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BI-PERIODIC HYPER-FIBONACCI NUMBERS
NASSIMA BELAGGOUN!2 AND HACENE BELBACHIR!?

ABSTRACT. In the present paper, we introduce and study a new generalization of
hyper-Fibonacci numbers, called the bi-periodic hyper-Fibonacci numbers. Further-
more, we give a combinatorial interpretation using the weighted tilings approach and
prove several identities relating these numbers. Moreover, we derive their generating
function and new identities for the classical hyper-Fibonacci numbers.

1. INTRODUCTION

The Fibonacci numbers F), are defined, as usual, by the recurrence relation
Fhb=0, Fi=1 and F,=F, 1+ F,_», forn>2.

The hyper-Fibonacci numbers denoted F("), are introduced by Dil and Mezo [10], for
n,r € NU {0}, as entries of an infinite matrix arranged such that F") is the entry of
the rth row and nth column, satisfying

1) EO=F, F?=0 and FY=F" +F"Y  forn,r>1.

The sum of the first n + 1 elements of row r — 1 is expressed by F(" i.e.,
(1.2) FO =3 Fr Y.
k=0

They satisfy many interesting number theoretical and combinatorial properties, see
[9]. Belbachir and Belkhir [3] provided a combinatorial interpretation of the hyper-
Fibonacci numbers in terms of linear tilings and gave some combinatorial identities.
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They also defined bivariate hyper-Fibonacci polynomials in [4], as

(1.3) F}L")(x,y) = xFér)l(x, y) + yFé"’l)(x,y), for n,r > 1,

with initial conditions FO(z,y) = F,(z,y), F\"(z,y) = 0, where z, y are real
parameters and F,(z,y) is the nth bivariate Fibonacci polynomial, defined by (see
[1,5])

Fo(l',y) =0, Fl(xay) =1 and FTL(:U??/) :‘an*1<$ay>+yFn*2($vy)'

The bivariate hyper-Fibonacci polynomials are given by the following explicit formula

[n/2)+r
, n+2r—=~k\ .
(14) Fih(ry) = 3 ( \ )x Fyk
k=r

The associated generating function is given as follows

y'z
1.5 F "= .
(1.5) nz>:O W (@ y)z (1 -2z —yz2)(1 —x2)"
For y = 1, we denote F,(z,y) by F,(z).
Edson and Yayenie [12] introduced a new generalization for the Fibonacci sequence,
called as bi-periodic Fibonacci sequence, that depends on two real parameters a and
b, defined for n > 2, as follows

aQpn—1 + Qn_2, if n is even,
(1.6) Gn = {

bgn_1+ gn_o, if nis odd,

with initial values qo = 0 and ¢; = 1. These sequences are found in the study of
continued fraction expansion of the quadratic irrational numbers and combinatorics
on words or dynamical system theory [18]. Some well-known sequences, such as the
Fibonacci sequence, the Pell sequence and the k-Fibonacci sequence for some positive
integer k, are special cases of this sequence. For more results related to this sequence,
see [8,11-18]

The generating function of ¢, is given by

2z (14 az — 2?)
1.7 S gui" = .
(1.7) nzoq z 1 — (ab+2)2%2 + 2*

Yayenie [18] gave an explicit formula of bi-periodic Fibonacci numbers, as

/2l g
(15) o =@ 5 (Y
k=0 k

where £(n) =n —2|n/2], i.e., £(n) = 0 when n is even and £(n) = 1 when n is odd.

In this paper, we define a new generalization of hyper-Fibonacci numbers, which
we will also call bi-periodic hyper-Fibonacci numbers. We give a combinatorial in-
terpretation of these numbers using a weighted tilings approach and provide several
combinatorial proofs of some identities. We also obtain new identities for the classical
hyper-Fibonacci numbers. Moreover, by using the generating function of the bivariate
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hyper-Fibonacci polynomials, we establish the generating function of the bi-periodic
hyper-Fibonacci sequence.

Definition 1.1. For any integers n,r > 1 and nonzero real numbers a and b, the
bi-periodic hyper-Fibonacci numbers, denoted by q,({’), are defined by

(1.9) qﬁf) = Z aé(k)£(n+1)b£(k+1)£(n)(ab) L(n—k)/2] ql(:’—l)7

k=0
with initial values q(()r) = 0 and qﬁlo) = ¢,, where ¢, is the nth bi-periodic Fibonacci
number.

The first few generations are as follows in Table 1.

TABLE 1. Sequence of bi-periodic hyper-Fibonacci numbers in the first
few generations

[(nJJO 1 2 3 4 5 6 |
OTo 1 a ab+1 a’b + 2a a’b? + 3ab + 1 a®b? + 4a*b + 3a
W10 1 2a 3ab+1 4a®b+3a  5a*b? + 6ab+ 1 6a*b* + 10ab + 4a
@10 1 3a 6ab+1 10a%b+4a 15ab*> + 10ab+1 21a®b? + 20ab + 5a
G110 1 4a 10ab+1 20a%b+5a 35a%b* + 15ab+ 1  56a°b? + 35a%b + 6a
W0 1 5a 15ab+1 35a%b+6a 70420 + 21ab+1 126a°b® + 56ab + Ta

From the definition, we have the following recurrence relation:

1.10 ) —
( ) fn bq,(f,)1 +q¢r=Y if nis odd.

n

{aqr(f_)l + ¢V if n is even,

Note that, for a = b = 1, we obtain the classical hyper-Fibonacci sequence (1.1).

2. COMBINATORIAL IDENTITIES

The Fibonacci numbers can be interpreted as the number of ways to tile a board
of length n (i.e., an n-board) with cells numbered 1 to n from left to right using
only squares and dominoes; see [6,7]. We expand the results to bi-periodic Fibonacci
numbers using weighted tilings. We assign a weight to each square in a tiling based
on its position. It is assigned a weight a if it is in an odd position and a weight b if it
is in an even position. The weight of a tiling of an n-board is defined as the product
of the weights of its individual tiles. The sum of all possible weighted tilings is given
by ¢n+1. Furthermore, the total of all possible weighted tilings of an (n + 2r)-board
with at least » dominoes is given by the bi-periodic hyper-Fibonacci numbers qfﬁl, as
shown in Theorem 2.1.

For example, Figure 1 shows the tilings and the sum of their weights of a 5-board.

We have ¢\” = g6 = a3b? + 4a®b + 3a.
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a’b? a’b a’b a’b
lalblalblal [ Talbla] lal  [bla] [alb] |4l
a’b a a a
lalblal | [ [ Jal | _Ja[ | [af [ |

FiGcure 1. Tilings of a 5-board

Figure 2 shows the tilings and the sum of their weights of a 6-board with at least 2
(2)

dominoes, there are g5~ = 6ab + 1 dispositions.
ab ab ab ab
L[ Tale) L_fa[  Jof [ Tfalol | e[ | [b
ab ab 1
ol Jo[ | lalel [ | L[ [ |

FiGure 2. Tilings of a 6-board with at least 2 dominos

Therefore, we have the following results.

Theorem 2.1. Forn,r > 0, qﬂl gives the weight of all tilings of an (n + 2r)-board
having at least v dominoes.

Proof. Given (n + 2r)-board. If it ends with a square, then there are bg\" ways to tile
the (n 4 2r — 1)-board for n even and aq\” for n odd. If it ends with a domino, then
there are q,(ltll) ways to tile the (n 4 2(r — 1))-board. When n = 0, there is one way
to tile a 2r-board with at least » dominoes and there are ¢,,;, ways to tile a n-board
with at least 0 dominoes. There is no way to tile an (n + 2r)-board with at least r

dominoes for n < 0. O

Let f(n, k) be the number of weighted tilings having n tiles and exactly k& dominoes.
Then
f(n, k) = aSHRpEOHRD 00 1K) + f(n — 1,k — 1).
In fact, if the (n+ k)-board ends in a square there are a$(" R pE+r+D) £(n — 1 k) ways
to tile the board. If it ends with a domino, then there are f(n — 1,k — 1) ways.

Lemma 2.1. The number of weighted tilings having n tiles and exactly k dominoes is

qEn+k) (”) (ab)L=P)/2],
k
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Proof. Let g(n, k) = a$("+*) (Z)(ab) Ln=k)/2] " Then

e(n+k) (7 [n—k)/2) _ k) (71 n—1 n-k)/2|
a (k:) (ab) a << i ) + (k 3 (ab)

Using |[(n—k)/2] = |(n—k—1)/2] +&{(n+ k + 1), we get
-1
GEn+k) (”) (ab) L =R)/2) = k) (g p)Elnth) (” ) >(ab> [(n—k=1)/2]
1 gbnth) <n -1

k
[(n—k)/2]
J 1) (ab)

= gt D gy 1 k) 4+ g(n — 1,k — 1).

Since g(n, k) satisfies the same recurrence of f(n, k) and the same initial conditions,
we get result. 0

In the following theorems, we establish an explicit formula for the bi-periodic
hyper-Fibonacci sequence.

Theorem 2.2. For n,r > 0, we have

(n/2|+r
. n n+2r—=k /2
(2.1) qéll ) 3 ( . )(ab)L 2|4k
k=r

Proof. From Theorem 2.1, qffll counts the number of ways to tile an (n + 2r)-board
with at least r dominoes. On the other hand, using Lemma 2.1, the possible tilings
with exactly k& dominoes contains n + 2r — 2k squares and n + 2r — k tiles, have
cardinality a¢™ (”J“Qk”_k)(ab) [n/2]+7=k " Since it contains at least r dominoes, the sum
over k > r gives the identity. O

Now, we establish a double-summation formula for even-numbered bi-periodic hyper-

Fibonacci numbers qéz) Lo

Theorem 2.3. For n,r > 0, we have

n+r k o . .
(2.2) q2n+2 — azz CLb (n4+r—Fk) (n—i-?“ “7) <7”L—|—7” ‘ k+j> (ab)QL(n—i_r_k)/QJ,

k=r j=0 k_] J

Proof. Consider an (n + 2r + 1)-board. Since the length of the board is odd, there
are an odd number of squares such that we have at least one in each tiling. Suppose
there are ¢ dominoes to the left of its median square and j dominoes to its right,
whose total is at least » dominoes, i.e., i + 7 > r. The median square contributes
an St pE(FT=i0) o the weight (according to the position of the median
square). Such tiling contains 2n + 2r — 2i — 25 + 1 squares, so there are n +r —i — j
squares on each side of the median square. The left side gives n + r — j tiles with ¢
dominos. Hence, there are a¢("+m—i=7) <”+:_j> (ab)L*r=i=3)/2] different ways. Similarly,
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we have af(7=1=7) ("Jr;*i) (ab)L(mt7=1=3)/2] different ways to tile the right side. Thus,
the possible tilings have cardinality a(ab)s™+" =) (”Jr;f—i)(ab) (n+r=i=7)/2] " Summing
over ¢ +j > r, we get

a 3 (ab)&(mtr=i=d) <” + 7" - j) <n + 7’ - Z) (ab)2Limtr=i=/2]

r<itj<ntr t J

sy mrmy (nET =3\ (n+r—i o
:az Z (ab)snt k)( _ . (ab)2Ln+r=F)/2]

k=r i+j=k t J
ntr k ofn+r—j\(n+r—k+j 5 /2

:az Z(ab)g(””_ ) L ' (ab) L(n+r—Fk)/2] ]
k=r j=0 J J

For a = b =1, we get the following identity.
Corollary 2.1. Forn,r > 0, the following identity holds

(2.3) F2n+2 Tiz<n+7"] ><n+r—k+j>

k=r j=0 J

From the explicit formulas (1.8) and (2.1), we state the bi-periodic hyper-Fibonacci
sequence in terms of the bi-periodic Fibonacci sequence and binomial sum.

Theorem 2.4. Letn >0 and r > 1 be integers, then we have

—1
r ’" 2r — k
24 q( )1 = dn+142r — at™ ner ab) 24—k
n+ ]f
k=0

Note that, if we take a = b = 1, we get the following identity, see [3],

= (n+2r—k
Fn+1 Foiitor — Z ( 1 >
k=0

Theorem 2.5. For n,r > 1, we have

2.5 Q':(m 1= Qn— 1+ at bg(n“ )
+

Proof. There exists qﬁl ways to tile a board of length n + 2r containing at least r

dominoes. Consider the number of dominoes at the end of each tiling. If tiling ends in
at least r dominoes, then the final » dominoes cover cells n 4+ 1 through n + 2r, while
the remaining tilings can be done in ¢,,; ways. On the other hand, if tilings ends in
exactly r — k dominoes for some 1 < k < r, preceded by a square at position n + 2k
and contribute af™bs*1) to the weight, then the remaining (n — 1 + 2k)-board can
be tiled with at least k& dominoes in q,(l) ways. The result follows from the sum of
over k, i.e.,

07 = guya + 3 aFIREED 0 — g ST gD ()
k=1 k=0
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Note that, if we take a = b = z, we get the following hyper-Fibonacci identity.

Corollary 2.2. Forn,r > 1, we have

(2.6) FO\ (@) = Fus(2) + 32 2FO (@)

For a = b = 1, we obtain the following identity, see [2],
Fi=F+ Y F®,
k=0

In the following theorem, we give the recurrence relation of the bi-periodic hyper-
Fibonacci sequence.

Theorem 2.6. Forn > 0 and r > 2, we have

(2.7) ), = abg + 240 — 40,

Proof. We will construct a 3-to-1 correspondence between the following two sets.

e The set of all tiled (n + 2r — 1)-boards with at least » dominoes. There are
q") ways.
e The set of all tiled (n+ 2r+1)-boards with at least  dominoes and (n+2r — 3)-

boards with at least » — 1 dominoes. There are qﬂQ + ¢V ways.

Consider an arbitrary tiling T" of length n + 2r — 1, we can do the following.

1. Add two squares at the end of T' to get an (n + 2r + 1)-board ending in a
square. Then there are abg(") ways.

2. Add a domino at the end of T" to get an (n + 2r 4 1)-board ending in a domino.
Then there are qf::;) ways.

3. Condition on whether 7" ends in a square or a domino.

i. Suppose T ends in a square, then insert a domino immediately to the left
of the square to creates (n + 2r + 1)-board ending in a square. Then there
are ag(”“)bﬂ")qgj:ll) ways to do it.

ii. Suppose T ends in a domino, we remove the domino to get an (n+ 2r — 2)-
board. Then there are qﬁf‘l) ways.

So, we conclude that
r r— T r—1 n n r—1 r—
%(1422 + q{r(l 1 _ abq;) + q7(1+2) + aﬁ( +1)bf( )Q7(1+1 ) + (L(z 1)
r r—1 r— r—2
= abg” +2q\ 5 + a7V — q\s)
Therefore
aly = abg) + 247" — a5 . O

Note that, if we take a = b = 1, we get the following hyper-Fibonacci identity.
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Corollary 2.3. Forn >0 and r > 2, we have
(2.8) F\Dy = F0) 4+ 2F5" - FUSY.

n n

The following theorem gives the nonhomogeneous recurrence relation for the bi-
periodic hyper-Fibonacci sequence.

Theorem 2.7. For n,r > 1, we have

—1
(2'9) qr(;)rl _ aﬁ(n)bf(n+1)q7(lr) + %(21 + aﬁ(n)(ab) [n/2] (n :‘i ) )

Proof. There are qffll ways to tile a (n 4 2r)-board with at least r dominoes. We

consider the last tile in a tiling, which can be either a square or a domino. If the
board ends in a square, then there are bg'”) ways to tile (n + 2r — 1)-boards with at
least © dominoes for n even and aq™) ways to do it for n odd. If the board ends in
a domino, we separate the tilings into two disjoint sets A and B. The set A with
exactly » dominoes and the set B whose contain tilings with at least » + 1 dominoes.
Having in mind that one domino is fixed, the tilings in the set A has n +r — 1 tiles
with exactly r — 1 dominoes, then by Lemma 2.1, we have |A| = a(™ (ab)L"/2] (”jf:l)
The tilings in the set B are equivalent to the tilings of an (n + 2r — 2)-boards with at

least r dominoes, i.e., |B| = q,(f_)l. Therefore,
gl = a* M) A+ |B). O

Note that, if we take a = b = x, we get the following hyper-Fibonacci identity, see
[4],

-1
Ef (@) = F () + B2 (0) + 2" (n o )
r —

Theorem 2.8. For m,n € NU{0} with m <r, we have

(2.10) ) = 3 afmm Vel k) pe(nm)E(nht1) <k> (ab)Lm=)/20 )
k=0

Proof. There exists q,(ﬁ)rm ways to tile a board of length (n+m + 2r — 1) containing at

least r dominoes. Consider the number of dominoes among the first m tiles. The k
dominoes can be placed among the first m tiles in (?) ways and the remaining tiles

which consisting of squares, contribute q¢M+m+1Em+k)pentm)e(nthtl)(gp)lm=Fk)/2] tq
the weight. The remaining right board has a length of n — 1 + 2r — k, with at least
r —k dominos that can be tiled in qfltkk) ways. Summing over all possible & completes

the proof. 0

Note that, if we take a = b = x and m = r, we get the following hyper-Fibonacci
identity, see [4],

r " r,« r— k

k=0
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The bi-periodic hyper-Fibonacci sequence can be expressed in terms of the combi-
natorial sum of bi-periodic Fibonacci sequence.

Theorem 2.9. For n,r > 1, we have

(1) _ N gerDEmpemetn) (T =R =LY ey 2
(2.11) q,) = kgla b ( 1 )(ab) Q.-
Proof. The left-hand side of this equality counts the number of ways to tile a board
of length n + 2r — 1 containing at least r» dominoes.

The right-hand side is obtained by conditioning on the location of the rth domino.
Suppose that the rth domino occupies cell k£ and £+ 1 (1 < k <n) (from the right).
The left part is a tiling of some section of length k£ — 1 which can be done in g
ways. The rigth part is a tiling of the remaining portion of length n +2r — 2 — k (i.e.,
cells k + 2 through n + 2r — 1) with exactly » — 1 dominos, which can be done in a
a(rFDEFRpEMER+1) (”Jr::]f*l) (ab)"=k)/2] wways (according to the parity of the numbers
n and k). The result follows from considering the sum of all possible locations of the
rt" domino. O

Note that, if we take a = b = z, we get the following hyper-Fibonacci identity, see
4] )
=y (" A
—1 r—1
In the following theorem, we give the alternating binomial sum of the bi-periodic
hyper-Fibonacci numbers.

Theorem 2.10. For r,m,n € NU {0} with m < r,we have

(2.12) i(—l)j <m> gUr=3) — GEEm) M) () m/2] o).

J=0

Proof. We proceed by induction on m < r. For m =1 and m = 2, we get (1.10) and
Theorem 2.6, respectively. Suppose that the result holds for all ¢ < m. Then we can
prove it for m + 1

S (" N =S ((7) + (7))

=0 =0 J
i m r—j ifm r—j—1
= Z(_l)j< ->QT(L+7£L)+1 - Z(_l)]< ‘>QSL+T‘171+1)‘
>0 J >0 J

From (1.10), we obtain

m—+1
S (-1p (m N 1) i = S (1) (m) e )
=0 J >0 J

_ € ) EmIEOm) (D) () /2] o)
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Using £(n+m) = &§(n) +£(m) —2§(n)¢(m) and [m/2] = [(m+1)/2] = &{(m), we get
m+41 m + 1 .
3 (_1)]( _ >q7(1+7i)+1 = SMEmADEmADEmD) ()L m1)/2] o)
=0 J
Therefore, the identity is valid for all m < r. 0J
Note that, for a = b = z, we get the following result.

Corollary 2.4. The following equality holds for any nonnegative integers r > m
(213 (-1 (m) O = amFD.
=0 J

The bi-periodic Fibonacci sequence can be expressed in terms of the bi-periodic
hyper-Fibonacci sequence.

Theorem 2.11. For r,m € NU {0}, we have
m r m -
(2.14) Gmi1 = D <k>( 1)k qEEEm) pE®RIErm+1) () WCIfnZA .
k=0

Proof. We proceed by induction on m. This is true for m = 0. Suppose that the
result holds for all ¢ < m. Then we can prove it for m + 1. From (1.10), we get

G2 = af(vwrl)bﬂm)qurl + ¢
— EmH1)pE(m) Z <Z>( 1)k E(k)E(m) pE(k)E m+1)(ab)U€/2 qurl i
k=0
m—1
r
s <k>(_1)ka£( Elm WSO (g /20 ()
k=0

= &(m —k+ 1)+ {(k)E(m + 1) — £(k)§(m) and £(m) = £(m — k) +
§(k)E(m) — E(R)E(m + 1) we get E(k)E(m) +E(m + 1) = E(R)E(m +1) +E(m -k +1)
+&(m) = &(k)E(m) + &(m — k). Therefore, we have

and &(k)¢(m +1)
Gtz =) </:> (—1)FaEEEm+ D+t D pEREm) +e(m=k) () lh/2) (@)
k=0
m—1
+ > <IZ> (—1)Faf®SmDpEWErm) (qp) /21 g00)
k=0
=> l:)(—1)kas(k)s(m+1)b£(k)s(m>(ab) R/2] (ks on=g) |+ ) )
=
(7Y () e m 1) I ) /2] )
- <k>(—1) at WSS () 2 g 0, . )
k=0

Note that, for a = b = z, we get the following result.
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Corollary 2.5. The following equality holds for any integers r,m > 0

m

215) Fualo) = 32 ([ ) 054 B o)

k=0

3. GENERATING FUNCTION

We start by establishing the relationship between the bi-periodic hyper-Fibonacci
sequence and the hyper-Fibonacci polynomials.

Lemma 3.1. Forn,r > 0, we have
(3.1) ¢ = ; ((1 + \/9 —(=1)" <1 - Z)) F{" (Vab).
Proof. Using (1.4), (2.1) and |n/2] = (n —&(n))/2, we have

[(n—1)/2]+r
, e n—1+2r—£k e — (e T_
qg) — gé(n=1) Z ( )(ab)( 1-&(n—1))/24+r—k

k=r k
_ ( a )E(n—l) L(n—i/QHT (n —14+92r— k) (\/%)n—l—‘r?r—?k
ab k=r k
&(n—1) L(n=1)/2]+r —1+2r—k n—1+2r—2k
S0 (e
b k=r k
L4+ /%) = (=)™ (1= /%) [e=D/24r /0 {1 9p  k n—1+42r—2k
:( b) ( \/;) Z n + 2r (@) 142 2.D
2 k=r k
Theorem 3.1. The generating function of the bi-periodic hyper-Fibonacci sequence
is given by
> gz =
n>0

(1+/5) (14 Vabz = 22) (1 + Vabz) + (1 - \/5) (1 — Vabz — 22) (1—%@)7"'

: 2(1— (ab+2)2%2 + 2%) (1 — abz?)"

Proof. Using Lemma 3.1 and (1.5), we get

S = (10 f5) R0 (V) 5 (1) 3 2 (V) o

n>0

=5 (1) (1_mz_;) (1 Varr)

_;<1_\/z> (14—\/@2’—;;) (1%—\/@2)T7

which gives the desired result. 0J
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Note that, if we take r = 0, we obtain the generating function of the bi-periodic
Fibonacci sequence (1.7). If we take a = b = x, we obtain the generating function of
hyper-Fibonacci polynomials (1.5) with y = 1.
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