented in that chapter.

The first theorem shows that (C,1)-summability and (C,2)-summa-

bility are equivalent provided that {E’,::__O %ﬁ—l} is slowly oscillating.
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Theorem 4.1 The sequence {Sn(a)} is (C,1)-summable if and only
if

i) is (C,2)-summable,

i) Sk(e) is slowly oscillating.
kE+1
k=0

Proof Let {S,(a)} be (C,1)-summable. Then it is clear that {S.(a)}
is (C,2)-summable. From the identity

i Sk( _ (1) O'k (S( ))
,;,H = o (5a)+§:—]c+2
using that {S,(a)} is (C,1)-summable one obtains that {271;:;0 %9{1} is

slowly oscillating.
Conversely, assume i) and ii) hold. Applying the summation by parts
to the second term on the last identity and then rearranging terms we have

' n a n—1 0_(1) a
I CE OIS W Y k_ o(S(a))
- §k+1_n+1k=0 S(“))_E (k+2)(k + 3)
_ >~ Sk(a) 2
= i — o (S(a)- Z(k+2(k+3);>(5(a)>.

The conditions i) and ii) imply that {S,(a)} is (C,1)-slowly oscillating.
Since {S,(a)} is (C,2)-summable. {S,(a)} is (C,1)-summable. This com-
pletes the proof of the theorem.

We now give Tauberian theorems for the recovery of (C,m)-summa-
bility out of (C,r)-summability, where r > m.

Define for A > 1

[wn]
Ta(S5(a), A
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Here, [z] denotes the greatest integer not exceeding z.

The sequence {S,(a)} is called to be (C,m)-slowly oscillating if
{0 (S(a))} is slowly oscillating.

The next theorem is a corollary to the generalized Littlewood theo-
rem. Prove it using the Karamata’s techniques as proved below.

Theorem 4.2 Let {S,(a)} be (C,m)-summable for some m > 1.
If {Sa(a)} is (C,m)-slowly oscillating, then the sequence {Sp(a)} is
(C,m — 1)-summable.

Proof Consider the difference
o™ (5(a) - o™ (S(a) = ol™(S(a)) — Ta(0e™V(S(a)),A) -
— o™ (S(a)) + Ta(0™ D (S(a)), N)
Hence we have
|a<m)(5(a>) " 0(S(@)] < |raet™D(S(@)),N) = ofm(S(e)|
+ [ralo™ (S (@), 1) = o1 (S(a))
The first term on the right hand side of the inequality above is

mfi olm(8(a)) - ol (S(a))| -

(4.1)

For the second term we have the estimate

(4.2) i (a<m-1><5(a)),x) - a,am-”(sw))l <
[An]
= O [ s@) - o s <
n+1I21?%([)\n] Uk 1)(S(a)) i U(S(a))‘ ‘

Taking the limsup of (4.2) we obtain

m (6" 7(S(a)),A) = o D(S(@)] = 0.

limsup
n
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Since {Sn(a)} is (C,m — 1)-slowly oscillating,

limlimsup |7 (6™ (S(a))) = o D(S(a))| = 0

This completes the proof of the theorem.

Corollary 4.2.1 Let {S,(a)} be (C,1)-summable. If {S,(a)} is
slowly oscillating, then the series {S,(a)} converges.

Theorem 4.3 Let {S.(a)} be (C,m)-summable. If

DM v%m 2 a 1
(4.3) lim sup

k_n+l

= o ! T ,A;>1+o,l+1:1,
(A-— 1)q ? g

then {S,(a)} is (C,m — 1)-summable.

Proof As in theorem 4.2 consider the same difference. It is enough
to estimate the second term under the condition of this theorem.
For the second term we have the estimate

(An]
(@) ~ oI (S(0)
k n+1
] | " (S(a) = oV (S(a))
- )\n]—nk_Xniu_En;H j

ol V(5(a)) — " (S(a))|

< > = p
k=n+1
v (e, 1)
e
=n41

([/\n]—n‘i( 1 b Vk"”‘z’(a,n)

[An] —n ket 1 k
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Using the Jensen -Petrovié inequality we obtain

m— p %
< Oalem [t 3 LACR))
B [An] -n k=n+1 kP

1
[An] V(m"2)(a 1) P\ p
1 1 k )
< (A=1)ens ( Z T
k=n+1
1
m— P
< (A-1)e %n:] Vi (e, 1) )P
= E L
=n+1
1 [An] kp—l (m-2) P %
< (-ne| 3 7|Vk (e,1)]
k=n+1
1
L (0 e
< —
< o-ni B |
k=n+1

By (4.3)
1imnsup |Tn (a(m_l)(S(a),/\)) - a,(Lm'l)(S(a))l =0(1), A—o1l+o.

This completes the proof of the theorem.

Theorem 4.4 Let {S,(a)} be (C,2)-summable. If then {S,(a)} is
(C,1)- summable.

Consider the difference 07(12)(.5'(a)) - UT(LI)(S(a)). Adding and subtracting
the term 7,(0(1)(S(a)),)) to the difference we have the estimate
(44) [oP(S(a))-o)(S(a)| < [0P(S(a)-TaloD(S(a)), )|+

+ |rm(eV(S(a)),2) - eM)(S(e))| -

For the second quantity on the right above we have

|Tn(a<1>(5(a)),k) — o((S(a))|
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L b

(4.5) < oo 3 |es(e) - o0(S(a))|
[/\n] nk=n+1

G a§°’(s<a))fo§1><s<a))

[An) ~n Z Z

k=n+1 |j=n+1 J
Dl ] °>(a 1)]

2 2

k=n+13=n+1

<

- [/\n] -n
For the second term on the above inequality we have
(4.6) (e (8(a)),2) = o D(5(a))| =

[[_;\\%_ﬂ ( [/\n](S(a’)) - 0(2)(S(a))) )

Taking limsup of both sides of the inequality (4.4) and using the estima-
tions on (4.5) and (4.6) we obtain

[An] ‘Vj(o)(a,l)l
(4.7) hmsup '0 (8(a)) - o)( S(a))‘ <11msup yo

Jj=n+1 J
Kn]] - 1 limsup (73),(5(a)) ~ o(S(a)))

+ limsup

Since {Sn(a)} is (C,1)-summable, Iimnsup (U[(Ql](S(a)) - 022)(5((1))) =

For the first term we have the estimate

Dl v 1
hmsup Z ‘]—iﬂg

j=n+1

< limsup Pn] = n lim sup [’\z”:] lV.(O)('a 1)'
—_ n n n n . J b
j=n+1
» [An]
(48) = (\-1)lmswp ;5 -y ‘VO)(a ]
n _7 =n+1

This completes the proof of the theorem.
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Theorem 4.5 For some integer m > 2 let {Sy(a)} be (C,m)-su-
mmable. If

(4.9) VOWmDa,1),1) = 0(1), n— oo

then {S.(a)} is (C,m — 1)-summable.

Proof The condition (4.9) implies that {S,(a)} is (C,m — 1)-slowly
oscillating. It is (C,m — 1)-summable.

Corollary 4.5.1 Let {S,(a)} be (C,2)-summable and let
VOV a,1),1) = 0(1), n — co. If {S,(a)} is slowly oscillating, then it
converges.

Theorem 4.6 For some integer m > 1 let {S,(a)} be (C,m)-su-
mmable. If {V,Sm_l)(a,l)} s very slowly oscillating then the sequence
{Sn(a)} is (C,m — 1)-summable.

Proof Let {V,Sm_l)(aml)} be very slowly oscillating. Then we have
Vm-U(a,1) - V(™ (a,1) = o(1), n—oco.

Since {Vém*l) (a,1)} is very slowly oscillating, then it is slowly oscillating.
We have the identities

(4.10) V™ (a,1) = o""D(S(a)) - 0™ (S(a))
and
Vi)(a,1) = 00 (S(a)) — o™+ (S(a)) -

Given {S,(a)} is (C,m)-summable. From the last identity we obtain that
{V,Sm)(a, 1)} is slowly oscillating. It follows from (4.10) that {a,(lm_l)(S(a))}
is slowly oscillating. Then, {U%m_l)(S(a)_)} converges by the generalized
Littlewood theorem. This completes the proof.

So far we have recovered the convergence of some processes out of its
generalized Abel summability method together with some Tauberian condi-
tion(s). In that section we show that without mentioning the summability

method in the theorems below we obtain the convergence of the series out
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of some condition related with the sequence . The following theorem shows
that the slow oscillating of the sequence is a measurement how the original
sequence converges. Concentrating on the slow oscillation as a condition
which implies the convergence we obtain some important corollaries in the
light of the first theorem in that chapter.

Theorem 4.7 Let {S,(a)} be slowly oscillating. Then the sequence
{ZZ:j gk 5 converges. '

Proof Since the sequence {S,(a)} is slowly oscillating, there exists
some h € HS, s > 2 such that S,(a) = nh(n).

If we take the difference of both sides of the last identity we have

nh(n) — (n — 1)h(n - 1ﬂ)
n (h(n) = h(n - 1)) + h(n 1) .

an

(4.11)

Divide both sides of (4.11) by n, and then sum up from k& = 1 to n,
we obtain that

35 = 3 (hek) - gk 1) + 3 A
k=1 k=1 k=1

The first and second terms on the right of the last equality converge.
This completes the proof of the theorem.

Corollaries 4.7.1 Let {ZLO Vk(o)(a, 1)} be slowly oscillating. Then
the sequence {S,(a)} converges.

Proof Denote Wp(a,1) = > %_o(a,1). Then by theorem 4.7 the
sequence {an )(S(a))} converges. Since {T/V( (a,1)} is slowly oscillating,
Vn(o)(a, 1) =o0o(1), n — 0.

From the identity Sn(a) — 0%)(5(a)) = Vi”(a, 1) it follows that the
sequence {S,(a)} converges.

Corollary 4.7.2 For some m > 1 let {ZZ:O Vk(m)(a,l)} be slowly
oscillating and let the sequence {S,(a)} be slowly oscillating, then {S,(a)}
converges.
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Proof Set W,Em)(a, 1):EZ=0Vk(m)(a, 1). The sequence {a,(lmﬂ)(S(a))}
converges. This implies that the sequence {S,(a)} is (4,0)-summable.
Since it is slowly oscillating then it converges.

We have obtained the convergence of the sequence assuming the slow
oscillation of some processes as in corollaries 4.7.1 and 4.7.2. If we assume
the slow oscillation of the derivative of the partial sums of the sequence
we have the convergence as showed below. For this we need to give some
denotations .

Let f(a) = f(a,z) = Y2 ¢anz", |z| < 1. Denote the n'* partial
sum of f'(a) by S)(a,z). Plugging in z = 1 in S} (a,z) gives that S, =
2 k=0 kak. '

Now we are ready to state a theorem which implies the convergence
of the sequence {S,(a)} provided that {57 (a)} is slowly oscillating.

Theorem 4.8 If {5} (a)} is slowly oscillating then the sequence
{Sn(a)} converges.

Proof Applying summation by parts one obtains that

Sn(a) = Zakzz%

k=1 k=1
1 n n—1 k—]]a]
RS
n k=1 k=1 k(k + 1)
n—1 Sk(a)

H
2
+
g
=
Fend
+
=

Since {S!(a)} is slowly oscillating , the first and the second term on the
right converge. This completes the proof.

A positive sequence { M (n)} is moderately divergent if for every r > 1

M
M(n) =o(n"" 1), n— oo and Z (n)
n=1

Denote by M the class of all moderately divergent sequences.

It is clear that every slowly oscillating sequence is moderately diver-
gent.
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- Theorem 4.9 For y € (0,1) let {n% )y Vk(o)(a,l)} €EM.
Then
i) The sequence {Sn(a)} is (C,1)-summable,
i) Sn(a) = O(n"M(n)), n — 0.

Proof Applying summation by parts we obtain

n- 121 1 V%%a,1)

Vk(o)(a 1)
ZVk '(@,1) T

(4.12) oM(S(a))= Z
Since M(n) = & Y r, Vk(o)(a, 1) by the definition it follows that
Z (0) (a,1) =o(1), n — oo.

The second term in (4.12) is Y771 2’1—2(_%1 and it converges as n — 00.

Therefore {S,(a)} is (C,1)-summable.

it) It follows from 1)

I would like to thank Professor Caslav V. Stanojevié for his valuable
guidance and advice. '
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