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Perturbation of Farthest Points
in Weakly Compact Sets

Jean-Matthieu Augé

Abstract. If f is a real valued weakly lower semi-continuous function
on a Banach space X and C a weakly compact subset of X, we show
that the set of x ∈ X such that z 7→ ‖x−z‖−f(z) attains its supremum
on C is dense in X. We also construct a counter example showing that
the set of x ∈ X such that z 7→ ‖x− z‖+ ‖z‖ attains its supremum on
C is not always dense in X.

1. Introduction

Throughout this paper, X denotes a real Banach space, BX its closed
unit ball, X∗ the Banach space of all continuous linear functionals on X, C
a bounded set of X and f : X → R a function which is bounded below on
C. We study the following sets

D(C, f) =
{
x ∈ X;∃z ∈ C, r(x) = ‖x− z‖ − f(z)

}
,

where by definition r is the map from X to R given by the formula

r(x) = sup
{
‖x− z‖ − f(z), z ∈ C

}
.

The map r depends on f and should be written rf , but since there will be
no ambiguity, we simply write r = rf . We remark that r is 1-Lipschitz and
convex as a supremum of such functions and that by replacing f by f + a
where a is a constant, we can suppose that f > 0. When f = 0, the set
D(C, 0) is geometrically the set of points of X which admit a farthest point
in the set C and r(x) is the farthest distance from x to C, i.e. r(x) is the
smallest radius of the balls centered in x that contain C. Here, the function
f is a perturbation, we will show that under suitable hypothesis of regularity
on f , some results known on the set D(C, 0) can be generalized. To be more
precise, we will be interested in the generic existence of points in D(C, f).
For farthest points, the problem was first studied by Edelstein in [2] for
uniformly convex spaces, assuming the set C is bounded and norm closed
and then generalized by Asplund in [1] for reflexive locally uniformly convex
spaces. Then Lau in [4] showed that when C is weakly compact (without
any geometric hypothesis on X), the set of farthest points is dense and he
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also showed that this result implies Asplund’s theorem. Here we will give
a generalization of Lau’s theorem (see also the paper [5] which deals with
Euclidean spaces, and [3] for the case of p-normed spaces): when f is weakly
lower semi-continuous and C weakly compact, the set D(C, f) contains a Gδ

dense subset of X. We then take some particular f to see what happens
when we study the set of points x ∈ X such that z 7→ ‖z − x‖ − ‖z‖ (resp.
z 7→ ‖z − x‖+ ‖z‖) attain their supremum on C.

2. Density of the set D(C, f)

We start this section by defining the sub-differential of the map r (this
definition stays unchanged for any convex map).

Definition 2.1. The sub-differential of r is the set

∂r(x) = {x∗ ∈ X∗;∀y ∈ X, 〈x∗, y − x〉 6 r(y)− r(x)}.
Since r is 1-Lipschitz, ∂r(x) is contained in the closed unit ball of the

dual. We can now state our positive theorem which follows the ideas of
Lau’s proof.

Theorem 2.1. Suppose that C is a weakly compact subset of X and that
f is weakly lower semi-continuous for the weak topology on X, then the set
D(C, f) contains a Gδ dense subset of X.

In order to prove the theorem, we will use the following lemma:

Lemma 2.1. Let G = {x ∈ X;∀x∗ ∈ ∂r(x), sup{〈x∗, x − z〉 − f(z), z ∈
C} = r(x)}. Then G is a Gδ dense subset of X.

Proof. Write X�G =
⋃∞

n=1 Fn with

Fn =
{

x ∈ X;∃x∗ ∈ ∂r(x), sup{〈x∗, x− z〉 − f(z), z ∈ C} 6 r(x)− 1
n

}
.

By the Baire category theorem, it is enough to show that for fixed n > 1,
Fn is closed and nowhere dense.
– Let us first show that Fn is a closed subset of X: let (xk) be a sequence in
Fn converging to x ∈ X. By the definition of Fn, there exists x∗k ∈ ∂r(xk)
such that

∀z ∈ C,∀k > 1, 〈x∗k, xk − z〉 − f(z) 6 r(xk)−
1
n

.

Since BX∗ is compact for σ(X∗, X), we can choose x∗ ∈
⋂

p {x∗k, k > p}σ(X∗,X)
,

then we get for z ∈ C:

|〈x∗k, xk − z〉 − 〈x∗, x− z〉| 6 |〈x∗k, xk − z〉 − 〈x∗k, x− z〉|
+ |〈x∗k, x− z〉 − 〈x∗, x− z〉|

6 ‖x∗k‖‖xk − x‖+ |〈x∗k, x− z〉 − 〈x∗, x− z〉|
6 ‖xk − x‖+ |〈x∗k, x− z〉 − 〈x∗, x− z〉|.
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Now for each fixed z ∈ C, there exists a subsequence (x∗kq
) such that 〈x∗kq

, x−

z〉 converges, and because x∗ ∈
⋂

p {x∗k, k > p}σ(X∗,X)
, this limit is 〈x∗, x−z〉.

By continuity of r, we obtain for each z ∈ C

〈x∗, x− z〉 − f(z) 6 r(x)− 1
n

,

and hence
sup{〈x∗, x− z〉 − f(z), z ∈ C} 6 r(x)− 1

n
.

To conclude that x ∈ Fn, it is enough to show that x∗ ∈ ∂r(x). Indeed,
since x∗k ∈ ∂r(xk), we have

∀y ∈ X, 〈x∗k, y − xk〉 6 r(y)− r(xk)

so by the same argument as before, we get at the limit: x∗ ∈ ∂r(x).
– Now, let us show that each Fn is nowhere dense. Suppose it is false,
then one can find y0 ∈ X and r > 0 such that B(yo, r) ⊂ Fn. Let α =
sup{‖z‖, z ∈ C}, λ = r

α+‖y0‖ and ε = λ
n(1+λ) . By the definition of r(y0),

there exists z0 ∈ C such that

r(y0)− ε < ‖y0 − z0‖ − f(z0) 6 r(y0).

Finally, put x0 = y0 + λ(y0 − z0). With the choice of λ, we have x0 ∈
B(y0, r) ⊂ Fn. Now, we estimate r(y0)− r(x0):

r(y0)− r(x0) < ε + ‖y0 − z0‖ − f(z0)− r(x0).

But,
x0 = y0 + λ(y0 − z0) =⇒ x0 − z0 = (1 + λ)(y0 − z0).

Hence

r(y0)− r(x0) < ε +
1

1 + λ
‖x0 − z0‖ − f(z0)− r(x0)

= ε +
1

1 + λ
(‖x0 − z0‖ − f(z0)) +

(
1

1 + λ
− 1

)
f(z0)− r(x0)

6 ε +
1

1 + λ
r(x0)−

λ

1 + λ
f(z0)− r(x0)

= ε− λ

1 + λ
r(x0)−

λ

1 + λ
f(z0).

Since x0 ∈ Fn, there exists x∗ ∈ ∂r(x0) such that

r(x0) > sup{〈x∗, x0 − z〉 − f(z), z ∈ C}+
1
n

> 〈x∗, x0 − z0〉 − f(z0) +
1
n

,

which gives, combined with the last estimation:

r(y0)− r(x0) < ε− λ

1 + λ
〈x∗, x0 − z0〉 − ε = 〈x∗, y0 − x0〉,

which contradicts x∗ ∈ ∂r(x0). �



4 Perturbation of Farthest Points in Weakly Compact Sets

Here, we have just used the fact that C is bounded. The hypothesis of
weak compactness of C and of weak lower semi-continuity of f allow us to
finish the proof of the theorem as follows.

Proof. It is enough to see that G ⊂ D(C, f). Consider x ∈ G and x∗ ∈ ∂r(x),
so

sup{〈x∗, x− z〉 − f(z), z ∈ C} = r(x).
Since f is weakly lower semi-continuous and that z 7→ 〈x∗, x− z〉 is weakly
continuous, then z 7→ 〈x∗, x− z〉 − f(z) is weakly upper semi-continuous on
the weakly compact set C, and attains its supremum at a point z0. We get:

r(x) 6 ‖x∗‖‖x− z0‖ − f(z0) 6 r(x)

because ‖x∗‖ 6 1 and hence r(x) = ‖x− z0‖ − f(z0). �

Since z 7→ ‖z‖ is weakly lower semi-continuous, we obtain

Corollary 2.1. If C is weakly compact, the set of x ∈ X such that z 7→
‖x− z‖ − ‖z‖ attains its supremum on C is dense in X.

3. Counter examples and remarks

It is natural to ask ourselves if we can drop the hypothesis of weak lower
semi-continuity in Theorem 2.1. The answer is no: more precisely, we con-
struct the following counter example

Example 3.1. If (K, d) is an infinite compact metric space and if X =
C(K) is the space of real continuous functions on K equiped with its usual
norm, there exists a weakly compact subset C of X and a function f weakly
upper semi-continuous on X such that D(C, f) is not dense in X.

Indeed, take f(z) = (1−‖z‖)+ = max(0, 1−‖z‖) and consider a decreasing
sequence (Un)n>1 of open subsets of K such that

⋂
n>1 Un = ∅ (fix y ∈ K

which is not an isolated point in K, then a possible choice is Un = {x ∈
K \ {y}; d(x, y) < 1

n}), let us also fix tn ∈ Un and put

xn(t) =
d(t, U c

n)
d(t, tn) + d(t, U c

n)
(t ∈ K, n > 1).

By construction of Un, we have ‖xn‖ = 1 and (xn)n>1 converges pointwise
to 0 which implies that (xn)n>1 converges weakly to 0 as easily seen using
the Riesz representation theorem and the Lebesgue’s dominated convergence
theorem. Put

C =
{(

1− 1
n

)
xn, n > 1

}
= {0} ∪

{(
1− 1

n

)
xn, n > 2

}
which is weakly compact as the union of a convergent sequence and its limit.
Note that C is contained in BX and hence f(z) = 1 − ‖z‖, we are left to
find the supremum of the function fx (x ∈ X fixed) defined for z ∈ C by
fx(z) = ‖x− z‖+ ‖z‖. We will show that for x ∈ B(2, 1) (where 2 denotes
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the function identically equal to 2), fx never attains its supremum and as
a consequence D(C, f) is not dense. Since for t ∈ K, x(t) > 1, we get for
z ∈ C

‖x− z‖ = sup |x(t)− z(t)| = sup(x(t)− z(t)) 6 supx(t) = ‖x‖

and on the other hand ‖z‖ < 1 gives fx(z) < ‖x‖ + 1. To finish, the last
thing we have to see is that sup fx > ‖x‖+1. Fix t0 such that ‖x‖ = |x(t0)|,
then

sup fx > fx

((
1− 1

n

)
xn

)
>

∣∣∣∣x(t0)−
(

1− 1
n

)
xn(t0)

∣∣∣∣ +
(

1− 1
n

)
.

The conclusion follows because (xn)n>1 converges pointwise to 0.

Remark 3.1. – This last example also shows that the set of x ∈ X such
that z 7→ ‖z − x‖ + ‖z‖ attains its supremum on C is not always dense
in X. Recall that according to Corollary 2.1, the set of x ∈ X such that
z 7→ ‖z − x‖ − ‖z‖ attains its supremum on C is always dense in X.
– There exists spaces, for example l1(N), or more generally any Banach space
with the Schur’s property where we can’t construct any counter examples of
the above type because the weakly and strongly compact sets coincide.

– However if C = BX and X is reflexive (to ensure the weak compactness of
C). The set of x such that fx (defined by fx(z) = ‖x− z‖+ ‖z‖) attains its
supremum on C is dense. To show this, we use the following proposition.

Proposition 3.1. Let f be a continuous convex function on X, C a weakly
compact subset of X and ε(C) the set of extremal points of C, then supC f =
supε(C) f .

Proof. We have obviously, supε(C) f 6 supC f . Suppose the reverse inequal-
ity is false and introduce t such that

sup
ε(C)

f < t < sup
C

f.

Then, we have ε(C) ⊂ C0 := {f 6 t}. Since f is continuous convex , C0 is a
closed convex set, the Krein-Milman’s theorem says that conv‖.‖(ε(C)) = C,
hence C ⊂ C0. Now, since supC f > t, one can find x ∈ C such that f(x) > t
which contradicts x ∈ C0. �

This implies the last remark, indeed ε(C) is of course contained in the
unit sphere. Using the previous fact two times, we see that

sup
z∈C

fx(z) = sup
z∈ε(C)

fx(z) = 1 + sup
z∈ε(C)

‖x− z‖ = 1 + sup
z∈C

‖x− z‖

which gives the conclusion with the main theorem (with the pertubation
f = 0).
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Remark 3.2. To finish, we would like to mention that the map f 7→ D(C, f)
has no good properties. Let us take X = R, C = [0, 1] and put for z ∈ R,
fk(z) = 1{0,1}(z)

k where 1{0,1} denotes the characteristic function of the pair
{0, 1} which is equal to 1 if z = 0 or z = 1 and 0 otherwise. It is obvious that
(fk)k>1 converges uniformly to 0 (D(C, 0) = X) and yet, all the D(C, fk)
are empty.

Indeed, let x ∈ R and suppose that x > 1
2 . For z ∈ [0, 1], |x − z| is

maximal when z = 0 and is equal to x. Hence

sup{|x− z| − fk(z), z ∈ [0, 1]} 6 x.

On the other hand, taking a sequence (zn) ⊂]0, 1[ converging to 0, we get
the reverse inequality. If we had a z which attains the supremum, we should
have

fk(z) = |x− z| − x 6 x− x = 0,

which implies that z ∈]0, 1[. This gives us |z − x| = x with z ∈]0, 1[, which
contradicts |x− z| < x. For x 6 1

2 , we proceed the same way with the point
z = 1.
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